Skip to main content

Lotus Effect and Self-Cleaning

  • Chapter
  • First Online:
Biomimetics in Materials Science

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 152))

Abstract

Self-cleaning surfaces are capable of repelling contaminants, including solid particles, organic liquids, and biocontaminants. The most common principle of self-cleaning is based on the Lotus effect, which involves the superhydrophobicity induced by surface roughness. The phenomenon of superhydrophobicity and its various implications have been considered in detail in the preceding chapter. The name of the Lotus effect was coined due to the observation that the leaves of Lotus (Nelumbo) can emerge clean from dirty water, making lotus a symbol of purity in many Asian cultures. Superhydrophobicity is the core property that leads to the Lotus effect-based self-cleaning, so we discuss in this chapter basic observations on superhydrophobicity in biological surfaces (including, plant leaves, insects, birds, gecko feet, etc.) as well as artificial surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson, A.V.: Physical Chemistry of Surfaces. Wiley, New York (1990)

    Google Scholar 

  • Baker, E.A.: Chemistry and morphology of plant epicuticular waxes. In: Cutler, D.F., Alvin, K.L., Price, C.E. (eds.) The Plant Cuticle, pp. 139–165. Academic, London (1982)

    Google Scholar 

  • Barthlott, W., Neinhuis, C.: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997)

    Article  Google Scholar 

  • Bhushan, B., Jung, Y.C.: Wetting study of patterned surfaces for superhydrophobicity. Ultramicroscopy 107, 1033–1041 (2007)

    Article  Google Scholar 

  • Bhushan, B., Nosonovsky, M.: The rose petal effect and the modes of superhydrophobicity. Phil Trans Royal. Soc. A. 368, 4713–4728 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Blossey, R.: Self-cleaning surfaces – virtual realities. Nat Mater. 2, 301–306 (2003)

    Article  Google Scholar 

  • Bormashenko, E., et al.: Micrometer-scale honeycomb polymer films and their properties. Macromol. Mater. Eng. 293, 872–877 (2008)

    Article  Google Scholar 

  • Bormashenko, E., Stein, T., Whyman, G., Bormashenko, Y., Pogreb, E.: Wetting properties of the multiscaled nanostructured polymer and metallic superhydrophobic surfaces. Langmuir 22, 9982–9985 (2006)

    Article  Google Scholar 

  • Bormashenko, E., Bormashenko, Y., Stein, T., Whyman, G., Pogreb, R., Barkay, Z.: Environmental scanning electron microscope study of the fine structure of the triple line and Cassie-Wenzel wetting transition for sessile drops deposited on rough polymer substrates. Langmuir 23, 4378–4382 (2007a)

    Article  Google Scholar 

  • Bormashenko, E., Pogreb, R., Whyman, G., Erlich, M.: Cassie-Wenzel wetting transition in vibrated drops deposited on the rough surfaces: is dynamic Cassie-Wenzel transition 2D or 1D affair? Langmuir 23, 6501–6503 (2007b)

    Article  Google Scholar 

  • Cao, L., et al.: Anti-icing superhydrophobic coatings. Langmuir 25, 12444 (2009)

    Article  Google Scholar 

  • Cassie, A., Baxter, S.: Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944)

    Article  Google Scholar 

  • Erbil, H.Y., Demirel, A.L., Avci, Y.: Transformation of a simple plastic into a superhydrophobic surface. Science 299, 1377–1380 (2003)

    Article  Google Scholar 

  • Extrand, C.W.: Model for contact angle and hysteresis on rough and ultraphobic surfaces. Langmuir 18, 7991–7999 (2002)

    Article  Google Scholar 

  • Feng, X.L., Feng, L., Jin, M.H., Zhai, J., Jiang, L., Zhu, D.B.: Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J. Am. Chem. Soc. 126, 62–63 (2004)

    Article  Google Scholar 

  • Forbes, P.: Self-cleaning materials: lotus leaf-inspired nanotechnology. Sci. Am. Mag. 8 (2008)

    Google Scholar 

  • Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  Google Scholar 

  • Furstner, R., Barthlott, W., Neinhuis, C., Walzel, P.: Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 21, 956–961 (2005)

    Article  Google Scholar 

  • Gao, X.F., Jiang, L.: Biophysics: water-repellent legs of water striders. Nature 432, 36 (2004)

    Article  Google Scholar 

  • Gillmor, S.D., Thiel, A.J., Strother, T.C., Smith, L.M., Lagally, M.G.: Hydrophilic/hydrophobic patterned surfaces as templates for DNA arrays. Langmuir 16, 7223–7228 (2000)

    Article  Google Scholar 

  • He, B., Patankar, N.A., Lee, J.: Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces. Langmuir 19, 4999–5003 (2003)

    Article  Google Scholar 

  • He, M., et al.: Super-hydrophobic film retards frost formation. Soft Matter. 6, 2396–2399 (2010)

    Article  Google Scholar 

  • Herminghaus, S.: Roughness-induced non-wetting. Europhys. Lett. 52, 165–170 (2000)

    Article  Google Scholar 

  • Hikita, M., Tanaka, K., Nakamura, T., Kajiyama, T., Takahara, A.: Superliquid-repellent surfaces prepared by colloidal silica nanoparticles covered with fluoroalkyl groups. Langmuir 21, 7299–7302 (2005)

    Article  Google Scholar 

  • Huang, L., Lau, S.P., Yang, H.Y., Leong, E.S.P., Yu, S.F.: Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film. J. Phys. Chem. 109, 7746–7748 (2005)

    Google Scholar 

  • Israelachvili, J.N.: Intermolecular and Surface Forces, 2nd edn. Academic, London (1992)

    Google Scholar 

  • Jansen, H., de Boer, M., Legtenberg, R., Elwenspoek, M.: The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control. J. Micromech. Microeng. 5, 115–120 (1995)

    Article  Google Scholar 

  • Jetter, R., Kunst, L., Samuels, A.L.: Composition of plant cuticular waxes. In: Riederer, M., Müller, C. (eds.) Biology of the Plant Cuticle, pp. 145–181. Blackwell, Oxford (2006)

    Chapter  Google Scholar 

  • Johnson, R.E., Dettre, R.H.: Contact angle hysteresis. In: Fowkes, F.M. (ed.) Contact Angle, Wettability, and Adhesion. Adv. Chem. Ser, vol. 43, pp. 112–135. American Chemical Society, Washington, DC (1964)

    Chapter  Google Scholar 

  • Khorasani, M.T., Mirzadeh, H., Kermani, Z.: Wettability of porous polydimethylsiloxane surface: morphology study. Appl. Surf. Sci. 242, 339–345 (2005)

    Article  Google Scholar 

  • Kijlstra, J., Reihs, K., Klami, A.: Roughness and topology of ultra-hydrophobic surfaces. Colloids Surf A Physicochem. Eng. Asp 206, 521–529 (2002)

    Article  Google Scholar 

  • Klein, R.J., Biesheuvel, P.M., Yu, B.C., Meinhart, C.D., Lange, F.F.: Producing super-hydrophobic surfaces with nano-silica spheres. Z. Metallkd. 94, 377–380 (2003)

    Google Scholar 

  • Krasovitski, B., Marmur, A.: Drops down the hill: theoretical study of limiting contact angles and the hysteresis range on a tilted plane. Langmuir 21, 3881–3885 (2004)

    Article  Google Scholar 

  • Kulinich, S.A., Farzaneh, M.: How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces. Langmuir 25, 8854–8856 (2009)

    Article  Google Scholar 

  • Kulinich, S.A., Farzaneh, M.: On ice-repelling properties of rough hydrophibic surfaces. Cold Regions Sci Technol. 65, 60–64 (2011)

    Article  Google Scholar 

  • Kulinich, S.A., Farhadi, S., Nose, K., Du, X.W.: Superhydrophobic surfaces: are they really ice-repellent? Langmuir 27, 25–29 (2011)

    Article  Google Scholar 

  • Lafuma, A., Quėrė, D.: Superhydrophobic states. Nat. Mater. 2, 457–460 (2003)

    Article  Google Scholar 

  • Lam, S.W., Gan, W.Y., Chiang, K., Amal, R.: Ti2 semoconductor – a smart self-cleaning material. J. Aust Ceram Soc. 44, 6–11 (2008)

    Google Scholar 

  • Lee, W., Jin, M., Yoo, W., Lee, J.: Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability. Langmuir 20, 7665–7669 (2004)

    Article  Google Scholar 

  • Ma, M., Hill, R.M., Lowery, J.L., Fridrikh, S.V., Rutledge, G.C.: Electrospun poly(styrene-block-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity. Langmuir 21, 5549–5554 (2005)

    Article  Google Scholar 

  • Marmur, A.: Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? Langmuir 19, 8343–8348 (2003)

    Article  Google Scholar 

  • Marmur, A.: The lotus effect: superhydrophobicity and metastability. Langmuir 20, 3517–3519 (2004)

    Article  Google Scholar 

  • Martines, E., Seunarine, K., Morgan, H., Gadegaard, N., Wilkinson, C.D.W., Riehle, M.O.: Superhydrophobicity and superhydrophilicity of regular nanopatterns. Nano Lett. 5, 2097–2103 (2005)

    Article  Google Scholar 

  • Meuler, A.J., McKinley, G.H., Gareth, G., Cohen, R.E.: Exploiting topographical texture to impart icephobicity. ACS Nano 4, 7048–7052 (2010a)

    Article  Google Scholar 

  • Meuler, A.J., Smith, J.D., Varanasi, K.K., Mabry, J.M., McKiney, G.H., Cohen, R.E.: Relationships between water wettability and ice adhesion. ACS Appl. Mater. Interfaces 2, 3100–3110 (2010b)

    Article  Google Scholar 

  • Ming, W., Wu, D., van Benthem, R., de With, G.: Superhydrophobic films from raspberry-like particles. Nano Lett. 5, 2298–2301 (2005)

    Article  Google Scholar 

  • Mishchenko, L., Hatton, B., Bahadur, V., Taylor, J.A., Krupenkin, T., Aizenberg, J.: Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano 4, 7699–7707 (2010)

    Article  Google Scholar 

  • Neinhuis, C., Barthlott, W.: Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. 79, 667–677 (1997)

    Article  Google Scholar 

  • Nosonovsky, M.: Model for solid-liquid and solid-solid friction for rough surfaces with adhesion hysteresis. J. Chem. Phys. 126, 224701 (2007b)

    Article  Google Scholar 

  • Nosonovsky, M.: Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir 23, 3157–3161 (2007e)

    Article  Google Scholar 

  • Nosonovsky, M., Bhushan, B.: Scale effects on dry friction during multiple asperity contact. ASME J Tribol 127, 37–46 (2005a)

    Article  Google Scholar 

  • Nosonovsky, M., Bhushan, B.: Roughness optimization for biomimetic superhydrophobic surfaces. Microsys. Technol. 11, 535–549 (2005b)

    Article  Google Scholar 

  • Nosonovsky, M., Bhushan, B.: Wetting of rough three-dimensional superhydrophobic surfaces. Microsys. Technol. 12, 273–281 (2006a)

    Article  Google Scholar 

  • Nosonovsky, M., Bhushan, B.: Stochastic model for metastable wetting of roughness-induced superhydrophobic surfaces. Microsys. Technol. 12, 231–237 (2006b)

    Article  Google Scholar 

  • Nosonovsky, M., Bhushan, B.: Multiscale friction mechanisms and hierarchical surfaces in nano- and bio-tribology. Mater. Sci. Eng. R 58, 162–193 (2007a)

    Article  Google Scholar 

  • Nosonovsky, M., Bhushan, B.: Non-adhesive patterned surfaces: superhydrophobicity and wetting regime transitions. Langmuir 24, 1525–1533 (2008a)

    Article  Google Scholar 

  • Nosonovsky, M., Bhushan, B.: Biologically-inspired surfaces: broadening the scope of roughness. Adv. Func. Mater. 18, 843–855 (2008c)

    Article  Google Scholar 

  • Nosonovsky, M., Bhushan, B.: Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics. Springer-Verlag, Heidelberg, Germany (2008d)

    MATH  Google Scholar 

  • Nosonovsky, M., Bormashenko, E.: Lotus effect: superhydrophobicity and self-cleaning. In: Favret, E., Fuentes, N. (eds.) Functional Properties of Biological Surfaces: Characterization and Technological Applications, pp. 43–78. World Scientific, Singapore (2009)

    Chapter  Google Scholar 

  • Patankar, N.A.: Transition between superhydrophobic states on rough surfaces. Langmuir 20, 7097–7102 (2004a)

    Article  Google Scholar 

  • Patankar, N.A.: Mimicking the lotus effect: influence of double roughness structures and slender pillars. Langmuir 20, 8209–8213 (2004b)

    Article  Google Scholar 

  • Qian, B., Shen, Z.: Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates. Langmuir 21, 9007–9009 (2005)

    Article  Google Scholar 

  • Ryan, N.J.: Using platelet technology to seal and locate leaks in subsea umbilical lines. Offshore Technology Conference held in Houston, OTC-18882-PP, 30 April–3 May 2007

    Google Scholar 

  • Sanchez, F., Sobolev, K.: Nanotechnology in concrete – a review. Constr Build Mater 24(11), 2060–2071 (2010)

    Article  Google Scholar 

  • Semal, S., Blake, T.D., Geskin, V., de Ruijter, M.L., Castelein, G., De Coninck, J.: Influence of surface roughness on wetting dynamics. Langmuir 15, 8765–8770 (1999)

    Article  Google Scholar 

  • Shang, H.M., Wang, Y., Limmer, S.J., Chou, T.P., Takahashi, K., Cao, G.Z.: Optically transparent superhydrophobic silica-based films. Thin Solid Films 472, 37–43 (2005)

    Article  Google Scholar 

  • Shibuichi, S., Onda, T., Satoh, N., Tsujii, K.: Super-water-repellent surfaces resulting from fractal structure. J. Phys. Chem. 100, 19512–19517 (1996)

    Article  Google Scholar 

  • Shirtcliffe, N.J., McHale, G., Newton, M.I., Chabrol, G., Perry, C.C.: Dual-scale roughness produces unusually water-repellent surfaces. Adv. Mater. 16, 1929–1932 (2004)

    Article  Google Scholar 

  • Shirtcliffe, N.J., McHale, G., Newton, M.I., Perry, C.C., Roach, P.: Porous materials show superhydrophobic to superhydrophilic switching. Chem. Commun. 3135–3137 (2005)

    Google Scholar 

  • Shiu, J., Kuo, C., Chen, P., Mou, C.: Fabrication of tunable superhydrophobic surfaces by nanosphere lithography. Chem. Mater. 16, 561–564 (2004)

    Article  Google Scholar 

  • Sun, M., Luo, C., Xu, L., Ji, H., Ouyang, Q., Yu, D., Chen, Y.: Artificial lotus leaf by nanocasting. Langmuir 21, 8978–8981 (2005)

    Article  Google Scholar 

  • Teshima, K., Sugimura, H., Inoue, Y., Takai, O., Takano, A.: Transparent ultra water-repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating. Appl. Surf. Sci. 244, 619–622 (2005)

    Article  Google Scholar 

  • Varanasi, K.K., Deng, T., Smith, J.D., Hsu, M., Bhate, N.: Frost formation and ice adhesion on superhydrophobic surfaces. Appl. Phys. Lett. 97, 234102 (2010)

    Article  Google Scholar 

  • Wagner, P., Furstner, R., Barthlott, W., Neinhuis, C.: Quantitative assessment to the structural basis of water repellency in natural and technical surfaces. J. Exper. Botany 54, 1295–1303 (2003)

    Article  Google Scholar 

  • Wang, R., et al.: Photogeneration of highly amphiphilic TiO2 surfaces. Adv. Mater. 10, 135 (1998)

    Article  Google Scholar 

  • Wang, R., et al.: Light-induced amphiphilic surfaces. Nature 388, 431–432 (1997)

    Article  Google Scholar 

  • Wang, S., Jiang, L.: Definition of superhydrophobic states. Adv. Mater. 19, 3423–3424 (2007)

    Article  Google Scholar 

  • Wenzel, R.N.: Resistance of solid surfaces to wetting by water. Indust. Eng. Chem. 28, 988–994 (1936)

    Article  Google Scholar 

  • Xu, L., Chen, W., Mulchandani, A., Yan, Y.: Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic. Angew. Chem. Int. Ed. 44, 6009–6012 (2005)

    Article  Google Scholar 

  • Yabu, H., Shimomura, M.: Single-step fabrication of transparent superhydrophobic porous polymer films. Chem. Mater. 17, 5231–5234 (2005)

    Article  Google Scholar 

  • Young, T.: An essay on cohesion of fluids. Phil. Trans. R. Soc. 95, 65–87 (1805)

    Article  Google Scholar 

  • Zhai, L., Cebeci, F.C., Cohen, R.E., Rubner, M.F.: Stable superhydrophobic coatings from polyelectrolyte multilayers. Nano Lett. 4, 1349–1353 (2004)

    Article  Google Scholar 

  • Zhang, J.L., Li, J.A., Han, Y.C.: Superhydrophobic PTFE surfaces by extension. Macromol. Rapid Commun. 25, 1105–1108 (2004a)

    Article  Google Scholar 

  • Zhang, X., Feng, S., Yu, X., Liu, H., Fu, Y., Wang, Z., Jiang, L., Li, X.: Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface. J. Am. Chem. Soc. 126, 3064–3065 (2004b)

    Article  Google Scholar 

  • Shuttleworth, R. and Bailey, G.L.J., “The Spreading of Liquid over a Rigid Solid,” Discussions of the Faraday Society, 3(1948) 16–22

    Google Scholar 

  • Bico, J., Thiele, U., and QuÕrÕ, D., “Wetting of Textured Surfaces,” Colloids and Surfaces A, 206 (2002) 41–46

    Google Scholar 

  • Jin, M.H., Feng, X.J., Xi, J.M., Zhai, J., Cho, K.W., Feng, L., and Jiang, L., “Superhydrophobic PDMS Surface with Ultra-low Adhesive Force,” Macromol. Rapid Commun., 26 (2005) 1805–1809

    Google Scholar 

  • Feng, L., Zhang, Y., Xi, J., Zhu, Y., Wang, N., Xia, F., & Jiang, L., 2008, “Petal Effect: A Superhydrophobic State with High Adhesive Force,” Langmuir 24, 4114–4114

    Google Scholar 

  • Xia, F. & Jiang, L. 2008, “Bio-Inspired, Smart, Multiscale Interfacial Materials,” Adv. Mater. 20, 2842–2858

    Google Scholar 

  • Gao, L. & McCarthy, T. J., 2008, “Teflon is Hydrophilic. Comments on Definitions of Hydrophobic, Shear versus Tensile Hydrophobicity, and Wettability Characterization,” Langmuir 24, 9184–9188

    Google Scholar 

  • McHale, G., 2009, “All Solids, Including Teflon, Are Hydrophilic (To Some Extent), But Some Have Roughness Induced Hydrophobic Tendencies,” Langmuir 25, 7185–7187.

    Google Scholar 

  • Bhushan, B. & Her, E. K., 2010, “Fabrication of Superhydrophobic Surfaces with High and Low Adhesion Inspired from Rose Petal” Langmuir 26, 8207–8217.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Nosonovsky .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nosonovsky, M., Rohatgi, P.K. (2011). Lotus Effect and Self-Cleaning. In: Biomimetics in Materials Science. Springer Series in Materials Science, vol 152. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0926-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0926-7_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0925-0

  • Online ISBN: 978-1-4614-0926-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics