Skip to main content

Caveolins and Heart Diseases

  • Chapter
Caveolins and Caveolae

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 729))

Abstract

Caveolins serve as a platform in plasma membrane associated caveolae to orchestrate various signaling molecules to effectively communicate extracellular signals into the interior of cell. All three types of caveolin, Cav-1, Cav-2 and Cav-3 are expressed throughout the cardiovascular system especially by the major cell types involved including endothelial cells, cardiac myocytes, smooth muscle cells and fibroblasts. The functional significance of caveolins in the cardiovascular system is evidenced by the fact that caveolin loss leads to the development of severe cardiac pathology. Caveolin gene mutations are associated with altered expression of caveolin protein and inherited arrhythmias. Altered levels of caveolins and related downstream signaling molecules in cardiomyopathies validate the integral participation of caveolin in normal cardiac physiology. This chapter will provide an overview of the role caveolins play in cardiovascular disease. Furthering our understanding of the role for caveolins in cardiovascular pathophysiology has the potential to lead to the manipulation of caveolins as novel therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Palade GE. An electron microscope study of the mitochondrial structure. J Histochem Cytochem 1953; 1:188–211.

    Article  PubMed  CAS  Google Scholar 

  2. Razani B, Woodman SE, Lisanti MP. Caveolae: from cell biology to animal physiology. Pharmacol Rev 2002; 54:431–467.

    Article  PubMed  CAS  Google Scholar 

  3. Allen JA, Halverson-Tamboli RA, Rasenick MM. Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci 2007; 8:128–140.

    Article  PubMed  CAS  Google Scholar 

  4. Patel HH, Insel PA. Lipid rafts and caveolae and their role in compartmentation of redox signaling. Antioxid Redox Signal 2009; 11:1357–1372.

    Article  PubMed  CAS  Google Scholar 

  5. Cohen AW, Combs TP, Scherer PE et al. Role of caveolin and caveolae in insulin signaling and diabetes. Am J Physiol Endocrinol Metab 2003; 285:E1151–1160.

    Google Scholar 

  6. van Deurs B, Roepstorff K, Hommelgaard AM et al. Caveolae: anchored, multifunctional platforms in the lipid ocean. Trends Cell Biol 2003; 13:92–100.

    Article  PubMed  Google Scholar 

  7. Parton RG, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell Biol 2007; 8:185–194.

    Article  PubMed  CAS  Google Scholar 

  8. Patel HH, Murray F, Insel PA. Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annu Rev Pharmacol Toxicol 2008; 48:359–391.

    Article  PubMed  CAS  Google Scholar 

  9. Sotgia F, Lee JK, Das K et al. Caveolin-3 directly interacts with the C-terminal tail of beta — dystroglycan. Identification of a central WW-like domain within caveolin family members. J Biol Chem 2000; 275:38048–38058.

    Article  PubMed  CAS  Google Scholar 

  10. Scherer PE, Lisanti MP. Association of phosphofructokinase-M with caveolin-3 in differentiated skeletal myotubes. Dynamic regulation by extracellular glucose and intracellular metabolites. J Biol Chem 1997; 272:20698–20705.

    Article  PubMed  CAS  Google Scholar 

  11. Hernandez-Deviez DJ, Martin S, Laval SH et al. Aberrant dysferlin trafficking in cells lacking caveolin or expressing dystrophy mutants of caveolin-3. Hum Mol Genet 2006; 15:129–142.

    Article  PubMed  CAS  Google Scholar 

  12. Cho WJ, Chow AK, Schulz R et al. Caveolin-1 exists and may function in cardiomyocytes. Can J Physiol Pharmacol 88:73–76.

    Google Scholar 

  13. Patel HH, Tsutsumi YM, Head BP et al. Mechanisms of cardiac protection from ischemia/reperfusion injury: a role for caveolae and caveolin-1. FASEB J 2007; 21:1565–1574.

    Article  PubMed  CAS  Google Scholar 

  14. Robenek H, Weissen-Plenz G, Severs NJ. Freeze-fracture replica immunolabelling reveals caveolin-1 in the human cardiomyocyte plasma membrane. J Cell Mol Med 2008; 12:2519–2521.

    Article  PubMed  CAS  Google Scholar 

  15. Park DS, Cohen AW, Frank PG et al. Caveolin-1 null (−/−) mice show dramatic reductions in life span. Biochemistry 2003; 42:15124–15131.

    Article  PubMed  CAS  Google Scholar 

  16. Hnasko R, Lisanti MP. The biology of caveolae: lessons from caveolin knockout mice and implications for human disease. Mol Interv 2003; 3:445–464.

    Article  PubMed  CAS  Google Scholar 

  17. Li WP, Liu P, Pilcher BK et al. Cell-specific targeting of caveolin-1 to caveolae, secretory vesicles, cytoplasm or mitochondria. J Cell Sci 2001; 114:1397–1408.

    PubMed  CAS  Google Scholar 

  18. Sowa G, Xie L, Xu L et al. Serine 23 and 36 phosphorylation of caveolin-2 is differentially regulated by targeting to lipid raft/caveolae and in mitotic endothelial cells. Biochemistry 2008; 47:101–111.

    Article  PubMed  CAS  Google Scholar 

  19. Capozza F, Cohen AW, Cheung MW et al. Muscle-specific interaction of caveolin isoforms: differential complex formation between caveolins in fibroblastic vs muscle cells. Am J Physiol Cell Physiol 2005; 288:C677–691.

    Article  Google Scholar 

  20. Rybin VO, Grabham PW, Elouardighi H et al. Caveolae-associated proteins in cardiomyocytes: caveolin-2 expression and interactions with caveolin-3. Am J Physiol Heart Circ Physiol 2003; 285:H325–332.

    Google Scholar 

  21. Sowa G, Pypaert M, Fulton D et al. The phosphorylation of caveolin-2 on serines 23 and 36 modulates caveolin-1-dependent caveolae formation. Proc Natl Acad Sci USA 2003; 100:6511–6516.

    Article  PubMed  CAS  Google Scholar 

  22. Lee H, Park DS, Wang XB et al. Src-induced phosphorylation of caveolin-2 on tyrosine 19. Phospho-caveolin-2 (Tyr(P)19) is localized near focal adhesions, remains associated with lipid rafts/ caveolae, but no longer forms a high molecular mass hetero-oligomer with caveolin-1. J Biol Chem 2002; 277:34556–34567.

    Article  PubMed  CAS  Google Scholar 

  23. Razani B, Wang XB, Engelman JA et al. Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol Cell Biol 2002; 22:2329–2344.

    Article  PubMed  CAS  Google Scholar 

  24. Minetti C, Bado M, Broda P et al. Impairment of caveolae formation and T-system disorganization in human muscular dystrophy with caveolin-3 deficiency. Am J Pathol 2002; 160:265–270.

    Article  PubMed  Google Scholar 

  25. Galbiati F, Engelman JA, Volonte D et al. Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex and t-tubule abnormalities. J Biol Chem 2001; 276:21425–21433.

    Article  PubMed  CAS  Google Scholar 

  26. Lin E, Hung VH, Kashihara H et al. Distribution patterns of the Na+-Ca2+ exchanger and caveolin-3 in developing rabbit cardiomyocytes. Cell Calcium 2009; 45:369–383.

    Article  PubMed  CAS  Google Scholar 

  27. Ratajczak P, Damy T, Heymes C et al. Caveolin-1 and − 3 dissociations from caveolae to cytosol in the heart during aging and after myocardial infarction in rat. Cardiovasc Res 2003; 57:358–369.

    Article  PubMed  CAS  Google Scholar 

  28. Ratajczak P, Oliviero P, Marotte F et al. Expression and localization of caveolins during postnatal development in rat heart: implication of thyroid hormone. J Appl Physiol 2005; 99:244–251.

    Article  PubMed  CAS  Google Scholar 

  29. Capozza F, Combs TP, Cohen AW et al. Caveolin-3 knockout mice show increased adiposity and whole body insulin resistance, with ligand-induced insulin receptor instability in skeletal muscle. Am J Physiol Cell Physiol 2005; 288:C1317–1331.

    Article  Google Scholar 

  30. Woodman SE, Park DS, Cohen AW et al. Caveolin-3 knock-out mice develop a progressive cardiomyopathy and show hyperactivation of the p42/44 MAPK cascade. J Biol Chem 2002; 277:38988–38997.

    Article  PubMed  CAS  Google Scholar 

  31. Koga A, Oka N, Kikuchi T et al. Adenovirus-mediated overexpression of caveolin-3 inhibits rat cardiomyocyte hypertrophy. Hypertension 2003; 42:213–219.

    Article  PubMed  CAS  Google Scholar 

  32. Horikawa YT, Patel HH, Tsutsumi YM et al. Caveolin-3 expression and caveolae are required for isoflurane-induced cardiac protection from hypoxia and ischemia/reperfusion injury. J Mol Cell Cardiol 2008; 44:123–130.

    Article  PubMed  CAS  Google Scholar 

  33. Tsutsumi YM, Horikawa YT, Jennings MM et al. Cardiac-specific overexpression of caveolin-3 induces endogenous cardiac protection by mimicking ischemic preconditioning. Circulation 2008; 118:1979–1988.

    Article  PubMed  CAS  Google Scholar 

  34. Galbiati F, Volonte D, Chu JB et al. Transgenic overexpression of caveolin-3 in skeletal muscle fibers induces a Duchenne-like muscular dystrophy phenotype. Proc Natl Acad Sci USA 2000; 97:9689–9694.

    Article  PubMed  CAS  Google Scholar 

  35. Aravamudan B, Volonte D, Ramani R et al. Transgenic overexpression of caveolin-3 in the heart induces a cardiomyopathic phenotype. Hum Mol Genet 2003; 12:2777–2788.

    Article  PubMed  CAS  Google Scholar 

  36. Mathew R, Huang J, Shah M et al. Disruption of endothelial-cell caveolin-1alpha/raft scaffolding during development of monocrotaline-induced pulmonary hypertension. Circulation 2004; 110:1499–1506.

    Article  PubMed  CAS  Google Scholar 

  37. Patel HH, Zhang S, Murray F et al. Increased smooth muscle cell expression of caveolin-1 and caveolae contribute to the pathophysiology of idiopathic pulmonary arterial hypertension. FASEB J 2007; 21:2970–2979.

    Article  PubMed  Google Scholar 

  38. Swaney JS, Patel HH, Yokoyama U et al. Focal adhesions in (myo)fibroblasts scaffold adenylyl cyclase with phosphorylated caveolin. J Biol Chem 2006; 281:17173–17179.

    Article  PubMed  CAS  Google Scholar 

  39. Patel HH, Head BP, Petersen HN et al. Protection of adult rat cardiac myocytes from ischemic cell death: role of caveolar microdomains and delta-opioid receptors. Am J Physiol Heart Circ Physiol 2006; 291:H344–350.

    Article  Google Scholar 

  40. Darblade B, Caillaud D, Poirot M et al. Alteration of plasmalemmal caveolae mimics endothelial dysfunction observed in atheromatous rabbit aorta. Cardiovasc Res 2001; 50:566–576.

    Article  PubMed  CAS  Google Scholar 

  41. Drab M, Verkade P, Elger M et al. Loss of caveolae, vascular dysfunction and pulmonary defects in caveolin-1 gene-disrupted mice. Science 2001; 293:2449–2452.

    Article  PubMed  CAS  Google Scholar 

  42. Razani B, Engelman JA, Wang XB et al. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 2001; 276:38121–38138.

    Article  PubMed  CAS  Google Scholar 

  43. Zhao YY, Liu Y, Stan RV et al. Defects in caveolin-1 cause dilated cardiomyopathy and pulmonary hypertension in knockout mice. Proc Natl Acad Sci USA 2002; 99:11375–11380.

    Article  PubMed  CAS  Google Scholar 

  44. Feron O, Balligand JL. Caveolins and the regulation of endothelial nitric oxide synthase in the heart. Cardiovasc Res 2006; 69:788–797.

    Article  PubMed  CAS  Google Scholar 

  45. Ohsawa Y, Toko H, Katsura M et al. Overexpression of P104L mutant caveolin-3 in mice develops hypertrophic cardiomyopathy with enhanced contractility in association with increased endothelial nitric oxide synthase activity. Hum Mol Genet 2004; 13:151–157.

    Article  PubMed  CAS  Google Scholar 

  46. Dhillon B, Badiwala MV, Li SH et al. Caveolin: a key target for modulating nitric oxide availability in health and disease. Mol Cell Biochem 2003; 247:101–109.

    Article  PubMed  CAS  Google Scholar 

  47. Brouet A, Sonveaux P, Dessy C et al. Hsp90 and caveolin are key targets for the proangiogenic nitric oxide-mediated effects of statins. Circ Res 2001; 89:866–873.

    Article  PubMed  CAS  Google Scholar 

  48. Frank PG, Lee H, Park DS et al. Genetic ablation of caveolin-1 confers protection against atherosclerosis. Arterioscler Thromb Vasc Biol 2004; 24:98–105.

    Article  PubMed  CAS  Google Scholar 

  49. Feron O, Kelly RA. The caveolar paradox: suppressing, inducing and terminating eNOS signaling. Circ Res 2001; 88:129–131.

    PubMed  CAS  Google Scholar 

  50. Ostrom RS. New determinants of receptor-effector coupling: trafficking and compartmentation in membrane microdomains. Mol Pharmacol 2002; 61:473–476.

    Article  PubMed  CAS  Google Scholar 

  51. Folco EJ, Liu GX, Koren G. Caveolin-3 and SAP97 form a scaffolding protein complex that regulates the voltage-gated potassium channel Kv1.5. Am J Physiol Heart Circ Physiol 2004; 287:H681–690.

    Article  Google Scholar 

  52. Balijepalli RC, Foell JD, Hall DD et al. Localization of cardiac L-type Ca(2+) channels to a caveolar macromolecular signaling complex is required for beta(2)-adrenergic regulation. Proc Natl Acad Sci USA 2006; 103:7500–7505.

    Article  PubMed  CAS  Google Scholar 

  53. Martens JR, Sakamoto N, Sullivan SA et al. Isoform-specific localization of voltage-gated K+ channels to distinct lipid raft populations. Targeting of Kv1.5 to caveolae. J Biol Chem 2001; 276:8409–8414.

    Article  PubMed  CAS  Google Scholar 

  54. Wang H, Haas M, Liang M et al. Ouabain assembles signaling cascades through the caveolar Na+/ K+-ATPase. J Biol Chem 2004; 279:17250–17259.

    Article  PubMed  CAS  Google Scholar 

  55. Camors E, Charue D, Trouve P et al. Association of annexin A5 with Na+/Ca2+ exchanger and caveolin-3 in nonfailing and failing human heart. J Mol Cell Cardiol 2006; 40:47–55.

    Article  PubMed  CAS  Google Scholar 

  56. Catteruccia M, Sanna T, Santorelli FM et al. Rippling muscle disease and cardiomyopathy associated with a mutation in the CAV3 gene. Neuromuscul Disord 2009; 19:779–783.

    Article  PubMed  Google Scholar 

  57. Vatta M, Ackerman MJ, Ye B et al. Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation 2006; 114:2104–2112.

    Article  PubMed  CAS  Google Scholar 

  58. Napolitano C, Rivolta I, Priori SG. Cardiac sodium channel diseases. Clin Chem Lab Med 2003; 41:439–444.

    Article  PubMed  CAS  Google Scholar 

  59. Cronk LB, Ye B, Kaku T et al. Novel mechanism for sudden infant death syndrome: persistent late sodium current secondary to mutations in caveolin-3. Heart Rhythm 2007; 4:161–166.

    Article  PubMed  Google Scholar 

  60. Anselmi A, Gaudino M, Baldi A et al. Role of apoptosis in pressure-overload cardiomyopathy. J Cardiovasc Med (Hagerstown) 2008; 9:227–232.

    Article  Google Scholar 

  61. Bogaard HJ, Abe K, Vonk Noordegraaf A et al. The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest 2009; 135:794–804.

    Article  PubMed  CAS  Google Scholar 

  62. Stanton T, Ingul CB, Hare JL et al. Interaction of left ventricular geometry and myocardial ischemia in the response of myocardial deformation to stress. Am J Cardiol 2009; 104:897–903.

    Article  PubMed  Google Scholar 

  63. Swynghedauw B, Delcayre C, Samuel JL et al. Molecular mechanisms in evolutionary cardiology failure. Ann N Y Acad Sci 2010; 1188:58–67.

    Article  PubMed  CAS  Google Scholar 

  64. Kimura TE, Jin J, Zi M et al. Targeted deletion of the extracellular signal-regulated protein kinase 5 attenuates hypertrophic response and promotes pressure overload-induced apoptosis in the heart. Circ Res 2010; 106:961–970.

    Article  PubMed  CAS  Google Scholar 

  65. Augustus AS, Buchanan J, Gutman E et al. Hearts lacking caveolin-1 develop hypertrophy with normal cardiac substrate metabolism. Cell Cycle 2008; 7:2509–2518.

    Article  PubMed  CAS  Google Scholar 

  66. Cohen AW, Park DS, Woodman SE et al. Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am J Physiol Cell Physiol 2003; 284:C457–474.

    Google Scholar 

  67. De Souza AP, Cohen AW, Park DS et al. MR imaging of caveolin gene-specific alterations in right ventricular wall thickness. Magn Reson Imaging 2005; 23:61–68.

    Article  PubMed  Google Scholar 

  68. Jasmin JF, Mercier I, Dupuis J et al. Short-term administration of a cell-permeable caveolin-1 peptide prevents the development of monocrotaline-induced pulmonary hypertension and right ventricular hypertrophy. Circulation 2006; 114:912–920.

    Article  PubMed  CAS  Google Scholar 

  69. Fujita T, Toya Y, Iwatsubo K et al. Accumulation of molecules involved in alpha1-adrenergic signal within caveolae: caveolin expression and the development of cardiac hypertrophy. Cardiovasc Res 2001; 51:709–716.

    Article  PubMed  CAS  Google Scholar 

  70. Krajewska WM, Maslowska I. Caveolins: structure and function in signal transduction. Cell Mol Biol Lett 2004; 9:195–220.

    PubMed  CAS  Google Scholar 

  71. Jeong K, Kwon H, Min C et al. Modulation of the caveolin-3 localization to caveolae and STAT3 to mitochondria by catecholamine-induced cardiac hypertrophy in H9c2 cardiomyoblasts. Exp Mol Med 2009; 41:226–235.

    Article  PubMed  CAS  Google Scholar 

  72. Park DS, Woodman SE, Schubert W et al. Caveolin-1/3 double-knockout mice are viable, but lack both muscle and nonmuscle caveolae and develop a severe cardiomyopathic phenotype. Am J Pathol 2002; 160:2207–2217.

    Article  PubMed  CAS  Google Scholar 

  73. Aoyagi T, Ishikawa Y, Oshikawa H et al. Caveolin-3 is up-regulated in the physiological left ventricular hypertrophy induced by voluntary exercise training in rats. J Sports Science Med 2002; 1:141–146.

    Google Scholar 

  74. Giusti B, Marini M, Rossi L et al. Gene expression profile of rat left ventricles reveals persisting changes following chronic mild exercise protocol: implications for cardioprotection. BMC Genomics 2009; 10:342.

    Article  PubMed  Google Scholar 

  75. Hayashi T, Arimura T, Ueda K et al. Identification and functional analysis of a caveolin-3 mutation associated with familial hypertrophic cardiomyopathy. Biochem Biophys Res Commun 2004; 313:178–184.

    Article  PubMed  CAS  Google Scholar 

  76. Kikuchi T, Oka N, Koga A et al. Behavior of caveolae and caveolin-3 during the development of myocyte hypertrophy. J Cardiovasc Pharmacol 2005; 45:204–210.

    Article  PubMed  CAS  Google Scholar 

  77. Ruiz-Hurtado G, Fernandez-Velasco M, Mourelle M et al. LA419, a novel nitric oxide donor, prevents pathological cardiac remodeling in pressure-overloaded rats via endothelial nitric oxide synthase pathway regulation. Hypertension 2007; 50:1049–1056.

    Article  PubMed  CAS  Google Scholar 

  78. Piech A, Massart PE, Dessy C et al. Decreased expression of myocardial eNOS and caveolin in dogs with hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 2002; 282:H219–231.

    Google Scholar 

  79. Damy T, Ratajczak P, Shah AM et al. Increased neuronal nitric oxide synthase-derived NO production in the failing human heart. Lancet 2004; 363:1365–1367.

    Article  PubMed  CAS  Google Scholar 

  80. Hare JM, Lofthouse RA, Juang GJ et al. Contribution of caveolin protein abundance to augmented nitric oxide signaling in conscious dogs with pacing-induced heart failure. Circ Res 2000; 86:1085–1092.

    PubMed  CAS  Google Scholar 

  81. Head BP, Patel HH, Roth DM et al. Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signaling components. J Biol Chem 2006; 281:26391–26399.

    Article  PubMed  CAS  Google Scholar 

  82. Nikolaev VO, Moshkov A, Lyon AR et al. Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327:1653–1657.

    Google Scholar 

  83. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986; 74:1124–1136.

    Article  PubMed  CAS  Google Scholar 

  84. Hausenloy DJ, Tsang A, Yellon DM. The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med 2005; 15:69–75.

    Article  PubMed  CAS  Google Scholar 

  85. Tong H, Imahashi K, Steenbergen C et al. Phosphorylation of glycogen synthase kinase-3beta during preconditioning through a phosphatidylinositol-3-kinase—dependent pathway is cardioprotective. Circ Res 2002; 90:377–379.

    Article  PubMed  CAS  Google Scholar 

  86. Hausenloy DJ, Tsang A, Mocanu MM et al. Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol 2005; 288:H971–976.

    Article  Google Scholar 

  87. Vinten-Johansen J, Zhao ZQ, Jiang R et al. Preconditioning and postconditioning: innate cardioprotection from ischemia-reperfusion injury. J Appl Physiol 2007; 103:1441–1448.

    Article  PubMed  Google Scholar 

  88. Peart JN, Headrick JP. Clinical cardioprotection and the value of conditioning responses. Am J Physiol Heart Circ Physiol 2009; 296:H1705–1720.

    Article  Google Scholar 

  89. Tsang A, Hausenloy DJ, Mocanu MM et al. Postconditioning: a form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res 2004; 95:230–232.

    Article  PubMed  CAS  Google Scholar 

  90. Young LH, Ikeda Y, Lefer AM. Caveolin-1 peptide exerts cardioprotective effects in myocardial ischemia-reperfusion via nitric oxide mechanism. Am J Physiol Heart Circ Physiol 2001; 280:H2489–H2495.

    PubMed  CAS  Google Scholar 

  91. Ballard-Croft C, Locklar AC, Kristo G et al. Regional myocardial ischemia induced activation of MAPKs is associated with subcellular redistribution of caveolin and cholesterol. Am J Physiol Heart Circ Physiol 2006; 291:H658–667.

    Article  Google Scholar 

  92. Der P, Cui J, Das DK. Role of lipid rafts in ceramide and nitric oxide signaling in the ischemic and preconditioned hearts. J Mol Cell Cardiol 2006; 40:313–320.

    Article  PubMed  CAS  Google Scholar 

  93. Koneru S, Penumathsa SV, Thirunavukkarasu M et al. Redox regulation of ischemic preconditioning is mediated by the differential activation of caveolins and their association with eNOS and GLUT-4. Am J Physiol Heart Circ Physiol 2007; 292:H2060–2072.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Roth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Panneerselvam, M., Patel, H.H., Roth, D.M. (2012). Caveolins and Heart Diseases. In: Jasmin, JF., Frank, P.G., Lisanti, M.P. (eds) Caveolins and Caveolae. Advances in Experimental Medicine and Biology, vol 729. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1222-9_10

Download citation

Publish with us

Policies and ethics