Skip to main content

Caveolin-1 and Prostate Cancer Progression

  • Chapter
Caveolins and Caveolae

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 729))

Abstract

Caveolin-1 was identified in the 1990s as a marker of aggressive prostate cancer. The caveolin-1 protein localizes to vesicular structures called caveolae and has been shown to bind and regulate many signaling proteins involved in oncogenesis. Caveolin-1 also has lipid binding properties and mediates aspects of cholesterol and fatty acid metabolism and can elicit biological responses in a paracrine manner when secreted. Caveolin-1 is also present in the serum of prostate cancer patients and circulating levels correlate with extent of disease. Current evidence indicates that increased expression of caveolin-1 in prostate adenocarcinoma cells and commensurate downregulation of the protein in prostate stroma, mediate progression to the castration-resistant phase of prostate cancer through diverse pathways. This chapter summarizes the current state of our understanding of the cellular and physiologic mechanisms in which caveolin-1 participates in the evolution of prostate cancer cell phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huggins C, Hodges CV. Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatc carinoma of the prostate. J Urol 1941; 168:9–12.

    Article  Google Scholar 

  2. Attard G, Reid AH, Yap TA et al. Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J Clin Oncol 2008; 26:4563–4571.

    Article  PubMed  CAS  Google Scholar 

  3. Attar RM, Takimoto CH, Gottardis MM. Castration-resistant prostate cancer: locking up the molecular escape routes. Clin Cancer Res 2009; 15:3251–3255.

    Article  PubMed  CAS  Google Scholar 

  4. Miyamoto H, Messing EM, Chang C. Androgen deprivation therapy for prostate cancer: current status and future prospects. Prostate 2004; 61:332–353.

    Article  PubMed  CAS  Google Scholar 

  5. Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr Rev 2004; 25:276–308.

    Article  PubMed  CAS  Google Scholar 

  6. Chmelar R, Buchanan G, Need EF et al. Androgen receptor coregulators and their involvement in the development and progression of prostate cancer. Int J Cancer 2007; 120:719–733.

    Article  PubMed  CAS  Google Scholar 

  7. Fu M, Rao M, Wang C et al. Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth. Mol Cell Biol 2003; 23:8563–8575.

    Article  PubMed  CAS  Google Scholar 

  8. Hu YC, Yeh S, Yeh SD et al. Functional domain and motif analyses of androgen receptor coregulator ARA70 and its differential expression in prostate cancer. J Biol Chem 2004; 279:33438–33446.

    Article  PubMed  CAS  Google Scholar 

  9. Linja MJ, Porkka KP, Kang Z et al. Expression of androgen receptor coregulators in prostate cancer. Clin Cancer Res 2004; 10:1032–1040.

    Article  PubMed  CAS  Google Scholar 

  10. Linja MJ, Savinainen KJ, Saramaki OR et al. Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res 2001; 61:3550–3555.

    PubMed  CAS  Google Scholar 

  11. Koivisto PA, Rantala I. Amplification of the androgen receptor gene is associated with P53 mutation in hormone-refractory recurrent prostate cancer. J Pathol 1999; 187:237–241.

    Article  PubMed  CAS  Google Scholar 

  12. Haapala K, Kuukasjarvi T, Hyytinen E et al. Androgen receptor amplification is associated with increased cell proliferation in prostate cancer. Hum Pathol 2007; 38:474–478.

    Article  PubMed  CAS  Google Scholar 

  13. Edwards J, Krishna NS, Grigor KM et al. Androgen receptor gene amplification and protein expression in hormone refractory prostate cancer. Br J Cancer 2003; 89:552–556.

    Article  PubMed  CAS  Google Scholar 

  14. Ford OH, 3rd, Gregory CW, Kim D et al. Androgen receptor gene amplification and protein expression in recurrent prostate cancer. J Urol 2003; 170:1817–1821.

    Article  PubMed  CAS  Google Scholar 

  15. Koivisto P, Kononen J, Palmberg C et al. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res 1997; 57:314–319.

    PubMed  CAS  Google Scholar 

  16. Visakorpi T, Hyytinen E, Koivisto P et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 1995; 9:401–406.

    Article  PubMed  CAS  Google Scholar 

  17. Zhau HY, Chang SM, Chen BQ et al. Androgen-repressed phenotype in human prostate cancer. Proc Natl Acad Sci USA 1996; 93:15152–15157.

    Article  PubMed  CAS  Google Scholar 

  18. Magi-Galluzzi C, Xu X, Hlatky L et al. Heterogeneity of androgen receptor content in advanced prostate cancer. Mod Pathol 1997; 10:839–845.

    PubMed  CAS  Google Scholar 

  19. Niu Y, Altuwaijri S, Lai KP et al. Androgen receptor is a tumor suppressor and proliferator in prostate cancer. Proc Natl Acad Sci USA 2008; 105:12182–12187.

    Article  PubMed  CAS  Google Scholar 

  20. Niu Y, Altuwaijri S, Yeh S et al. Targeting the stromal androgen receptor in primary prostate tumors at earlier stages. Proc Natl Acad Sci USA 2008; 105:12188–12193.

    Article  PubMed  CAS  Google Scholar 

  21. Bergerat JP, Ceraline J. Pleiotropic functional properties of androgen receptor mutants in prostate cancer. Hum Mutat 2009; 30:145–157.

    Article  PubMed  CAS  Google Scholar 

  22. Li W, Cavasotto CN, Cardozo T et al. Androgen receptor mutations identified in prostate cancer and androgen insensitivity syndrome display aberrant ART-27 coactivator function. Mol Endocrinol 2005; 19:2273–2282.

    Article  PubMed  CAS  Google Scholar 

  23. Yeh S, Lin HK, Kang HY et al. From HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc Natl Acad Sci USA 1999; 96:5458–5463.

    Article  PubMed  CAS  Google Scholar 

  24. Kang HY, Lin HK, Hu YC et al. From transforming growth factor-beta signaling to androgen action: identification of Smad3 as an androgen receptor coregulator in prostate cancer cells. Proc Natl Acad Sci USA 2001; 98:3018–3023.

    Article  PubMed  CAS  Google Scholar 

  25. Nickerson T, Chang F, Lorimer D et al. In vivo progression of LAPC-9 and LNCaP prostate cancer models to androgen independence is associated with increased expression of insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR). Cancer Res 2001; 61:6276–6280.

    PubMed  CAS  Google Scholar 

  26. Yang L, Xie S, Jamaluddin MS et al. Induction of androgen receptor expression by phosphatidylinositol 3-kinase/Akt downstream substrate, FOXO3a and their roles in apoptosis of LNCaP prostate cancer cells. J Biol Chem 2005; 280:33558–33565.

    Article  PubMed  CAS  Google Scholar 

  27. Yang L, Wang L, Lin HK et al. Interleukin-6 differentially regulates androgen receptor transactivation via PI3K-Akt, STAT3 and MAPK, three distinct signal pathways in prostate cancer cells. Biochem Biophys Res Commun 2003; 305:462–469.

    Article  PubMed  CAS  Google Scholar 

  28. Plymate SR, Haugk K, Coleman I et al. An antibody targeting the type I insulin-like growth factor receptor enhances the castration-induced response in androgen-dependent prostate cancer. Clin Cancer Res 2007; 13:6429–6439.

    Article  PubMed  CAS  Google Scholar 

  29. Montgomery RB, Mostaghel EA, Vessella R et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res 2008; 68:4447–4454.

    Article  PubMed  CAS  Google Scholar 

  30. Locke JA, Fazli L, Adomat H et al. A novel communication role for CYP17A1 in the progression of castration-resistant prostate cancer. Prostate 2009; 69:928–937.

    Article  PubMed  CAS  Google Scholar 

  31. Locke JA, Guns ES, Lubik AA et al. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res 2008; 68:6407–6415.

    Article  PubMed  CAS  Google Scholar 

  32. Lee MS, Igawa T, Lin MF. Tyrosine-317 of p52(Shc) mediates androgen-stimulated proliferation signals in human prostate cancer cells. Oncogene 2004; 23:3048–3058.

    Article  PubMed  CAS  Google Scholar 

  33. Mellinghoff IK, Vivanco I, Kwon A et al. HER2/neu kinase-dependent modulation of androgen receptor function through effects on DNA binding and stability. Cancer Cell 2004; 6:517–527.

    Article  PubMed  CAS  Google Scholar 

  34. Wu JD, Haugk K, Woodke L et al. Interaction of IGF signaling and the androgen receptor in prostate cancer progression. J Cell Biochem 2006; 99:392–401.

    Article  PubMed  CAS  Google Scholar 

  35. Lu ML, Schneider MC, Zheng Y et al. Caveolin-1 interacts with androgen receptor. A positive modulator of androgen receptor mediated transactivation. J Biol Chem 2001; 276:13442–13451.

    Article  PubMed  CAS  Google Scholar 

  36. Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. Science 2010; 327:46–50.

    Article  PubMed  CAS  Google Scholar 

  37. Freeman MR, Cinar B, Lu ML. Membrane rafts as potential sites of nongenomic hormonal signaling in prostate cancer. Trends Endocrinol Metab 2005; 16:273–279.

    Article  PubMed  CAS  Google Scholar 

  38. Haas D, White SN, Lutz LB et al. The modulator of nongenomic actions of the estrogen receptor (MNAR) regulates transcription-independent androgen receptor-mediated signaling: evidence that MNAR participates in G protein-regulated meiosis in Xenopus laevis oocytes. Mol Endocrinol 2005; 19:2035–2046.

    Article  PubMed  CAS  Google Scholar 

  39. Pedram A, Razandi M, Sainson RC et al. A conserved mechanism for steroid receptor translocation to the plasma membrane. J Biol Chem 2007; 282:22278–22288.

    Article  PubMed  CAS  Google Scholar 

  40. Couet J, Sargiacomo M, Lisanti MP. Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J Biol Chem 1997; 272:30429–30438.

    Article  PubMed  CAS  Google Scholar 

  41. Vihanto MM, Vindis C, Djonov V et al. Caveolin-1 is required for signaling and membrane targeting of EphB1 receptor tyrosine kinase. J Cell Sci 2006; 119:2299–2309.

    Article  PubMed  CAS  Google Scholar 

  42. Sen A, O’Malley K, Wang Z et al. Paxillin regulates androgen-and epidermal growth factor-induced MAPK signaling and cell proliferation in prostate cancer cells. J Biol Chem 2010; 285(37):28787–95.

    Article  PubMed  CAS  Google Scholar 

  43. Migliaccio A, Varricchio L, De Falco A et al. Inhibition of the SH3 domain-mediated binding of Src to the androgen receptor and its effect on tumor growth. Oncogene 2007; 26:6619–6629.

    Article  PubMed  CAS  Google Scholar 

  44. Migliaccio A, Castoria G, Di Domenico M et al. Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation. EMBO J 2000; 19:5406–5417.

    Article  PubMed  CAS  Google Scholar 

  45. Shatkina L, Mink S, Rogatsch H et al. The cochaperone Bag-1L enhances androgen receptor action via interaction with the NH2-terminal region of the receptor. Mol Cell Biol 2003; 23:7189–7197.

    Article  PubMed  CAS  Google Scholar 

  46. Cheung-Flynn J, Prapapanich V, Cox MB et al. Physiological role for the cochaperone FKBP52 in androgen receptor signaling. Mol Endocrinol 2005; 19:1654–1666.

    Article  PubMed  CAS  Google Scholar 

  47. Zoubeidi A, Zardan A, Beraldi E et al. Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity. Cancer Res 2007; 67:10455–10465.

    Article  PubMed  CAS  Google Scholar 

  48. Razandi M, Pedram A, Levin ER. Heat shock protein 27 is required for sex steroid receptor trafficking to and functioning at the plasma membrane. Mol Cell Biol 2010; 30:3249–3261.

    Article  PubMed  CAS  Google Scholar 

  49. Yang G, Truong LD, Wheeler TM et al. Caveolin-1 expression in clinically confined human prostate cancer: a novel prognostic marker. Cancer Res 1999; 59:5719–5723.

    PubMed  CAS  Google Scholar 

  50. Yang W, Di Vizio D, Kirchner M et al. Proteome scale characterization of human S-acylated proteins in lipid raft-enriched and nonraft membranes. Mol Cell Proteomics 2010; 9:54–70.

    Article  PubMed  CAS  Google Scholar 

  51. Aronica SM, Kraus WL, Katzenellenbogen BS. Estrogen action via the cAMP signaling pathway: stimulation of adenylate cyclase and cAMP-regulated gene transcription. Proc Natl Acad Sci USA 1994; 91:8517–8521.

    Article  PubMed  CAS  Google Scholar 

  52. Whang YE, Wu X, Suzuki H et al. Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. Proc Natl Acad Sci USA 1998; 95:5246–5250.

    Article  PubMed  CAS  Google Scholar 

  53. Wu X, Senechal K, Neshat MS et al. The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci USA 1998; 95:15587–15591.

    Article  PubMed  CAS  Google Scholar 

  54. Cinar B, Mukhopadhyay NK, Meng G et al. Phosphoinositide 3-kinase-independent nongenomic signals transit from the androgen receptor to Akt1 in membrane raft microdomains. J Biol Chem 2007; 282:29584–29593.

    Article  PubMed  CAS  Google Scholar 

  55. Li L, Ren CH, Tahir SA et al. Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Mol Cell Biol 2003; 23:9389–9404.

    Article  PubMed  CAS  Google Scholar 

  56. Caselli A, Mazzinghi B, Camici G et al. Some protein tyrosine phosphatases target in part to lipid rafts and interact with caveolin-1. Biochem Biophys Res Commun 2002; 296:692–697.

    Article  PubMed  CAS  Google Scholar 

  57. Yang G, Truong LD, Timme TL et al. Elevated expression of caveolin is associated with prostate and breast cancer. Clin Cancer Res 1998; 4:1873–1880.

    PubMed  CAS  Google Scholar 

  58. Tahir SA, Yang G, Ebara S et al. Secreted caveolin-1 stimulates cell survival/clonal growth and contributes to metastasis in androgen-insensitive prostate cancer. Cancer Res 2001; 61:3882–3885.

    PubMed  CAS  Google Scholar 

  59. Tahir SA, Frolov A, Hayes TG et al. Preoperative serum caveolin-1 as a prognostic marker for recurrence in a radical prostatectomy cohort. Clin Cancer Res 2006; 12:4872–4875.

    Article  PubMed  CAS  Google Scholar 

  60. Di Vizio D, Sotgia F, Williams TM et al. Caveolin-1 is required for the upregulation of fatty acid synthase (FASN), a tumor promoter, during prostate cancer progression. Cancer Biol Ther 2007; 6:1263–1268.

    PubMed  Google Scholar 

  61. Di Vizio D, Adam RM, Kim J et al. Caveolin-1 interacts with a lipid raft-associated population of fatty acid synthase. Cell Cycle 2008; 7:2257–2267.

    Article  PubMed  CAS  Google Scholar 

  62. Yang G, Addai J, Wheeler TM et al. Correlative evidence that prostate cancer cell-derived caveolin-1 mediates angiogenesis. Hum Pathol 2007; 38:1688–1695.

    Article  PubMed  CAS  Google Scholar 

  63. Yang G, Timme TL, Frolov A et al. Combined c-Myc and caveolin-1 expression in human prostate carcinoma predicts prostate carcinoma progression. Cancer 2005; 103:1186–1194.

    Article  PubMed  CAS  Google Scholar 

  64. Yang G, Addai J, Ittmann M et al. Elevated caveolin-1 levels in African-American versus white-American prostate cancer. Clin Cancer Res 2000; 6:3430–3433.

    PubMed  CAS  Google Scholar 

  65. Williams TM, Hassan GS, Li J et al. Caveolin-1 promotes tumor progression in an autochthonous mouse model of prostate cancer: genetic ablation of Cav-1 delays advanced prostate tumor development in tramp mice. J Biol Chem 2005; 280:25134–25145.

    Article  PubMed  CAS  Google Scholar 

  66. Williams TM, Medina F, Badano I et al. Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo. Role of Cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion. J Biol Chem 2004; 279:51630–51646.

    Article  PubMed  CAS  Google Scholar 

  67. Williams TM, Cheung MW, Park DS et al. Loss of caveolin-1 gene expression accelerates the development of dysplastic mammary lesions in tumor-prone transgenic mice. Mol Biol Cell 2003; 14:1027–1042.

    Article  PubMed  CAS  Google Scholar 

  68. Nasu Y, Timme TL, Yang G et al. Suppression of caveolin expression induces androgen sensitivity in metastatic androgen-insensitive mouse prostate cancer cells. Nat Med 1998; 4:1062–1064.

    Article  PubMed  CAS  Google Scholar 

  69. Li L, Yang G, Ebara S et al. Caveolin-1 mediates testosterone-stimulated survival/clonal growth and promotes metastatic activities in prostate cancer cells. Cancer Res 2001; 61:4386–4392.

    PubMed  CAS  Google Scholar 

  70. Timme TL, Goltsov A, Tahir S et al. Caveolin-1 is regulated by c-myc and suppresses c-myc-induced apoptosis. Oncogene 2000; 19:3256–3265.

    Article  PubMed  CAS  Google Scholar 

  71. Park DS, Woodman SE, Schubert W et al. Caveolin-1/3 double-knockout mice are viable, but lack both muscle and nonmuscle caveolae and develop a severe cardiomyopathic phenotype. Am J Pathol 2002; 160:2207–2217.

    Article  PubMed  CAS  Google Scholar 

  72. Schaffner CP, Gordon HW. The hypocholesterolemic activity of orally administered polyene macrolides. Proc Natl Acad Sci USA 1968; 61:36–41.

    Article  PubMed  CAS  Google Scholar 

  73. Schaffner CP. Prostatic cholesterol metabolism: regulation and alteration. Prog Clin Biol Res 1981; 75A:279–324.

    Google Scholar 

  74. Solomon KR, Pelton K, Boucher K et al. Ezetimibe is an inhibitor of tumor angiogenesis. Am J Pathol 2009; 174:1017–1026.

    Article  PubMed  CAS  Google Scholar 

  75. Freeman MR, Solomon KR. Cholesterol and prostate cancer. J Cell Biochem 2004; 91:54–69.

    Article  PubMed  CAS  Google Scholar 

  76. Murtola TJ, Tammela TL, Maattanen L et al. Prostate cancer and PSA among statin users in the Finnish prostate cancer screening trial. Int J Cancer 2010; 127(7):1650–9.

    Article  PubMed  CAS  Google Scholar 

  77. Platz EA, Till C, Goodman PJ et al. Men with low serum cholesterol have a lower risk of high-grade prostate cancer in the placebo arm of the prostate cancer prevention trial. Cancer Epidemiol Biomarkers Prev 2009; 18:2807–2813.

    Article  PubMed  CAS  Google Scholar 

  78. Platz EA, Clinton SK, Giovannucci E. Association between plasma cholesterol and prostate cancer in the PSA era. Int J Cancer 2008; 123:1693–1698.

    Article  PubMed  CAS  Google Scholar 

  79. Platz EA, Leitzmann MF, Visvanathan K et al. Statin drugs and risk of advanced prostate cancer. J Natl Cancer Inst 2006; 98:1819–1825.

    Article  PubMed  CAS  Google Scholar 

  80. Zhang Y, Calvo E, Martel C et al. Response of the adipose tissue transcriptome to dihydrotestosterone in mice. Physiol Genomics 2008; 35:254–261.

    Article  PubMed  CAS  Google Scholar 

  81. Chauvin TR, Griswold MD. Androgen-regulated genes in the murine epididymis. Biol Reprod 2004; 71:560–569.

    Article  PubMed  CAS  Google Scholar 

  82. Swinnen JV, Heemers H, van de Sande T et al. Androgens, lipogenesis and prostate cancer. J Steroid Biochem Mol Biol 2004; 92:273–279.

    Article  PubMed  CAS  Google Scholar 

  83. Kim J, Adam RM, Solomon KR et al. Involvement of cholesterol-rich lipid rafts in interleukin-6-induced neuroendocrine differentiation of LNCaP prostate cancer cells. Endocrinology 2004; 145:613–619.

    Article  PubMed  CAS  Google Scholar 

  84. Adam RM, Mukhopadhyay NK, Kim J et al. Cholesterol sensitivity of endogenous and myristoylated Akt. Cancer Res 2007; 67:6238–6246.

    Article  PubMed  CAS  Google Scholar 

  85. Zhuang L, Lin J, Lu ML et al. Cholesterol-rich lipid rafts mediate akt-regulated survival in prostate cancer cells. Cancer Res 2002; 62:2227–2231.

    PubMed  CAS  Google Scholar 

  86. Zhuang L, Kim J, Adam RM et al. Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts. J Clin Invest 2005; 115:959–968.

    PubMed  CAS  Google Scholar 

  87. Liu L, Brown D, McKee M et al. Deletion of Cavin/PTRF causes global loss of caveolae, dyslipidemia and glucose intolerance. Cell Metab 2008; 8:310–317.

    Article  PubMed  CAS  Google Scholar 

  88. Hill MM, Bastiani M, Luetterforst R et al. PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 2008; 132:113–124.

    Article  PubMed  CAS  Google Scholar 

  89. Liu L, Pilch PF. A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organization. J Biol Chem 2008; 283:4314–4322.

    Article  PubMed  CAS  Google Scholar 

  90. Gould ML, Williams G, Nicholson HD. Changes in caveolae, caveolin and polymerase 1 and transcript release factor (PTRF) expression in prostate cancer progression. Prostate 2010; 70(15):1609–21.

    Article  PubMed  CAS  Google Scholar 

  91. Hayer A, Stoeber M, Bissig C et al. Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes. Traffic 2010; 11:361–382.

    Article  PubMed  CAS  Google Scholar 

  92. Frank PG, Pavlides S, Cheung MW et al. Role of caveolin-1 in the regulation of lipoprotein metabolism. Am J Physiol Cell Physiol 2008; 295:C242–248.

    Article  CAS  Google Scholar 

  93. Razani B, Combs TP, Wang XB et al. Caveolin-1-deficient mice are lean, resistant to diet-induced obesity and show hypertriglyceridemia with adipocyte abnormalities. J Biol Chem 2002; 277:8635–8647.

    Article  PubMed  CAS  Google Scholar 

  94. Tahir SA, Ren C, Timme TL et al. Development of an immunoassay for serum caveolin-1: a novel biomarker for prostate cancer. Clin Cancer Res 2003; 9:3653–3659.

    PubMed  CAS  Google Scholar 

  95. Tahir SA, Yang G, Goltsov AA et al. Tumor cell-secreted caveolin-1 has proangiogenic activities in prostate cancer. Cancer Res 2008; 68:731–739.

    Article  PubMed  CAS  Google Scholar 

  96. Bartz R, Zhou J, Hsieh T et al. Caveolin-1 secreting LNCaP cells induce tumor growth of caveolin-1 negative LNCaP cells in vivo. Int J Cancer 2008; 122:520–525.

    Article  PubMed  CAS  Google Scholar 

  97. Di Vizio D, Kim J, Hager MH et al. Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res 2009; 69:5601–5609.

    Article  PubMed  CAS  Google Scholar 

  98. Dakhova O, Ozen M, Creighton CJ et al. Global gene expression analysis of reactive stroma in prostate cancer. Clin Cancer Res 2009; 15:3979–3989.

    Article  PubMed  CAS  Google Scholar 

  99. Tuxhorn JA, Ayala GE, Smith MJ et al. Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Clin Cancer Res 2002; 8:2912–2923.

    PubMed  CAS  Google Scholar 

  100. Mercier I, Casimiro MC, Wang C et al. Human breast cancer-associated fibroblasts (CAFs) show caveolin-1 downregulation and RB tumor suppressor functional inactivation: Implications for the response to hormonal therapy. Cancer Biol Ther 2008; 7:1212–1225.

    Article  PubMed  CAS  Google Scholar 

  101. Josson S, Matsuoka Y, Chung LW et al. Tumor-stroma co-evolution in prostate cancer progression and metastasis. Semin Cell Dev Biol 2010; 21:26–32.

    Article  PubMed  CAS  Google Scholar 

  102. Vanpoucke G, Orr B, Grace OC et al. Transcriptional profiling of inductive mesenchyme to identify molecules involved in prostate development and disease. Genome Biol 2007; 8:R213.

    Article  PubMed  CAS  Google Scholar 

  103. Galbiati F, Volonte D, Engelman JA et al. Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO J 1998; 17:6633–6648.

    Article  PubMed  CAS  Google Scholar 

  104. Engelman JA, Wykoff CC, Yasuhara S et al. Recombinant expression of caveolin-1 in oncogenically transformed cells abrogates anchorage-independent growth. J Biol Chem 1997; 272:16374–16381.

    Article  PubMed  CAS  Google Scholar 

  105. Koleske AJ, Baltimore D, Lisanti MP. Reduction of caveolin and caveolae in oncogenically transformed cells. Proc Natl Acad Sci USA 1995; 92:1381–1385.

    Article  PubMed  CAS  Google Scholar 

  106. Sotgia F, Del Galdo F, Casimiro MC et al. Caveolin-1−/− null mammary stromal fibroblasts share characteristics with human breast cancer-associated fibroblasts. Am J Pathol 2009; 174:746–761.

    Article  PubMed  CAS  Google Scholar 

  107. Witkiewicz AK, Dasgupta A, Sotgia F et al. An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am J Pathol 2009; 174:2023–2034.

    Article  PubMed  CAS  Google Scholar 

  108. Di Vizio D, Morello M, Sotgia F et al. An absence of stromal caveolin-1 is associated with advanced prostate cancer, metastatic disease and epithelial Akt activation. Cell Cycle 2009; 8:2420–2424.

    Article  PubMed  Google Scholar 

  109. Yang F, Tuxhorn JA, Ressler SJ et al. Stromal expression of connective tissue growth factor promotes angiogenesis and prostate cancer tumorigenesis. Cancer Res 2005; 65:8887–8895.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Freeman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Freeman, M.R., Yang, W., Di Vizio, D. (2012). Caveolin-1 and Prostate Cancer Progression. In: Jasmin, JF., Frank, P.G., Lisanti, M.P. (eds) Caveolins and Caveolae. Advances in Experimental Medicine and Biology, vol 729. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1222-9_7

Download citation

Publish with us

Policies and ethics