Skip to main content

Mathematical Models of Hysteresis

  • Chapter
  • First Online:
Noise-Driven Phenomena in Hysteretic Systems

Part of the book series: Signals and Communication Technology ((SCT,volume 218))

Abstract

This chapter offers an overview of the hysteresis models that will be used throughout the book. After a short general classification of hysteresis models and parameter identification methods, the rectangular hysteresis operator is introduced. Then, the chapter focuses on summarizing the main equations, properties, and characteristics of the Preisach, energetic, Jiles-Atherton, Coleman-Hodgdon, and Bouc-Wen models. Particular attention is given to the analytical description of the general properties of hysteresis curves such as differential susceptibilities, remanence, coercivity, saturation, anhysteretic curve, energy lost, stability, accommodation, and limit cycle for each model. The second part of the chapter presents two techniques for the modeling of rate-dependent hysteresis, one based on the feedback (effective field) theory and the other one on the relaxation time approximation. Finally, a unified theory of vector models is presented; this theory can be applied to generalize any scalar model of hysteresis to vector systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mayergoyz, I. (1991). Mathematical models of hysteresis. New York: Springer-Verlag.

    Google Scholar 

  2. Bouc, R. (1971). Mathematical model for hysteresis. Acustica, 24, 16–25.

    MATH  Google Scholar 

  3. Wen, Y. K. (1976). Method for random vibration of hysteretic systems. Journal of the Engineering Mechanics Division-ASCE, 102, 249–263.

    Google Scholar 

  4. Duhem, P. (1897). Die dauernden Aenderungen und die Thermodynamik. Zeitschrift für Physikalische Chemie, 22, 543.

    Google Scholar 

  5. Jiles, D. C., & Atherton, D. L. (1983). Ferromagnetic hysteresis. IEEE Transactions on Magnetics, 19, 2183–2185.

    Article  Google Scholar 

  6. Jiles, D. C., & Atherton, D. L. (1984). Theory of ferromagnetic hysteresis. Journal of Applied Physics, 55, 2115–2120.

    Article  Google Scholar 

  7. SPICE. (University of California at Berkeley), The SPICE Webpage. Retrieved from http://bwrc.eecs.berkeley.edu/classes/icbook/spice/.

  8. Coleman, B. D., & Hodgdon, M. L. (1987). On a class of constitutive relations for ferromagnetic hysteresis. Archive for Rational Mechanics and Analysis, 99, 375–396.

    Article  MathSciNet  MATH  Google Scholar 

  9. Coleman, B. D., & Hodgdon, M. L. (1986). A constitutive relation for rate-independent hysteresis in ferromagnetically soft materials. International Journal of Engineering Science, 24, 897–919.

    Article  MATH  Google Scholar 

  10. Hauser, H. (1994). Energetic model of ferromagnetic hysteresis. Journal of Applied Physics, 75, 2584–2596.

    Article  Google Scholar 

  11. Harrison, R. G. (2009). Physical theory of ferromagnetic first-order return curves. IEEE Transactions on Magnetics, 45, 1922–1939.

    Article  Google Scholar 

  12. Harrison, R. G. (2011). Positive-feedback theory of hysteretic recoil loops in hard ferromagnetic materials. IEEE Transactions on Magnetics, 47, 175–191.

    Article  Google Scholar 

  13. Bergqvist, A., et al. (1997). Experimental testing of an anisotropic vector hysteresis model. IEEE Transactions on Magnetics, 33, 4152.

    Article  Google Scholar 

  14. Leite, J. V., et al. (2005). A new anisotropic vector hysteresis model based on stop hysterons. IEEE Transactions on Magnetics, 41, 1500–1503.

    Article  Google Scholar 

  15. Matsuo, T., et al. (2004). Stop model with input-dependent shape function and its identification methods. IEEE Transactions on Magnetics, 40, 1776–1783.

    Article  Google Scholar 

  16. de Almeida, L. A. L., et al. (2003). Limiting loop proximity hysteresis model. IEEE Transactions on Magnetics, 39, 523–528.

    Article  Google Scholar 

  17. Takács, J. (2003). Mathematics of hysteretic phenomena: The T(x) model for the description of hysteresis. Weinheim: Wiley.

    Google Scholar 

  18. Kucuk, I. (2006). Prediction of hysteresis loop in magnetic cores using neural network and genetic algorithm. Journal of Magnetism and Magnetic Materials, 305, 423–427.

    Article  Google Scholar 

  19. Cao, S. Y., et al. (2006). Modeling dynamic hysteresis for giant magnetostrictive actuator using hybrid genetic algorithm. IEEE Transactions on Magnetics, 42, 911–914.

    Article  Google Scholar 

  20. Rayleigh, L. (1887). On the behaviour of iron and steel under the operation of feeble magnetic forces. Philosophical Magazine, 23, 225–248.

    Article  MATH  Google Scholar 

  21. Ikhouane, F., & Rodellar, J. (2007). Systems with hysteresis. Chichester: John Wiley & Sons, Ltd.

    Google Scholar 

  22. Xue, X. M., et al. (2010). Parameter estimation for the phenomenological model of hysteresis using efficient genetic algorithm. ISCM II and EPMESC XII, 1233, 713–717.

    Google Scholar 

  23. Sun, Q., et al. (2009). Parameter estimation and its sensitivity analysis of the MR damper hysteresis model using a modified genetic algorithm. Journal of Intelligent Material Systems and Structures, 20, 2089–2100.

    Article  Google Scholar 

  24. Liu, G. J., & Chan, C. H. (2007). Hysteresis identification and compensation using a genetic algorithm with adaptive search space. Mechatronics, 17, 391–402.

    Article  Google Scholar 

  25. Peng, L., & Wang, W. (2007). Adaptive genetic algorithm with heuristic weighted crossover operator based hysteresis identification and compensation. 2007 IEEE International Conference on Control and Automation (Vol. 1–7, pp. 3260–3264).

    Google Scholar 

  26. Zheng, J. J., et al. (2007). Hybrid genetic algorithms for parameter identification of a hysteresis model of magnetostrictive actuators. Neurocomputing, 70, 749–761.

    Article  Google Scholar 

  27. Chwastek, K., & Szczyglowski, J. (2006). Identification of a hysteresis model parameters with genetic algorithms. Mathematics and Computers in Simulation, 71, 206–211.

    Article  MathSciNet  MATH  Google Scholar 

  28. Zidaric, B., & Miljavec, D. (2005). Nested genetic algorithms in determination of Jiles-Atherton hysteresis model parameters for soft-magnetic composite materials. Informacije Midem-Journal of Microelectronics Electronic Components and Materials, 35, 92–96.

    Google Scholar 

  29. Cao, S. Y. et al. (2005) Parameter identification of strain hysteresis model for giant magnetostrictive actuators using a hybrid genetic algorithm. ICEMS 2005: Proceedings of the Eighth International Conference on Electrical Machines and Systems, 1–3, 2009–2012.

    Google Scholar 

  30. Chan, C. H., & Liu, G. J. (2004). Actuator hysteresis identification and compensation using an adaptive search space based genetic algorithm. Proceedings of the 2004 American Control Conference, 1–6, 5760–5765.

    Google Scholar 

  31. Naghizadeh, R. A., & Vajidi, B. (2011). Parameter identification of Jiles-Atherton model using SFLA. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 31, 1293–1309.

    Google Scholar 

  32. Ye, M. Y., & Wang, X. D. (2009). Parameter identification of hysteresis model with improved particle swarm optimization. Proceedings of the 21st Chinese Control and Decision Conference, 16, 415–419.

    Google Scholar 

  33. Ye, M. Y., & Wang, X. D. (2007). Parameter estimation of the Bouc-Wen hysteresis model using particle swarm optimization. Smart Materials and Structures, 16, 2341–2349.

    Article  Google Scholar 

  34. Fulginei, F. R., et al. (2007). Symbiotic evolutionary algorithm for the Preisach hysteresis model identification. International Journal of Applied Electromagnetics and Mechanics, 25, 681–687.

    Google Scholar 

  35. Andrei, P., et al. (2007). Identification techniques for phenomenological models of hysteresis based on the conjugate gradient method. Journal of Magnetism and Magnetic Materials, 316, E330–E333.

    Article  Google Scholar 

  36. Mayergoyz, I. (2003). Mathematical models of hysteresis and their applications: Electromagnetism. San Diego: Academic Press.

    Google Scholar 

  37. Pike, C. R., et al. (2005). First-order reversal curve diagram analysis of a perpendicular nickel nanopillar array. Physical Review B, 71, 134407.

    Article  Google Scholar 

  38. Della Torre, E., & Bennett, L. H. (1998). A Preisach model for aftereffect. IEEE Transactions on Magnetics, 34, 1276–1278.

    Article  Google Scholar 

  39. Cardelli, E., et al. (2000). Direct and inverse Preisach modeling of soft materials. IEEE Transactions on Magnetics, 36, 1267–1271.

    Article  Google Scholar 

  40. Fry, R. A., et al. (2000). Preisach modeling of aftereffect in a magneto-optical medium with perpendicular magnetization. Physica B-Condensed Matter, 275, 50–54.

    Article  Google Scholar 

  41. Patel, U. D., & Della Torre, E. (2001). Fast computation of the inverse CMH model. Physica B, 306, 178–184.

    Article  Google Scholar 

  42. Reimers, A., et al. (2001). Implementation of the preisach DOK magnetic hysteresis model in a commercial finite element package. IEEE Transactions on Magnetics, 37, 3362–3365.

    Article  Google Scholar 

  43. Reimers, A., & Della Torre, E. (2002). Implementation of the simplified vector model. IEEE Transactions on Magnetics, 38, 837–840.

    Article  Google Scholar 

  44. Cardelli, E., et al. (2004). Modeling of laminas of magnetic iron with a reduced vector Preisach model. Physica B-Condensed Matter, 343, 171–176.

    Article  Google Scholar 

  45. Della Torre, E., et al. (2004). Differential equation model for accommodation magnetization. IEEE Transactions on Magnetics, 40, 1499–1505.

    Article  Google Scholar 

  46. Burrascano, P., et al. (2006). Vector hysteresis model at micromagnetic scale. IEEE Transactions on Magnetics, 42, 3138–3140.

    Article  Google Scholar 

  47. Della Torre, E., et al. (2006). Vector modeling—part I: Generalized hysteresis model. Physica B-Condensed Matter, 372, 111–114.

    Article  Google Scholar 

  48. Della Torre, E., et al. (2006). Vector modeling—part II: Ellipsoidal vector hysteresis model. Numerical application to a 2D case. Physica B-Condensed Matter, 372, 115–119.

    Article  Google Scholar 

  49. Della Torre, E., & Cardelli, E. (2007). The coordinated vector model. COMPEL-the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 26, 327–333.

    Article  MATH  Google Scholar 

  50. Della Torre, E., et al. (2008). A model for vector accommodation. Physica B-Condensed Matter, 403, 496–499.

    Article  Google Scholar 

  51. Cardelli, E., et al. (2009). Analysis of a unit magnetic particle via the DPC model. IEEE Transactions on Magnetics, 45, 5192–5195.

    Article  Google Scholar 

  52. Stancu, A., et al. (2005). New Preisach model for structured particulate ferromagnetic media. Journal of Magnetism and Magnetic Materials, 290, 490–493.

    Article  Google Scholar 

  53. Mitchler, P. D., et al. (1996). Henkel plots in a temperature and time dependent Preisach model. IEEE Transactions on Magnetics, 32, 3185–3194.

    Article  Google Scholar 

  54. Mitchler, P. D., et al. (1999). Interactions and thermal effects in systems of fine particles: A Preisach analysis of CrO2 audio tape and magnetoferritin. IEEE Transactions on Magnetics, 35, 2029–2042.

    Article  Google Scholar 

  55. Spinu, L., et al. (2001). Time and temperature-dependent Preisach models. Physica B, 306, 166–171.

    Article  Google Scholar 

  56. Matsuo, T., et al. (2003). Application of stop and play models to the representation of magnetic characteristics of silicon steel sheet. IEEE Transactions on Magnetics, 39, 1361–1364.

    Article  Google Scholar 

  57. Matsuo, T., & Shimasaki, M. (2005). Representation theorems for stop and play models with input-dependent shape functions. IEEE Transactions on Magnetics, 41, 1548–1551.

    Article  Google Scholar 

  58. Bergqvist, A., et al. (1997). Experimental testing of an anisotropic vector hysteresis model. IEEE Transactions on Magnetics, 33, 4152–4154.

    Article  Google Scholar 

  59. Deane, J. H. B. (1994). Modeling the dynamics of nonlinear inductor circuits. IEEE Transactions on Magnetics, 30, 2795–2801.

    Article  Google Scholar 

  60. Cadence. (2005), PSPICE. Retrieved from http://www.cadence.com/.

  61. Jiles, D. C., & Atherton, D. L. (1986). Theory of ferromagnetic hysteresis. Journal of Magnetism and Magnetic Materials, 61, 48–60.

    Article  Google Scholar 

  62. Sablik, M. J., & Jiles, D. C. (1988). A model for hysteresis in magnetostriction. Journal of Applied Physics, 64, 5402–5404.

    Article  Google Scholar 

  63. Hauser, H. et al. (Oct 2007). Including effects of microstructure and anisotropy in theoretical models describing hysteresis of ferromagnetic materials. Applied Physics Letters, 91, 172512.

    Google Scholar 

  64. Jiles, D. C., et al. (1992). Numerical determination of hysteresis parameters for the modeling of magnetic-properties using the theory of ferromagnetic hysteresis. IEEE Transactions on Magnetics, 28, 27–35.

    Article  Google Scholar 

  65. Hauser, H. (1995). Energetic model of ferromagnetic hysteresis. 2. Magnetization calculations of (110)[001] fesi sheets by statistic domain behavior. Journal of Applied Physics, 77, 2625–2633.

    Article  Google Scholar 

  66. Hauser, H. (2004). Energetic model of ferromagnetic hysteresis: Isotropic magnetization. Journal of Applied Physics, 96, 2753–2767.

    Article  Google Scholar 

  67. Andrei, P., & Adedoyin, A. (Apr 2009). Noniterative parameter identification technique for the energetic model of hysteresis. Journal of Applied Physics, 105, 07D523.

    Google Scholar 

  68. Baber, T. T., & Wen, Y. K. (1981). Random vibration of hysteretic, degrading systems. Journal of the Engineering Mechanics Division-ASCE, 107, 1069–1087.

    Google Scholar 

  69. Baber, T. T., & Noori, M. N. (1985). Random vibration of degrading, pinching systems. Journal of Engineering Mechanics-ASCE, 111, 1010–1026.

    Article  Google Scholar 

  70. Baber, T. T., & Noori, M. N. (1986). Modeling general hysteresis behavior and random vibration application. Journal of Vibration Acoustics Stress and Reliability in Design-Transactions of the ASME, 108, 411–420.

    Article  Google Scholar 

  71. Hodgdon, M. L. (1991). A constitutive relation for hysteresis in superconductors. Journal of Applied Physics, 69, 2388–2396.

    Article  Google Scholar 

  72. Hodgdon, M. L. (1988). Mathematical theory and calculations of magnetic hysteresis curves. IEEE Transactions on Magnetics, 24, 3120–3122.

    Article  Google Scholar 

  73. Stancu, A., et al. (1997). Models of hysteresis in magnetic cores. Journal de Physique IV, 7, 209–210.

    Article  Google Scholar 

  74. Hodgdon, M. L. (1991). Computation of superconductor critical current densities and magnetization curves. Journal of Applied Physics, 69, 4904–4906.

    Article  Google Scholar 

  75. Boley, C. D., & Hodgdon, M. L. (1989). Model and simulations of hysteresis in magnetic cores. IEEE Transactions on Magnetics, 25, 3922–3924.

    Article  Google Scholar 

  76. Andrei, P. (1997). Phenomenological models for the study of ferromagnetic and fertic materials (in Romanian). B.S., Physics Department, Alexandru Ioan Cuza University, Iasi.

    Google Scholar 

  77. Mayergoyz, I. D., & Friedman, G. (1987). Isotropic vector Preisach model of hysteresis. Journal of Applied Physics, 61, 4022–4024.

    Article  Google Scholar 

  78. Mayergoyz, I. D., & Friedman, G. (1987). On the integral-equation of the vector Preisach hysteresis model. IEEE Transactions on Magnetics, 23, 2638–2640.

    Article  Google Scholar 

  79. Mayergoyz, I. D. (1988). Vector Preisach hysteresis models. Journal of Applied Physics, 63, 2995–3000.

    Article  Google Scholar 

  80. Andrei, P., & Adedoyin, A. (Apr 2008). Phenomenological vector models of hysteresis driven by random fluctuation fields. Journal of Applied Physics, 103, 07D913.

    Google Scholar 

  81. Krasnosel'skii, M. A., & Pokrovskii, A. (1989). Systems with hysteresis, Nauka.

    Google Scholar 

  82. Visintin, A. (1994). Differential models of hysteresis. Berlin: Springer.

    Google Scholar 

  83. Brokate, M., & Sprekels, J. (1996). Hysteresis and phase transitions, Springer.

    Google Scholar 

  84. Krejčí, P. (1996) Hysteresis, convexity and dissipation in hyperbolic equations. Tokyo: Gakkotosho Co., Ltd.

    Google Scholar 

  85. Mayergoyz, I. D., & Bertotti G. (2006). Science of hysteresis, Academic press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Dimian .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Dimian, M., Andrei, P. (2014). Mathematical Models of Hysteresis. In: Noise-Driven Phenomena in Hysteretic Systems. Signals and Communication Technology, vol 218. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1374-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1374-5_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1373-8

  • Online ISBN: 978-1-4614-1374-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics