Skip to main content

Supercritical and near-critical CO2 processing

  • Chapter
  • First Online:
Green Technologies in Food Production and Processing

Part of the book series: Food Engineering Series ((FSES))

Abstract

CO2 is the supercritical fluid of choice because its critical temperature is readily accessible (∼304 K), because it is a relatively benign material itself (nonflammable, relatively low toxicity), and because it is naturally abundant and hence inexpensive. Unfortunately, CO2 is a feeble solvent, making it difficult to use for processes where substantial solubility of high molecular weight and/or polar compounds is required. Although there are several compounds whose critical temperatures are sufficiently mild (<100°C) to allow easy access to the supercritical regime, most have received little attention owing to various process or safety issues. From its inception, research into the use of CO2 as a process solvent has been motivated by the desire to create process schemes that are greener than their predecessors. Whereas the bulk of CO2-based applications in the food industry to date have targeted extractions, there is the possibility for other CO2-based technologies to cross over from polymer science (foaming, additive blending), catalysis (hydrogenation), and biotechnology (enzymatic reactions). In this chapter, the physical properties of CO2, environmental advantages and disadvantages to the use of CO2, process design, and the economic viability of supercritical CO2 use are discussed. Current and potential applications are also highlighted. Much of the most exciting work in CO2 technology since 1990 has involved the design of auxiliaries (surfactants, chelating agents), which may find use in food processing as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allada, S.R. 1984. Solubility parameters of supercritical fluids. Industrial & Engineering Chemistry Process Design and Development 23: 344.

    CAS  Google Scholar 

  • Andersson, M.B.O., J.W. King, and L.G. Blomberg. 2000. Synthesis of fatty alcohol mixtures from oleochemicals in supercritical fluids. Green Chemistry 2: 230.

    CAS  Google Scholar 

  • Angus, S., B. Armstrong, and K.M. de Reuck. 1976. Carbon dioxide. Oxford: Pergamon Press.

    Google Scholar 

  • Argyle, M.D., and W.A. Propp. 1999. Method and apparatus for the application of textile treatment compositions to textile materials. USPTO, US Patent No. 5,709,910.

    Google Scholar 

  • Arora, K.A., A.J. Lesser, and T.J. McCarthy. 1998. Preparation and characterization of microcellular polystyrene foams processed in supercritical carbon dioxide. Macromolecules 31: 4614.

    CAS  Google Scholar 

  • Artal, M., J. Munoz Embid, I. Velasco, C. Berro, and E. Rauzy. 2001. Representation for binary mixtures of n-alcohols  +  sub and supercritical CO2 by a group-contribution method. Fluid Phase Equilibria 178: 119.

    CAS  Google Scholar 

  • Bach, E., E. Cleve, E. Schollmeyer, M. Bork, and P. Korner. 1998. The dyeing of polyolefin fibers in supercritical carbon dioxide part 1: Thermomechanical properties of polyolefin fibers after treatment in CO2 under dyeing conditions. Journal of the Textile Institute 89: 647.

    CAS  Google Scholar 

  • Bach, E., E. Cleve, E. Schollmeyer, T. Vardag, and P. Korner. 1999. The dyeing of polyolefin fibers in supercritical carbon dioxide part 2: The influence of dye structure on the dyeing of fabrics and on fastness properties. Journal of the Textile Institute 89: 657.

    Google Scholar 

  • Bach, E., E. Cleve, and E. Schollmeyer. 2002. Past, present and future of supercritical fluid dyeing technology—An overview. Review of Progress in Coloration and Related Topics 32: 88.

    CAS  Google Scholar 

  • Baptiste-Nguyen, S., and B. Subramaniam. 1992. Coking and activity of porous catalysts in supercritical reaction media. AIChE (American Institute of Chemical Engineers) Journal 38: 1027.

    Google Scholar 

  • Baradie, B., M.S. Shoichet, Z. Shen, M. McHugh, L. Hong, Y. Wang, J.K. Johnson, E.J. Beckman, and R.M. Enick. 2004. Synthesis and solubility of linear poly(tetrafluoroethylene-co-vinyl acetate) in dense CO2: Experimental and molecular modeling results. Macromolecules 37(20): 7799–7807.

    CAS  Google Scholar 

  • Beckman, E.J. 2003. Green chemical processing using CO2. Industrial and Engineering Chemistry Research 42(8): 1598–1602.

    Google Scholar 

  • Berens, A.R., G.S. Huvard. 1989. Interaction of Polymers with Near-Critical Carbon Dioxide, in Supercritical Fluid Science and Technology, American Chemical Society Symposium Series, 406(14): pp 207–223 http://pubs.acs.org/isbn/9780841216785.

  • Berens, A.R., G.S. Huvard, R.W. Korsmeyer, and F.W. Kunig. 1992. Application of compressed carbon dioxide in the incorporation of additives into polymers. Journal of Applied Polymer Science 46: 231.

    CAS  Google Scholar 

  • Blas, F.J., and A. Galindo. 2002. Study of the high pressure phase behaviour of CO2  +  n-alkane mixtures using the SAFT-VR approach with transferable parameters. Fluid Phase Equilibria 501: 194–197.

    Google Scholar 

  • Bonilla, R.J., B.R. James, and P.G. Jessop. 2000. Colloid-catalysed arene hydrogenation in aqueous/supercritical fluid biphasic media. Chemical Communications 11: 941–942.

    Google Scholar 

  • Brunner, G. 1994. Gas extraction. Darmstadt, FRG: Steinkopff Verlag.

    Google Scholar 

  • Brunner, G. 2005. Supercritical fluids: Technology and application to food processing. Journal of Food Engineering 67(1–2): 21–33.

    Google Scholar 

  • Byun, H.S., K. Kim, and M.A. McHugh. 2000. Phase behavior and modeling of supercritical carbon dioxide−organic acid mixtures. Industrial & Engineering Chemistry Research 39: 4580.

    CAS  Google Scholar 

  • Cece, A., S.H. Jureller, J.L. Kerscher, and K.F. Moschner. 1996. Molecular modeling approach for contrasting the interaction of ethane and hexafluoroethane with carbon dioxide. The Journal of Physical Chemistry 100: 7435.

    CAS  Google Scholar 

  • Chakma, A., M.R. Islam, and F. Berruti (eds.). 1991. Enhanced oil recovery. New York: American Institute of Chemical Engineers.

    Google Scholar 

  • Chandler, K., C.W. Culp, D.R. Lamb, C.L. Liotta, and C.A. Eckert. 1998. Phase-transfer catalysis in supercritical carbon dioxide: Kinetic and mechanistic investigations of cyanide displacement on benzyl chloride. Industrial & Engineering Chemistry Research 37: 3252.

    CAS  Google Scholar 

  • Charpentier, P.A., K.A. Kennedy, J.M. DeSimone, and G.W. Roberts. 1999. Continuous polymerizations in supercritical carbon dioxide: Chain-growth precipitation polymerizations. Macromolecules 32: 5973.

    CAS  Google Scholar 

  • Charpentier, P.A., J.M. DeSimone, and G.W. Roberts. 2000. Decomposition of polymerisation initiators in supercritical CO2: A novel approach to reaction kinetics using a CSTR. Chemical Engineering Science 55: 5341–5349.

    CAS  Google Scholar 

  • Chiang, S.H., and G.E. Klinzing. 1986. Process for removing mineral matter from coal. USPTO, U.S. Patent No. 4,613,429.

    Google Scholar 

  • Chinsoo, L., K.L. Hoy, and M.D. Donohue. 1990. Supercritical fluids as diluents in liquid spray application of coatings. USPTO, U.S. Patent No. 4,923,720.

    Google Scholar 

  • Chinsoo, L., K.L. Hoy, and M.D. Donohue. 1991. Supercritical fluids as diluents in liquid spray application of coatings. USPTO, U.S. Patent No. 5,027,742.

    Google Scholar 

  • Chouchi, D., D. Gourgouillon, M. Courel, J. Vital, and M.N. da Ponte. 2001. The influence of phase behavior on reactions at supercritical conditions: The hydrogenation of α-pinene. Industrial & Engineering Chemistry Research 40: 2551.

    CAS  Google Scholar 

  • Colina, C.M., C.K. Hall, and K.E. Gubbins. 2002. Phase behavior of PVAC–PTAN block copolymer in supercritical carbon dioxide using SAFT. Fluid Phase Equilibria 553: 194–197.

    Google Scholar 

  • Condo, P.D., and K.P. Johnston. 1994. In situ measurement of the glass transition temperature of polymers with compressed fluid diluents. Journal of Polymer Science Part B: Polymer Physics 32(3): 523–533.

    CAS  Google Scholar 

  • Consani, K.A., and R.D. Smith. 1990. Observations on the solubility of surfactants and related molecules in carbon dioxide at 50°C. The Journal of Supercritical Fluids 3(2): 51–65.

    CAS  Google Scholar 

  • Cygnarowicz-Provost, M. 1996. Design and economic analysis of supercritical fluid extraction processes. Supercritical Fluid Technology in Oil and Lipid Chemistry, pp. 155–179.

    Google Scholar 

  • Dardin, A., J.M. DeSimone, and E.T. Samulski. 1998. Fluorocarbons dissolved in supercritical carbon dioxide. NMR evidence for specific solute−solvent interactions. The Journal of Physical Chemistry B 102: 1775–1780.

    CAS  Google Scholar 

  • Decaire, B.R., P.B. Logsdon, E.A.E. Lund, R.R. Singh, and I.R. Shankland. 1994a. Azeotrope-like compositions of trifluoromethane, carbon dioxide and sulfur hexafluoride. USPTO, US Patent 5,275,751.

    Google Scholar 

  • Decaire, B.R., P.B. Logsdon, E.A.E. Lund, R.R. Singh, I.R. Shankland, D.P. Wilson, and R.H.P. Thomas. 1994b. Azeotrope-like compositions of trifluoromethane and carbon dioxide or hexafluoroethane and carbon dioxide. USPTO, US Patent 5340490.

    Google Scholar 

  • DeSimone, J.M., Z. Guan, and C.S. Elsbernd. 1992. Synthesis of fluoropolymers in supercritical carbon dioxide. Science 257: 945.

    CAS  Google Scholar 

  • Diaz, S., S. Espinosa, and E.A. Brignole. 2000. Modeling and simulation tools for supercritical fluid processes. Computer-Aided Chemical Engineering 8: 319.

    CAS  Google Scholar 

  • Diep, P., K.D. Jordan, J.K. Johnson, and E.J. Beckman. 1998. CO2−Fluorocarbon and CO2−hydrocarbon interactions from first-principles calculations. The Journal of Physical Chemistry A 102: 2231.

    CAS  Google Scholar 

  • Eastoe, J., A. Paul, S. Nave, D.C. Steytler, B.H. Robinson, E. Rumsey, M. Thorpe, and R.K. Heenan. 2001. Micellization of hydrocarbon surfactants in supercritical carbon dioxide. Journal of the American Chemical Society 123: 988.

    CAS  Google Scholar 

  • Eastoe, J., S. Gold, S. Rogers, P. Wyatt, D.C. Steytler, A. Gurgel, R.K. Heenan, X. Fan, E.J. Beckman, and R.M. Enick. 2006. Designed CO2-philes stabilize water-in-carbon dioxide microemulsions. Angewandte Chemie 118(22): 3757–3759.

    Google Scholar 

  • Eckert, C.A., D. Bush, J.S. Brown, and C.L. Liotta. 2000. Tuning solvents for sustainable technology. Industrial & Engineering Chemistry Research 39: 4615.

    CAS  Google Scholar 

  • Eggers, R., J. von Schnitzler, and K. Truckenmuller. 1999a. Method for the dyeing of yarn from a supercritical fluid. USPTO, US Patent No. 5,938,794.

    Google Scholar 

  • Eggers, R., J. von Schnitzler, and G. Worner. 1999c. Process for the dyeing of a textile substrate. USPTO, US Patent No. 5,972,045.

    Google Scholar 

  • Eggers, R., J. von Schnitzler, R. Huber, and G. Worner. 1999b. Process for dyeing a textile substrate in at least one supercritical fluid. USPTO, US Patent No. 5,958,085.

    Google Scholar 

  • Erdohelyi, A., M. Pasztor, and F. Solymosi. 1986. Catalytic hydrogenation of CO2 over supported palladium. Journal of Catalysis 98: 106.

    Google Scholar 

  • Espinosa, S., S. Diaz, and E.A. Brignole. 2000. Optimal design of supercritical fluid processes. Computers & Chemical Engineering 24: 1301.

    CAS  Google Scholar 

  • Fink, R., D. Hancu, R. Valentine, and E.J. Beckman. 1999. Toward the development of “CO2-philic” hydrocarbons. 1. Use of side-chain functionalization to lower the miscibility pressure of polydimethylsiloxanes in CO2. The Journal of Physical Chemistry B 103: 6441–6444.

    CAS  Google Scholar 

  • Fried, J.R., and N. Hu. 2003. The molecular basis of CO2 interaction with polymers containing fluorinated groups: Computational chemistry of model compounds and molecular simulation of poly[bis(2,2,2-trifluoroethoxy)phosphazene]. Polymer 44: 4363.

    CAS  Google Scholar 

  • Gani, R., G. Hytoft, and C. Jaksland. 1997. Design and analysis of supercritical extraction processes. Applied Thermal Engineering 17: 889.

    CAS  Google Scholar 

  • Ghenciu, E.G., A.J. Russell, and E.J. Beckman. 1998. Solubilization of subtilisin in CO2 using fluoroether-functional amphiphiles. Biotechnology and Bioengineering 58: 572.

    CAS  Google Scholar 

  • Giddings, J.C., M.N. Myers, L. McLaren, and R.A. Keller. 1968. High pressure gas chromatography of nonvolatile species. Science 162: 67.

    CAS  Google Scholar 

  • Giddings, J.C., M.N. Myers, and J.W. King. 1969. Dense gas chromatography at pressures to 2000 atmospheres. The Journal of Chromatographic Science 7: 276.

    CAS  Google Scholar 

  • Ginosar, D.M., and B. Subramaniam. 1994. Coking and activity of a reforming catalyst in near-critical and dense supercritical reaction mixtures. Studies in Surface Science and Catalysis 88: 327.

    CAS  Google Scholar 

  • Ginosar, M., and B. Subramaniam. 1995. Olefinic oligomer and cosolvent effects on the coking and activity of a reforming catalyst in supercritical reaction mixtures. Journal of Catalysis 152: 31.

    CAS  Google Scholar 

  • Goel, S., and E.J. Beckman. 1995. Nucleation and growth in microcellular materials: Supercritical CO2 as foaming agent. AIChE (American Institute of Chemical Engineers) Journal 41: 357.

    CAS  Google Scholar 

  • Han, Y.K., and H.Y. Jeong. 1997. Comment on “Molecular modeling approach for contrasting the interaction of ethane and hexafluoroethane with carbon dioxide”. The Journal of Physical Chemistry A 101: 5604.

    CAS  Google Scholar 

  • Hancu, D., Beckman, E.J. 2001. Generation of hydrogen peroxide directly from H2 and O2 using CO2 as the solvent. Green Chemistry 3(2): 80–86.

    Google Scholar 

  • Hauthal, W.H. 2001. Advances with supercritical fluids. Chemosphere 43: 123.

    CAS  Google Scholar 

  • Heller, J.P., D.K. Dandge, R.J. Card, and L.G. Donaruma. 1985. Direct thickeners for mobility control of carbon dioxide floods. Society of Petroleum Engineers Journal 25: 679.

    CAS  Google Scholar 

  • Hendrix, W.A., G.A. Montero, C.B. Smith, and D.L. Butcher. 2001. Method for introducing dyes and other chemicals into a textile treatment system. USPTO, US Patent No. 6,261,326.

    Google Scholar 

  • Herrero, M., A. Cifuentes, and E. Ibañez. 2006. Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae. Food Chemistry 98(1): 136–148.

    CAS  Google Scholar 

  • Holmes, J.D., K.J. Ziegler, M. Audriani, C.T. Lee, P.A. Bhargava, D.C. Steytler, and K.P. Johnston. 1999. Buffering the aqueous phase pH in water-in-CO2 microemulsions. The Journal of Physical Chemistry B 103: 5703.

    CAS  Google Scholar 

  • Howdle, S.M., M.S. Watson, M.J. Whitaker, M.C. Davies, K.M. Shakesheff, V.K. Popov, F.S. Mandel, and D.J. Wang. 2001. Supercritical fluid mixing: Preparation of thermally sensitive polymer composites containing bioactive material. Chemical Communications 1: 109–110.

    Google Scholar 

  • Hoy, K.L., K.A. Nielsen, and L. Chinsoo. 1992. Supercritical fluids as diluents in liquid spray application of coatings and spraying from an orifice. USPTO, U.S. Patent No. 5,108,799.

    Google Scholar 

  • Jacobsen, G.B., C.T. Lee, and K.P. Johnston. 1999. Enhanced catalyst reactivity and separations using water/carbon dioxide emulsions. Journal of Organic Chemistry 64: 1201–1207.

    Google Scholar 

  • Jaubert, J.N., and L. Coniglio. 1999. The group contribution concept: A useful tool to correlate binary systems and to predict the phase behavior of multicomponent systems involving supercritical CO2 and fatty acids. Industrial & Engineering Chemistry Research 38: 5011.

    CAS  Google Scholar 

  • Johnston, K.P., K.L. Harrison, M.J. Clarke, S.M. Howdle, M.P. Heitz, F.V. Bright, C. Carlier, and T.W. Randolph. 1996. Water-in-carbon dioxide microemulsions: An environment for hydrophiles including proteins. Science 271: 624.

    CAS  Google Scholar 

  • Jusforgues, P., M. Shaimi, and D. Barth. 1998. Chromatographic Science Series 75:403.

    Google Scholar 

  • Kamat, S., J. Barrera, E.J. Beckman, and A.J. Russell. 1992. Biocatalytic synthesis of acrylates in organic solvents and supercritical fluids: I. Optimization of enzyme environment. Biotechnology and Bioengineering 40: 158.

    CAS  Google Scholar 

  • Kamat, S., G. Critchley, E.J. Beckman, and A.J. Russell. 1995. Biocatalytic synthesis of acrylates in organic solvents and supercritical fluids: III. Does carbon dioxide covalently modify enzymes? Biotechnology and Bioengineering 46: 610–620.

    CAS  Google Scholar 

  • Kauffman, J.F. 2001. Quadrupolar solvent effects on solvation and reactivity of solutes dissolved in supercritical CO2. The Journal of Physical Chemistry A 105: 3433.

    CAS  Google Scholar 

  • Kazarian, S.G., M.F. Vincent, F.V. Bright, C.L. Liotta, and C.A. Ecker. 1996. Specific intermolecular interaction of carbon dioxide with polymers. Journal of the American Chemical Society 118: 1729.

    CAS  Google Scholar 

  • Kazarian, S.G., N.H. Brantley, B.L. West, M.F. Vincent, and C.A. Eckert. 1997. In situ spectroscopy of polymers subjected to supercritical CO2: Plasticization and dye impregnation. Applied Spectroscopy 51: 491–494.

    CAS  Google Scholar 

  • Keshtkar, A., F. Jatali, and M. Moshfeghian. 1997. Evaluation of vapor—liquid equilibrium of CO2 binary systems using UNIQUAC-based Huron—Vidal mixing rules. Fluid Phase Equilibria 140: 107.

    CAS  Google Scholar 

  • Khoury, F.M. 1995. Predicting the performance of multi-stage separation processes. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Kilic, S., S. Michalik, Y. Wang, J.K. Johnson, R.M. Enick, and E.J. Beckman. 2003. Effect of grafted Lewis base groups on the phase behavior of model poly(dimethyl siloxanes) in CO2. Industrial & Engineering Chemistry Research 42: 6415.

    CAS  Google Scholar 

  • King, J.W., R.L. Holliday, G.R. List, and J.M. Snyder. 2001. Hydrogenation of vegetable oils using mixtures of supercritical carbon dioxide and hydrogen. Journal of the American Oil Chemists’ Society 78: 107.

    CAS  Google Scholar 

  • Kirby, C.F., and M.A. McHugh. 1999. Phase behavior of polymers in supercritical fluid solvents. Chemical Reviews 99: 565.

    CAS  Google Scholar 

  • Klibanov, A.M. 1997. Why are enzymes less active in organic solvents than in water? Trends in Biotechnology 15: 97.

    CAS  Google Scholar 

  • Kwag, C., C.W. Manke, and E. Gulari. 1999. Rheology of molten polystyrene with dissolved supercritical and near‐critical gases. Journal of Polymer Science Part B: Polymer Physics 37: 2771.

    CAS  Google Scholar 

  • Lake, L.W. 1989. Enhanced oil recovery. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Liau, I.S., and M.A. McHugh. 1985. High pressure solid polymer-supercritical fluid phase behavior. In Supercritical fluid technology, ed. J.M.L. Penninger, M. Radosz, M.A. McHugh, and V.J. Krukonis. Amsterdam: Elsevier.

    Google Scholar 

  • Lide, D.R. (ed.). 1996. CRC handbook of chemistry and physics, 76th ed. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Lucien, F.P., and N.R. Foster. 2000. Solubilities of solid mixtures in supercritical carbon dioxide: A review. The Journal of Supercritical Fluids 17: 111.

    CAS  Google Scholar 

  • Macher, M.B., and A. Holmqvist. 2001. Hydrogenation of palm oil in near-critical and supercritical propane. European Journal of Lipid Science and Technology 103: 81.

    CAS  Google Scholar 

  • McFann, G.J., S.M. Howdle, and K.P. Johnston. 1994. Solubilization in nonionic reverse micelles in carbon dioxide. AIChE (American Institute of Chemical Engineers) Journal 40: 543.

    CAS  Google Scholar 

  • McHugh, M.A., and V.J. Krukonis. 1994. Supercritical fluid extraction. Boston: Butterworth.

    Google Scholar 

  • McHugh, M.A., I.H. Park, J.J. Reisinger, Y. Ren, T.P. Lodge, and M.A. Hillmyer. 2002. Solubility of CF2-modified polybutadiene and polyisoprene in supercritical carbon dioxide. Macromolecules 35: 4653.

    CAS  Google Scholar 

  • Mesiano, A., E.J. Beckman, and A.J. Russell. 1999. Supercritical biocatalysis. Chemical Reviews 99: 623.

    CAS  Google Scholar 

  • Michels, A., and C. Michels. 1936. Series evaluation of the isotherm data of CO2 between 0 and 150 C and up to 3000 atmospheres. Proceedings of the Royal Society of London Series A 153: 201.

    Google Scholar 

  • Michels, A., C. Michels, and H. Wouters. 1936. Isotherms of CO2 between 70 and 300 atmospheres (amagat densities between 200 and 600). Proceedings of the Royal Society of London Series A 153: 214.

    Google Scholar 

  • Minder, B., T. Mallat, and A. Baiker. 1996. Enantioselective hydrogenation in supercritical fluids. Limitations of the use of supercritical CO2. 3rd international symposium on high-pressure chemical engineering. Process Technology Proceedings 12: 139–144.

    CAS  Google Scholar 

  • Montero, G.A., T.D. Giorgio, and K.B. Schnelle. 1996. Scale-up and economic analysis for the design of supercritical fluid extraction equipment for remediation of soil. Environmental Progress 15: 112.

    CAS  Google Scholar 

  • Montero, G.A., C.B. Smith, W.A. Hendrix, and D.L. Butcher. 2000. Supercritical fluid technology in textile processing: An overview. Industrial & Engineering Chemistry Research 39: 4806.

    CAS  Google Scholar 

  • O’Neill, M.L., Q. Cao, M. Fang, K.P. Johnston, S.P. Wilkinson, C.D. Smith, J.L. Kerschner, and S.H. Jureller. 1998. Solubility of homopolymers and copolymers in carbon dioxide. Industrial & Engineering Chemistry Research 37: 3067.

    Google Scholar 

  • Ohgaki, K., and T. Katayama. 1977. Isothermal vapor–liquid equilibrium data for the ethane–carbon dioxide system at high pressure. Fluid Phase Equilibria 1(1): 27–32.

    Google Scholar 

  • Orr, F.M., J.P. Heller, J.T. Taber, and R.J. Card. 1983. CO2 as solvent for oil recovery. Chem Tech 13(8): 482–487.

    Google Scholar 

  • Palmer, M.V., and S.S.T. Ting. 1995. Applications for supercritical fluid technology in food processing. Food Chemistry 52: 345.

    CAS  Google Scholar 

  • Park, C.B., N.P. Suh, and D.F. Baldwin. 2000. Method for providing continuous processing of microcellular and supermicrocellular foamed materials. USPTO, US Patent No. 6,051,174.

    Google Scholar 

  • Perrut, M. 2000. Supercritical fluid applications: Industrial developments and economic issues. Industrial & Engineering Chemistry Research 39: 4531.

    CAS  Google Scholar 

  • Pierick, D. 1999. The mucell molding technology: microcellular foam. Paper presented at Molding ‘99 New Orleans, March 1–3.

    Google Scholar 

  • Poddevin, N., J. Fages, and R. Guidoin. 2000. Method for manufacturing and treating textiles. USPTO, US Patent No. 6,120,558.

    Google Scholar 

  • Potluri, V.J., J. Xu, R.M. Enick, E.J. Beckman, and A.D. Hamilton. 2002. Peracetylated sugar derivatives show high solubility in liquid and supercritical carbon dioxide. Organic Letters 4: 2333.

    CAS  Google Scholar 

  • Prasad, R., M. Gottesman, and R.A. Scarella. 1981. Decaffeination of aqueous extract. USPTO, U.S. Patent No. 4,246,291.

    Google Scholar 

  • Praxair Material Data Safety Sheet, P-4574-H, May 1999. http://www.praxair.com/praxair.nsf/AllContent/D3CBF4EF4186073485256A860080D221/$File/p4574j.pdf.

  • Raveendran, P., and S.L. Wallen. 2002a. Sugar acetates as novel, renewable CO2-phile. Journal of the American Chemical Society 124: 7274.

    CAS  Google Scholar 

  • Raveendran, P., and S.L. Wallen. 2002b. Cooperative C−H···O hydrogen bonding in CO2−Lewis base complexes: implications for solvation in supercritical CO2. Journal of the American Chemical Society 124: 12590.

    Google Scholar 

  • Raveendran, P., and S.L. Wallen. 2003. Exploring CO2-philicity: Effects of stepwise fluorination. The Journal of Physical Chemistry B 107: 1473.

    CAS  Google Scholar 

  • Reid, R.C., J.M. Prausnitz, and B.E. Poling. 1987. The properties of liquids and gases. New York: McGraw-Hill.

    Google Scholar 

  • Reverchon, E., and I. De Marco. 2006. Supercritical fluid extraction and fractionation of natural matter. The Journal of Supercritical Fluids 38(2): 146–166.

    CAS  Google Scholar 

  • Rindfleisch, F., T.P. DiNoia, and M.A. McHugh. 1996. Solubility of polymers and copolymers in supercritical CO2. The Journal of Physical Chemistry 100: 15581.

    CAS  Google Scholar 

  • Rodriguez, F. 1996. Principles of polymer systems. New York: McGraw-Hill.

    Google Scholar 

  • Rowlinson, J.S., and J.R. Sutton. 1955. The statistical thermodynamics of solutions of non-­spherical molecules. II. Liquid–vapour equilibrium and the formation of azeotropes. Proceedings of the Royal Society of London Series A 229: 396–404.

    CAS  Google Scholar 

  • Royer, J.R., Y.J. Gay, J.M. DeSimone, and S.A. Khan. 2000. High-pressure rheology of polystyrene melts plasticized with CO2: Experimental measurement and predictive scaling relationships. Journal of Polymer Science Part B: Polymer Physics 38: 3168.

    CAS  Google Scholar 

  • Rylander, P.N. 1985. Hydrogenation methods. Orlando, FL: Academic.

    Google Scholar 

  • Sahena, F., I.S.M. Zaidul, S. Jinap, A.A. Karim, K.A. Abbas, N.A.N. Norulaini, and A.K.M. Omar. 2009. Application of supercritical CO2 in lipid extraction—A review. Journal of Food Engineering 95(2): 240.

    CAS  Google Scholar 

  • Sarbu, T., T. Styranec, and E.J. Beckman. 2000. Non-fluorous polymers with very high solubility in supercritical CO 2 down to low pressures. Nature 405: 165.

    CAS  Google Scholar 

  • Satterfield, C.N. 1980. Heterogeneous catalysis in practice. New York: McGraw-Hill.

    Google Scholar 

  • Schollmeyer, E., E. Bach, E. Cleve, M. Bork, M. Steinhauer, and J.P. Korner. 1999. Process and device for treating textile substrates with supercritical fluid. USPTO, US Patent No. 5,953,780.

    Google Scholar 

  • Shim, J.J., and K.P. Johnston. 1989. Adjustable solute distribution between polymers and supercritical fluids. AIChE (American Institute of Chemical Engineers) Journal 35: 1097.

    CAS  Google Scholar 

  • Shim, J.J., and K.P. Johnston. 1991. Molecular thermodynamics of solute-polymer-supercritical fluid systems. AIChE (American Institute of Chemical Engineers) Journal 37: 607.

    CAS  Google Scholar 

  • Shine, A.D., and J. Gelb. 1998. Microencapsulation process using supercritical fluids. USPTO, US Patent 5,766,637.

    Google Scholar 

  • Smith, C.W., and G. Huse. 1998. In Supercrital fluid cleaning, ed. J. McHardy and S.P. Sawan. Westwood, NJ: Noyes Publishers.

    Google Scholar 

  • Smith, C.W., G.A. Montero, and W.A. Hendrix. 2000. Method of dyeing hydrophobic textile fibers with colorant materials in supercritical fluid carbon dioxide. USPTO, US Patent No. 6,048,369.

    Google Scholar 

  • Solymosi, F., Erdöhelyi, A., Lancz, M. 1985. Surface interaction between H2 and CO2 over palladium on various supports. Journal of Catalysis 95(2): 567–577.

    Google Scholar 

  • Sparacio, D., and E.J. Beckman. 1998. Generation of microcellular biodegradable polymers using supercritical carbon dioxide. In Solvent-free polymerizations and processes: Minimization of conventional organic solvents, ACS symposium series, vol. 713, ed. M. Hunt and T. Long. Washington, DC: American Chemical Society.

    Google Scholar 

  • Stafford, C.M., T.P. Russell, and T.J. McCarthy. 1999. Expansion of polystyrene using supercritical carbon dioxide: Effects of molecular weight, polydispersity, and low molecular weight components. Macromolecules 32: 7610.

    CAS  Google Scholar 

  • Subramaniam, B. 2001. Enhancing the stability of porous catalysts with supercritical reaction media. Applied Catalysis A: General 212: 199.

    CAS  Google Scholar 

  • Subramaniam, B., and V. Arunajatesan. 1999. Coking of solid acid catalysts and strategies for enhancing their activity. Studies in Surface Science and Catalysis 126: 63.

    CAS  Google Scholar 

  • Subramaniam, B., and J. Ashraf. 1995. “In situ mitigation of porous catalysts with supercritical reaction media” in innovations in supercritical fluids. ACS Symposium Ser. 608. American Chemical Society, Washington DC, USA. http://pubs.acs.org/isbn/9780841233249.

  • Subramaniam, B., C.J. Lyon, and V. Arunajatesan. 2002. Environmentally benign multiphase catalysis with dense phase carbon dioxide. Applied Catalysis B: Environmental 37: 279.

    CAS  Google Scholar 

  • Suh, K.W. 1991. Polystyrene and structural foam. In Polymeric foams, ed. D. Klempner and K.C. Frisch. New York: Oxford University Press.

    Google Scholar 

  • Tacke, T., S. Wieland, and P. Panster. 1996. Hardening of fats and oils in supercritical CO2. 3rd international conference on high pressure chemical engineering, Zurich, Process Technology Proceedings 12.

    Google Scholar 

  • Thomas, E.R., and C.A. Eckert. 1984. Prediction of limiting activity coefficients by a modified separation of cohesive energy density model and UNIFAC. Industrial & Engineering Chemistry Process Design and Development 23: 194.

    CAS  Google Scholar 

  • Tiwari, K.K. 2007. Processes using supercritical fluids. Chemical Industry Digest 9: 71.

    Google Scholar 

  • Valle, J., and J. De La Fuente. 2006. Supercritical CO2 extraction of oilseeds: Review of kinetic and equilibrium models. Critical Reviews Food Science Nutrition 46(2): 131–160.

    Google Scholar 

  • van den Hark, S., and M. Harrod. 2001. Hydrogenation of oleochemicals at supercritical single-phase conditions: Influence of hydrogen and substrate concentrations on the process. Applied Catalysis A:General 210: 207.

    Google Scholar 

  • van den Hark, S., M. Harrod, and P. Moller. 1999. Hydrogenation of fatty acid methyl esters to fatty alcohols at supercritical conditions. Journal of the American Oil Chemists’ Society 76: 1363.

    Google Scholar 

  • Wang, W., E.J. Kramer, and W.H. Sachse. 1982. Effects of high-pressure CO2 on the glass transition temperature and mechanical properties of polystyrene. Journal of Polymer Science: Polymer Physics Edition 20: 1371–1384.

    CAS  Google Scholar 

  • Wiesmet, V., E. Weidner, S. Behme, G. Sadowski, and W. Arlt. 2000. Measurement and modelling of high-pressure phase equilibria in the systems polyethyleneglycol (PEG)–propane, PEG–nitrogen and PEG–carbon dioxide. The Journal of Supercritical Fluids 17: 1.

    CAS  Google Scholar 

  • Wissinger, R.G., and M.E. Paulaitis. 1991a. Glass transitions in polymer/CO2 mixtures at elevated pressures. Journal of Polymer Science Part B: Polymer Physics 25: 2497.

    Google Scholar 

  • Wissinger, R.G., and M.E. Paulaitis. 1991b. Glass transitions in polymer/CO2 mixtures at elevated pressures. Journal of Polymer Science Part B: Polymer Physics 29: 631.

    CAS  Google Scholar 

  • Yee, G.G., J.L. Fulton, and R.D. Smith. 1992. Fourier transform infrared spectroscopy of molecular interactions of heptafluoro-1-butanol or 1-butanol in supercritical carbon dioxide and supercritical ethane. Journal of Physical Chemistry 96: 6172.

    CAS  Google Scholar 

  • Yonker, C.R., and B.J. Palmer. 2001. Investigation of CO2/fluorine interactions through the intermolecular effects on the 1H and 19F shielding of CH3F and CHF3 at various temperatures and pressures. The Journal of Physical Chemistry A 105: 308.

    CAS  Google Scholar 

  • Zhang, Z.Y., J.C. Yang, and Y.G. Li. 2000. Prediction of phase equilibria for CO2–C2H5OH–H2O system using the SAFT equation of state. Fluid Phase Equilibria 169: 1.

    CAS  Google Scholar 

  • Zosel, K. 1974. Process for recovering caffeine. USPTO, U.S. Patent No. 3,806,619.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Beckman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Her Majesty the Queen, in Right of Canada

About this chapter

Cite this chapter

Beckman, E.J. (2012). Supercritical and near-critical CO2 processing. In: Boye, J., Arcand, Y. (eds) Green Technologies in Food Production and Processing. Food Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1587-9_10

Download citation

Publish with us

Policies and ethics