Skip to main content

Epigenetics and Human Disease

  • Chapter
  • First Online:
Gene Regulatory Sequences and Human Disease

Abstract

The completion of the Human Genome Project has advanced our understanding of the biological processes involved in health and disease. The increasing amount of whole-genome sequencing data becoming available from healthy and affected individuals has pinpointed variations in the DNA sequence, like single-nucleotide polymorphisms (SNPs), that may help to explain differences in phenotype, as well as in disease susceptibility and resistance. On the other hand, it is becoming increasingly apparent that the DNA-stored information alone cannot be the sole determinant of human variation and disease. The extreme phenotypic variability that characterizes the >250 different cell types in the human body, where all cells carry the same genetic information, as well as the high monozygotic discordance rates for human diseases clearly indicate so. Nowadays, it is well established that the epigenome exerts an additional layer of regulation on gene expression and can “manipulate” the same genetic code into producing distinct phenotypes. The epigenome shows far greater plasticity than the genome and contributes significantly to development and differentiation by responding to environmental stimuli. Errors in epigenetic programming caused by genetic defects and/or environmental factors have been directly implicated with human disease. In this chapter, we describe known epigenetic mechanisms and discuss the aberrant epigenetic patterns that characterize several human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AID:

Autoimmune diseases

ALL:

Acute lymphoblastic leukemia

AML:

Acute myeloid leukemia

BDNF :

Brain-derived neurotrophic factor

CD:

Cluster of differentiation

CDH3 :

Cadherin 3 type 1, P-cadherin

CDKN2A :

Cyclin-dependent kinase inhibitor 2A

ChIP:

Chromatin immunoprecipitation

DLX5 :

Distal-less homeobox 5

DLX6 :

Distal-less homeobox 6

DNMT:

DNA methyltransferases

DOT1L :

DOT1-like histone H3 methyltransferase

GADD45a :

Growth arrest and DNA-damage-inducible protein alpha

GSTP1 :

Glutathione S-transferase-π1

HATs:

Histone acetyltransferases

HDAC:

Histone deacetylases

HDMs:

Histone demethylases

HMT:

Histone methyltransferases

Hoxa9 :

Homeobox A9

IGF2 :

Insulin-like growth factor 2

ITGAL :

Integrin alpha L

LINEs:

Long interspersed nuclear elements

LOI:

Loss of imprinting

MBD:

Methyl-binding domain

MDM2 :

Mdm2 p53 binding protein homolog

MECP2 :

Methyl-CpG binding protein 2

MGMT :

O-6-methylguanine-DNA methyltransferase

MHC:

Major histocompatibility complex

miRNAs:

MicroRNAs

MLL1 :

Mixed-lineage leukemia 1 gene

Mø:

Macrophages

NLS:

Nuclear localization signal

nt:

Nucleotides

p53:

Tumor protein p53

PDCD1 :

Programmed cell death 1

Pol II:

RNA polymerase II

PRF1 :

Perforin 1

RISC:

RNA-induced silencing complex

RTT:

Rett syndrome

SLE:

Systemic lupus erythematosus

SNPs:

Single-nucleotide polymorphisms

SOX4 :

SRY (sex-determining region Y)-box 4

TCR:

T cell antigen receptor

TRD:

Transcriptional repression domain

TSA:

Trichostatin A

UBE3A :

Ubiquitin protein ligase E3A

XCI:

X chromosome inactivation

Xi:

X inactivation

References

  • Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188

    Article  PubMed  CAS  Google Scholar 

  • Balada E, Ordi-Ros J, Serrano-Acedo S, Martinez-Lostao L, Rosa-Leyva M, Vilardell-Tarres M (2008) Transcript levels of DNA methyltransferases DNMT1, DNMT3A and DNMT3B in CD4+ T cells from patients with systemic lupus erythematosus. Immunology 124:339–347

    Article  PubMed  CAS  Google Scholar 

  • Ballestar E, Esteller M, Richardson BC (2006) The epigenetic face of systemic lupus erythematosus. J Immunol 176:7143–7147

    PubMed  CAS  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Article  PubMed  CAS  Google Scholar 

  • Barreto G, Schafer A, Marhold J, Stach D, Swaminathan SK, Handa V, Doderlein G, Maltry N, Wu W, Lyko F, Niehrs C (2007) Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445:671–675

    Article  PubMed  CAS  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6:107–116

    Article  PubMed  CAS  Google Scholar 

  • Berdasco M, Esteller M (2010) Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 19:698–711

    Article  PubMed  CAS  Google Scholar 

  • Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412

    Article  PubMed  CAS  Google Scholar 

  • Bettstetter M, Woenckhaus M, Wild PJ, Rummele P, Blaszyk H, Hartmann A, Hofstadter F, Dietmaier W (2005) Elevated nuclear maspin expression is associated with microsatellite instability and high tumour grade in colorectal cancer. J Pathol 205:606–614

    Article  PubMed  CAS  Google Scholar 

  • Bourc’his D, Xu GL, Lin CS, Bollman B, Bestor TH (2001) Dnmt3L and the establishment of maternal genomic imprints. Science 294:2536–2539

    Article  PubMed  Google Scholar 

  • Brooks WH, Le Dantec C, Pers JO, Youinou P, Renaudineau Y (2010) Epigenetics and autoimmunity. J Autoimmun 34:J207–J219

    Article  PubMed  CAS  Google Scholar 

  • Calvanese V, Lara E, Kahn A, Fraga MF (2009) The role of epigenetics in aging and age-related diseases. Ageing Res Rev 8:268–276

    Article  PubMed  CAS  Google Scholar 

  • Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320:1224–1229

    Article  PubMed  CAS  Google Scholar 

  • Chahrour M, Zoghbi HY (2007) The story of Rett syndrome: from clinic to neurobiology. Neuron 56:422–437

    Article  PubMed  CAS  Google Scholar 

  • Chen ZX, Mann JR, Hsieh CL, Riggs AD, Chedin F (2005) Physical and functional interactions between the human DNMT3L protein and members of the de novo methyltransferase family. J Cell Biochem 95:902–917

    Article  PubMed  CAS  Google Scholar 

  • Cheng MF, Lee CH, Hsia KT, Huang GS, Lee HS (2009) Methylation of histone H3 lysine 27 associated with apoptosis in osteosarcoma cells induced by staurosporine. Histol Histopathol 24:1105–1111

    PubMed  CAS  Google Scholar 

  • Cheung WL, Ajiro K, Samejima K, Kloc M, Cheung P, Mizzen CA, Beeser A, Etkin LD, Chernoff J, Earnshaw WC, Allis CD (2003) Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell 113:507–517

    Article  PubMed  CAS  Google Scholar 

  • Chi P, Allis CD, Wang GG (2010) Covalent histone modifications–miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 10:457–469

    Article  PubMed  CAS  Google Scholar 

  • Christodoulou J, Weaving LS (2003) MECP2 and beyond: phenotype-genotype correlations in Rett syndrome. J Child Neurol 18:669–674

    Article  PubMed  Google Scholar 

  • Clayton-Smith J, Watson P, Ramsden S, Black GC (2000) Somatic mutation in MECP2 as a non-fatal neurodevelopmental disorder in males. Lancet 356:830–832

    Article  PubMed  CAS  Google Scholar 

  • D’Cruz DP, Khamashta MA, Hughes GR (2007) Systemic lupus erythematosus. Lancet 369:587–596

    Article  PubMed  Google Scholar 

  • Daser A, Rabbitts TH (2005) The versatile mixed lineage leukaemia gene MLL and its many associations in leukaemogenesis. Semin Cancer Biol 15:175–188

    Article  PubMed  CAS  Google Scholar 

  • Davalos V, Esteller M (2010) MicroRNAs and cancer epigenetics: a macrorevolution. Curr Opin Oncol 22:35–45

    Article  PubMed  CAS  Google Scholar 

  • De Smet C, Lurquin C, Lethe B, Martelange V, Boon T (1999) DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol 19:7327–7335

    PubMed  Google Scholar 

  • Deng C, Lu Q, Zhang Z, Rao T, Attwood J, Yung R, Richardson B (2003) Hydralazine may induce autoimmunity by inhibiting extracellular signal-regulated kinase pathway signaling. Arthritis Rheum 48:746–756

    Article  PubMed  CAS  Google Scholar 

  • Dieker JW, Fransen JH, van Bavel CC, Briand JP, Jacobs CW, Muller S, Berden JH, van der Vlag J (2007) Apoptosis-induced acetylation of histones is pathogenic in systemic lupus erythematosus. Arthritis Rheum 56:1921–1933

    Article  PubMed  CAS  Google Scholar 

  • Eapen V (2011) Genetic basis of autism: is there a way forward? Curr Opin Psychiatry 24:226–236

    Article  PubMed  Google Scholar 

  • Eden A, Gaudet F, Waghmare A, Jaenisch R (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300:455

    Article  PubMed  CAS  Google Scholar 

  • Esteller M (2005) Aberrant DNA methylation as a cancer-inducing mechanism. Annu Rev Pharmacol Toxicol 45:629–656

    Article  PubMed  CAS  Google Scholar 

  • Esteller M (2008) Epigenetics in cancer. N Engl J Med 358:1148–1159

    Article  PubMed  CAS  Google Scholar 

  • Farazi TA, Spitzer JI, Morozov P, Tuschl T (2011) miRNAs in human cancer. J Pathol 223:102–115

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP (2004) The epigenetics of cancer etiology. Semin Cancer Biol 14:427–432

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7:21–33

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Morera JL, Calvanese V, Rodriguez-Rodero S, Menendez-Torre E, Fraga MF (2010) Epigenetic regulation of the immune system in health and disease. Tissue Antigens 76:431–439

    Article  PubMed  CAS  Google Scholar 

  • Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37:391–400

    Article  PubMed  CAS  Google Scholar 

  • Fraga MF, Herranz M, Espada J, Ballestar E, Paz MF, Ropero S, Erkek E, Bozdogan O, Peinado H, Niveleau A et al (2004) A mouse skin multistage carcinogenesis model reflects the aberrant DNA methylation patterns of human tumors. Cancer Res 64:5527–5534

    Article  PubMed  CAS  Google Scholar 

  • Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang X, Golic KG, Jacobsen SE, Bestor TH (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 311:395–398

    Article  PubMed  CAS  Google Scholar 

  • Gorelik G, Fang JY, Wu A, Sawalha AH, Richardson B (2007) Impaired T cell protein kinase C delta activation decreases ERK pathway signaling in idiopathic and hydralazine-induced lupus. J Immunol 179:5553–5563

    PubMed  CAS  Google Scholar 

  • Grafodatskaya D, Chung B, Szatmari P, Weksberg R (2010) Autism spectrum disorders and epigenetics. J Am Acad Child Adolesc Psychiatry 49:794–809

    Article  PubMed  Google Scholar 

  • Grewal SI, Jia S (2007) Heterochromatin revisited. Nat Rev Genet 8:35–46

    Article  PubMed  CAS  Google Scholar 

  • Guy J, Cheval H, Selfridge J, Bird A (2011) The role of MeCP2 in the brain. Annu Rev Cell Dev Biol 27:631–652

    Article  PubMed  CAS  Google Scholar 

  • Guy J, Gan J, Selfridge J, Cobb S, Bird A (2007) Reversal of neurological defects in a mouse model of Rett syndrome. Science 315:1143–1147

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  • Hang CT, Yang J, Han P, Cheng HL, Shang C, Ashley E, Zhou B, Chang CP (2010) Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466:62–67

    Article  PubMed  CAS  Google Scholar 

  • Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, Ching CW et al (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459:108–112

    Article  PubMed  CAS  Google Scholar 

  • Hendrich B, Bird A (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18:6538–6547

    PubMed  CAS  Google Scholar 

  • Hermann A, Schmitt S, Jeltsch A (2003) The human Dnmt2 has residual DNA-(cytosine-C5) methyltransferase activity. J Biol Chem 278:31717–31721

    Article  PubMed  CAS  Google Scholar 

  • Hiratani I, Gilbert DM (2009) Replication timing as an epigenetic mark. Epigenetics 4:93–97

    Article  PubMed  CAS  Google Scholar 

  • Holm TM, Jackson-Grusby L, Brambrink T, Yamada Y, Rideout WM 3rd, Jaenisch R (2005) Global loss of imprinting leads to widespread tumorigenesis in adult mice. Cancer Cell 8:275–285

    Article  PubMed  CAS  Google Scholar 

  • Howard G, Eiges R, Gaudet F, Jaenisch R, Eden A (2008) Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice. Oncogene 27:404–408

    Article  PubMed  CAS  Google Scholar 

  • Hu N, Qiu X, Luo Y, Yuan J, Li Y, Lei W, Zhang G, Zhou Y, Su Y, Lu Q (2008) Abnormal histone modification patterns in lupus CD4+ T cells. J Rheumatol 35:804–810

    PubMed  CAS  Google Scholar 

  • Huang YW, Liu JC, Deatherage DE, Luo J, Mutch DG, Goodfellow PJ, Miller DS, Huang TH (2009) Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer. Cancer Res 69:9038–9046

    Article  PubMed  CAS  Google Scholar 

  • Huertas D, Sendra R, Munoz P (2009) Chromatin dynamics coupled to DNA repair. Epigenetics 4:31–42

    Article  PubMed  CAS  Google Scholar 

  • Hurd PJ, Bannister AJ, Halls K, Dawson MA, Vermeulen M, Olsen JV, Ismail H, Somers J, Mann M, Owen-Hughes T et al (2009) Phosphorylation of histone H3 Thr-45 is linked to apoptosis. J Biol Chem 284:16575–16583

    Article  PubMed  CAS  Google Scholar 

  • Illingworth RS, Bird AP (2009) CpG islands–‘a rough guide’. FEBS Lett 583:1713–1720

    Article  PubMed  CAS  Google Scholar 

  • Jacinto FV, Esteller M (2007) MGMT hypermethylation: a prognostic foe, a predictive friend. DNA Repair (Amst) 6:1155–1160

    Article  CAS  Google Scholar 

  • Januchowski R, Wudarski M, Chwalinska-Sadowska H, Jagodzinski PP (2008) Prevalence of ZAP-70, LAT, SLP-76, and DNA methyltransferase 1 expression in CD4+ T cells of patients with systemic lupus erythematosus. Clin Rheumatol 27:21–27

    Article  PubMed  Google Scholar 

  • Javierre BM, Fernandez AF, Richter J, Al-Shahrour F, Martin-Subero JI, Rodriguez-Ubreva J, Berdasco M, Fraga MF, O’Hanlon TP, Rider LG et al (2010) Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res 20:170–179

    Article  PubMed  CAS  Google Scholar 

  • Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692

    Article  PubMed  CAS  Google Scholar 

  • Karpf AR, Matsui S (2005) Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells. Cancer Res 65:8635–8639

    Article  PubMed  CAS  Google Scholar 

  • Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31:89–97

    Article  PubMed  CAS  Google Scholar 

  • Konkel MK, Batzer MA (2010) A mobile threat to genome stability: The impact of non-LTR retrotransposons upon the human genome. Semin Cancer Biol 20:211–221

    Article  PubMed  CAS  Google Scholar 

  • Kuroda A, Rauch TA, Todorov I, Ku HT, Al-Abdullah IH, Kandeel F, Mullen Y, Pfeifer GP, Ferreri K (2009) Insulin gene expression is regulated by DNA methylation. PLoS One 4:e6953

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Zhao M, Yin H, Gao F, Wu X, Luo Y, Zhao S, Zhang X, Su Y, Hu N et al (2010) Overexpression of the growth arrest and DNA damage-induced 45alpha gene contributes to autoimmunity by promoting DNA demethylation in lupus T cells. Arthritis Rheum 62:1438–1447

    Article  PubMed  CAS  Google Scholar 

  • Liakopoulos V, Georgianos PI, Eleftheriadis T, Sarafidis PA (2011) Epigenetic mechanisms and kidney diseases. Curr Med Chem 18:1733–1739

    Article  PubMed  CAS  Google Scholar 

  • Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Liu W, Wu Y, Zhou Y, Xue R, Luo C, Wang L, Zhao W, Jiang JD, Liu J (2005) Loss of epigenetic control of synuclein-gamma gene as a molecular indicator of metastasis in a wide range of human cancers. Cancer Res 65:7635–7643

    PubMed  CAS  Google Scholar 

  • Maiwald R, Bonte A, Jung H, Bitter P, Storm Z, Laccone F, Herkenrath P (2002) De novo MECP2 mutation in a 46, XX male patient with Rett syndrome. Neurogenetics 4:107–108

    Article  PubMed  Google Scholar 

  • Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6:838–849

    Article  PubMed  CAS  Google Scholar 

  • Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB, Sidransky D (1995) 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1:686–692

    Article  PubMed  CAS  Google Scholar 

  • Miremadi A, Oestergaard MZ, Pharoah PD, Caldas C (2007) Cancer genetics of epigenetic genes. Hum Mol Genet 16(1):R28–R49

    Article  PubMed  CAS  Google Scholar 

  • Mishra N, Brown DR, Olorenshaw IM, Kammer GM (2001) Trichostatin A reverses skewed expression of CD154, interleukin-10, and interferon-gamma gene and protein expression in lupus T cells. Proc Natl Acad Sci USA 98:2628–2633

    Article  PubMed  CAS  Google Scholar 

  • Mohandas T, Sparkes RS, Shapiro LJ (1981) Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science 211:393–396

    Article  PubMed  CAS  Google Scholar 

  • Mohn F, Schubeler D (2009) Genetics and epigenetics: stability and plasticity during cellular differentiation. Trends Genet 25:129–136

    Article  PubMed  CAS  Google Scholar 

  • Nan X, Campoy FJ, Bird A (1997) MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88:471–481

    Article  PubMed  CAS  Google Scholar 

  • Nan X, Meehan RR, Bird A (1993) Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res 21:4886–4892

    Article  PubMed  CAS  Google Scholar 

  • Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386–389

    Article  PubMed  CAS  Google Scholar 

  • Nan X, Tate P, Li E, Bird A (1996) DNA methylation specifies chromosomal localization of MeCP2. Mol Cell Biol 16:414–421

    PubMed  CAS  Google Scholar 

  • Nelson WG, De Marzo AM, Yegnasubramanian S (2009) Epigenetic alterations in human prostate cancers. Endocrinology 150:3991–4002

    Article  PubMed  CAS  Google Scholar 

  • Ng SS, Yue WW, Oppermann U, Klose RJ (2009) Dynamic protein methylation in chromatin biology. Cell Mol Life Sci 66:407–422

    Article  PubMed  CAS  Google Scholar 

  • Nishigaki M, Aoyagi K, Danjoh I, Fukaya M, Yanagihara K, Sakamoto H, Yoshida T, Sasaki H (2005) Discovery of aberrant expression of R-RAS by cancer-linked DNA hypomethylation in gastric cancer using microarrays. Cancer Res 65:2115–2124

    Article  PubMed  CAS  Google Scholar 

  • Nowell PC (1989) The clonal nature of neoplasia. Cancer Cells 1:29–30

    PubMed  CAS  Google Scholar 

  • Ogawa O, Eccles MR, Szeto J, McNoe LA, Yun K, Maw MA, Smith PJ, Reeve AE (1993) Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms’ tumour. Nature 362:749–751

    Article  PubMed  CAS  Google Scholar 

  • Ordovas JM, Smith CE (2010) Epigenetics and cardiovascular disease. Nat Rev Cardiol 7:510–519

    Article  PubMed  CAS  Google Scholar 

  • Oshimo Y, Nakayama H, Ito R, Kitadai Y, Yoshida K, Chayama K, Yasui W (2003) Promoter methylation of cyclin D2 gene in gastric carcinoma. Int J Oncol 23:1663–1670

    PubMed  CAS  Google Scholar 

  • Pan W, Zhu S, Yuan M, Cui H, Wang L, Luo X, Li J, Zhou H, Tang Y, Shen N (2010) MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol 184:6773–6781

    Article  PubMed  CAS  Google Scholar 

  • Paredes J, Albergaria A, Oliveira JT, Jeronimo C, Milanezi F, Schmitt FC (2005) P-cadherin overexpression is an indicator of clinical outcome in invasive breast carcinomas and is associated with CDH3 promoter hypomethylation. Clin Cancer Res 11:5869–5877

    Article  PubMed  CAS  Google Scholar 

  • Pedersen MT, Helin K (2010) Histone demethylases in development and disease. Trends Cell Biol 20:662–671

    Article  PubMed  CAS  Google Scholar 

  • Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28:1057–1068

    Article  PubMed  CAS  Google Scholar 

  • Rahman A, Isenberg DA (2008) Systemic lupus erythematosus. N Engl J Med 358:929–939

    Article  PubMed  CAS  Google Scholar 

  • Rainier S, Johnson LA, Dobry CJ, Ping AJ, Grundy PE, Feinberg AP (1993) Relaxation of imprinted genes in human cancer. Nature 362:747–749

    Article  PubMed  CAS  Google Scholar 

  • Richardson B (2003) DNA methylation and autoimmune disease. Clin Immunol 109:72–79

    Article  PubMed  CAS  Google Scholar 

  • Richardson B, Scheinbart L, Strahler J, Gross L, Hanash S, Johnson M (1990) Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum 33:1665–1673

    Article  PubMed  CAS  Google Scholar 

  • Roh TY, Wei G, Farrell CM, Zhao K (2007) Genome-wide prediction of conserved and nonconserved enhancers by histone acetylation patterns. Genome Res 17:74–81

    Article  PubMed  CAS  Google Scholar 

  • Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, Jones PA (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9:435–443

    Article  PubMed  CAS  Google Scholar 

  • Schickel R, Boyerinas B, Park SM, Peter ME (2008) MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 27:5959–5974

    Article  PubMed  CAS  Google Scholar 

  • Schulz WA, Steinhoff C, Florl AR (2006) Methylation of endogenous human retroelements in health and disease. Curr Top Microbiol Immunol 310:211–250

    Article  PubMed  CAS  Google Scholar 

  • Shirodkar AV, Marsden PA (2011) Epigenetics in cardiovascular disease. Curr Opin Cardiol 26:209–215

    Article  PubMed  Google Scholar 

  • Skene PJ, Illingworth RS, Webb S, Kerr AR, James KD, Turner DJ, Andrews R, Bird AP (2010) Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell 37:457–468

    Article  PubMed  CAS  Google Scholar 

  • Smeets E, Terhal P, Casaer P, Peters A, Midro A, Schollen E, van Roozendaal K, Moog U, Matthijs G, Herbergs J et al (2005) Rett syndrome in females with CTS hot spot deletions: a disorder profile. Am J Med Genet A 132A:117–120

    Article  PubMed  CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  PubMed  CAS  Google Scholar 

  • Straussman R, Nejman D, Roberts D, Steinfeld I, Blum B, Benvenisty N, Simon I, Yakhini Z, Cedar H (2009) Developmental programming of CpG island methylation profiles in the human genome. Nat Struct Mol Biol 16:564–571

    Article  PubMed  CAS  Google Scholar 

  • Sullivan KE, Suriano A, Dietzmann K, Lin J, Goldman D, Petri MA (2007) The TNFalpha locus is altered in monocytes from patients with systemic lupus erythematosus. Clin Immunol 123:74–81

    Article  PubMed  CAS  Google Scholar 

  • Trojer P, Reinberg D (2007) Facultative heterochromatin: is there a distinctive molecular signature? Mol Cell 28:1–13

    Article  PubMed  CAS  Google Scholar 

  • Tudor M, Akbarian S, Chen RZ, Jaenisch R (2002) Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain. Proc Natl Acad Sci USA 99:15536–15541

    Article  PubMed  CAS  Google Scholar 

  • van Bavel CC, Dieker J, Muller S, Briand JP, Monestier M, Berden JH, van der Vlag J (2009) Apoptosis-associated acetylation on histone H2B is an epitope for lupus autoantibodies. Mol Immunol 47:511–516

    Article  PubMed  CAS  Google Scholar 

  • van Bavel CC, Dieker JW, Kroeze Y, Tamboer WP, Voll R, Muller S, Berden JH, van der Vlag J (2011) Apoptosis-induced histone H3 methylation is targeted by autoantibodies in systemic lupus erythematosus. Ann Rheum Dis 70:201–207

    Article  PubMed  CAS  Google Scholar 

  • Verdone L, Caserta M, Di Mauro E (2005) Role of histone acetylation in the control of gene expression. Biochem Cell Biol 83:344–353

    Article  PubMed  CAS  Google Scholar 

  • Waddington CH (1942) The Epigenotpye. Endeavour pp. 18–20

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, Zhao K (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138:1019–1031

    Article  PubMed  CAS  Google Scholar 

  • Watt F, Molloy PL (1988) Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev 2:1136–1143

    Article  PubMed  CAS  Google Scholar 

  • Wilson AS, Power BE, Molloy PL (2007) DNA hypomethylation and human diseases. Biochim Biophys Acta 1775:138–162

    PubMed  CAS  Google Scholar 

  • Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, Song E (2007) Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131:1109–1123

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavros Lomvardas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Magklara, A., Lomvardas, S. (2012). Epigenetics and Human Disease. In: Ahituv, N. (eds) Gene Regulatory Sequences and Human Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1683-8_12

Download citation

Publish with us

Policies and ethics