Skip to main content

Micropatterned Surfaces as Tools for the Study of the Rapid Non-Genomic Actions of Steroid Receptors

  • Chapter
  • First Online:
Advances in Rapid Sex-Steroid Action

Abstract

Steroid hormones control several developmental and physiological processes by binding to intracellular receptors that, in turn, interact with DNA to alter gene expression. These processes typically take at least 30 to 60 min for an increase in mRNA expression to be observed. In contrast, other regulatory actions of steroid hormones such as increases in activity of mitogen activated protein kinases are manifested within seconds to a few minutes and are far too rapid to be due to changes at the genomic level. Because these effects are not impaired by inhibitors of mRNA transcription, they are referred to non-genomic or rapid actions to distinguish them from the classical genomic effects at the transcriptional level. The non-genomic effects are thought to occur at the plasma membrane but have proven difficult to analyse in detail because of technical problems arising from capturing the receptors at the membrane due to their dynamic behaviour, subcellular sizes and complexity of action. Here we describe a novel technique for studying the non-genomic action of steroid hormones making use of dip-pen nanolithography (DPN) for patterning supported lipid bilayers containing haptenated lipids onto glass surfaces. Mast cells have been chosen for these studies because of the crucial role they play in allergic reactions and because the non-genomic action of steroid hormones have been reported as one of the means whereby allergy is regulated in these cells. Since mast cells express IgE receptors on their surfaces, they are treated with an anti-IgE antibody and allowed to settle on the patterned surfaces. The IgE receptor is then cross-linked through interaction with the haptenated lipids and this leads to the recruitment of different signalling molecules including steroid receptors to the patterned lipids. The DPN approach allows a nano-scale characterisation of the activating events afforded by the lipid bilayer. The patterns enable quantitative evaluation of co-localised cellular components and the steroid receptors to be assessed. This assay also allows visualisation and analysis of the interacting proteins to be made on a single cell level as well as receptor-proximal events triggered by allergens and regulation by steroid receptors to be measured. This method could be adapted for studying the rapid action of steroid hormones in other cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cato AC, Ponta H, Herrlich P (1992) Regulation of gene expression by steroid hormones. Prog Nucleic Acid Res Mol Biol 43:1–36

    Article  PubMed  CAS  Google Scholar 

  2. Nishi M, Kawata M (2006) Brain corticosteroid receptor dynamics and trafficking: Implications from live cell imaging. Neuroscientist 12:119–133

    Article  PubMed  CAS  Google Scholar 

  3. Nishi M, Takenaka N, Morita N, Ito T, Ozawa H, Kawata M (1999) Real-time imaging of glucocorticoid receptor dynamics in living neurons and glial cells in comparison with non-neural cells. Eur J Neurosci 11:1927–1936

    Article  PubMed  CAS  Google Scholar 

  4. Rose JD, Moore FL (1999) A neurobehavioral model for rapid actions of corticosterone on sensorimotor integration. Steroids 64:92–99

    Article  PubMed  CAS  Google Scholar 

  5. Cullinan WE, Herman JP, Battaglia DF, Akil H, Watson SJ (1995) Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience 64:477–505

    Article  PubMed  CAS  Google Scholar 

  6. Kovacs KJ, Sawchenko PE (1996) Regulation of stress-induced transcriptional changes in the hypothalamic neurosecretory neuronsneurons. J Mol Neurosci 7:125–133

    Article  PubMed  CAS  Google Scholar 

  7. Croxtall JD, Choudhury Q, Flower RJ (2000) Glucocorticoids act within minutes to inhibit recruitment of signalling factors to activated EGF receptors through a receptor-dependent, transcription-independent mechanism. Br J Pharmacol 130:289–298

    Article  PubMed  CAS  Google Scholar 

  8. Blackmore PF (2008) ProgesteroneProgesterone metabolites rapidly stimulate calcium influx in human platelets by a src-dependent pathway. Steroids 73:738–750

    Article  PubMed  CAS  Google Scholar 

  9. Levin ER (2008) Rapid signaling by steroid receptors. Am J Physiol Regul Integr Comp Physiol 295:R1425–R1430

    Article  PubMed  CAS  Google Scholar 

  10. Peterziel H, Mink S, Schonert A, Becker M, Klocker H, Cato AC (1999) Rapid signalling by androgen receptor in prostate cancer cells. Oncogene 18:6322–6329

    Article  PubMed  CAS  Google Scholar 

  11. Zaitsu M, Narita S, Lambert KC, Grady JJ, Estes DM, Curran EM, Brooks EG, Watson CS, Goldblum RM, Midoro-Horiuti T (2007) Oestraddiol activates mast cellsmast cells via a non-genomic oestrogen receptor-alpha and calcium influx. Mol Immunol 44:1977–1985

    Article  PubMed  CAS  Google Scholar 

  12. Cato AC, Nestl A, Mink S (2002) Rapid actions of steroid receptors in cellular signaling pathways. Sci STKE 2002:re9

    Google Scholar 

  13. Stahn C, Buttgereit F (2008) Genomic and nongenomic effects of glucocorticoids. Nat Clin Pract Rheumatol 4:525–533

    Article  PubMed  CAS  Google Scholar 

  14. Fernandes MS, Brosens JJ, Gellersen B (2008) Honey, we need to talk about the membrane progestin receptors. Steroids 73:942–952

    Article  PubMed  CAS  Google Scholar 

  15. Langer G, Bader B, Meoli L, Isensee J, Delbeck M, Noppinger PR, Otto C (2010) A critical review of fundamental controversies in the field of GPR30 research. Steroids 75(8–9):603–610

    Article  PubMed  CAS  Google Scholar 

  16. Pappas TC, Gametchu B, Watson CS (1995) Membrane oestrogen receptors identified by multiple antibody labeling and impeded-ligand binding. FASEB J 9:404–410

    PubMed  CAS  Google Scholar 

  17. Cheng J, Watkins SC, Walker WH (2007) Testosterone activates mitogen-activated protein kinase via Src kinaseSrc kinase and the epidermal growth factor receptor in sertoli cells. Endocrinology 148:2066–2074

    Article  PubMed  CAS  Google Scholar 

  18. Marquez DC, Pietras RJ (2001) Membrane-associated binding sites for oestrogen contribute to growth regulation of human breast cancerbreast cancer cells. Oncogene 20:5420–5430

    Article  PubMed  CAS  Google Scholar 

  19. Okamoto T, Schlegel A, Scherer PE, Lisanti MP (1998) Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem 273:5419–5422

    Article  PubMed  CAS  Google Scholar 

  20. Lu ML, Schneider MC, Zheng Y, Zhang X, Richie JP (2001) Caveolin-1 interacts with androgen receptor A positive modulator of androgen receptor mediated transactivation. J Biol Chem 276:13442–13451

    Article  PubMed  CAS  Google Scholar 

  21. Schlegel A, Wang C, Katzenellenbogen BS, Pestell RG, Lisanti MP (1999) Caveolin-1 potentiates oestrogen receptor alpha (ERalpha) signaling. Caveolin-1 drives ligand-independent nuclear translocation and activation of ERalpha. J Biol Chem 274:33551–33556

    Article  PubMed  CAS  Google Scholar 

  22. Kahlert S, Nuedling S, van Eickels M, Vetter H, Meyer R, Grohe C (2000) Oestrogen receptor alpha rapidly activates the IGF-1 receptor pathway. J Biol Chem 275:18447–18453

    Article  PubMed  CAS  Google Scholar 

  23. Di Domenico M, Castoria G, Bilancio A, Migliaccio A, Auricchio F (1996) Oestraddiol activation of human colon carcinoma-derived Caco-2 cell growth. Cancer Res 56:4516–4521

    PubMed  CAS  Google Scholar 

  24. Migliaccio A, Di Domenico M, Castoria G, de Falco A, Bontempo P, Nola E, Auricchio F (1996) Tyrosine kinase/p21ras/MAP-kinase pathway activation by oestraddiol-receptor complex in MCF-7 cells. EMBO J 15:1292–1300

    PubMed  CAS  Google Scholar 

  25. Song RX, McPherson RA, Adam L, Bao Y, Shupnik M, Kumar R, Santen RJ (2002) Linkage of rapid oestrogen action to MAPK activation by ERalpha-Shc association and Shc pathway activation. Mol Endocrinol 16:116–127

    Article  PubMed  CAS  Google Scholar 

  26. Watters JJ, Chun TY, Kim YN, Bertics PJ, Gorski J (2000) Oestrogen modulation of prolactin gene expression requires an intact mitogen-activated protein kinase signal transduction signal transduction pathway in cultured rat pituitary cells. Mol Endocrinol 14:1872–1881

    Article  PubMed  CAS  Google Scholar 

  27. Le Romancer M, Treilleux I, Leconte N, Robin-Lespinasse Y, Sentis S, Bouchekioua-Bouzaghou K, Goddard S, Gobert-Gosse S, Corbo L (2008) Regulation of oestrogen rapid signaling through arginine methylationarginine methylation by PRMT1. Mol Cell 31:212–221

    Article  PubMed  CAS  Google Scholar 

  28. Castoria G, Migliaccio A, Giovannelli P, Auricchio F (2009) Cell proliferation regulated by oestradiol receptor: therapeutic implications. Steroids 75(8–9):524–527

    PubMed  Google Scholar 

  29. Wong CW, McNally C, Nickbarg E, Komm BS, Cheskis BJ (2002) Oestrogen receptor-interacting protein that modulates its nongenomic activity-crosstalk with Src/Erk phosphorylation cascade. Proc Natl Acad Sci U S A 99:14783–14788

    Article  PubMed  CAS  Google Scholar 

  30. Lu Q, Pallas DC, Surks HK, Baur WE, Mendelsohn ME, Karas RH (2004) Striatin assembles a membrane signaling complex necessary for rapid, nongenomic activation of endothelial NO synthase by oestrogen receptor alpha. Proc Nat Acad Sci U S A 101:17126–17131

    Article  CAS  Google Scholar 

  31. Manavathi B, Acconcia F, Rayala SK, Kumar R (2006) An inherent role of microtubule network in the action of nuclear receptor. Proc Nat Acad Sci U S A 103:15981–15986

    Article  CAS  Google Scholar 

  32. Wang Z, Zhang X, Shen P, Loggie BW, Chang Y, Deuel TF (2006) A variant of oestrogen receptor-{alpha}, hER-{alpha}36: transduction of oestrogen- and antioestrogen-dependent membrane-initiated mitogenic signaling. Proc Natl Acad Sci U S A 103:9063–9068

    Article  PubMed  CAS  Google Scholar 

  33. Migliaccio A, Castoria G, Di Domenico M, de Falco A, Bilancio A, Lombardi M, Bottero D, Varricchio L, Nanayakkara M, Rotondi A, Auricchio F (2002) Sex steroid hormones act as growth factorsgrowth factors. J Steroid Biochem Mol Biol 83:31–35

    Article  PubMed  CAS  Google Scholar 

  34. Turner H, Kinet JP (1999) Signalling through the high-affinity IgE receptor Fc epsilonRI. Nature 402:B24–B30

    Article  PubMed  CAS  Google Scholar 

  35. Harrell JM, Murphy PJ, Morishima Y, Chen H, Mansfield JF, Galigniana MD, Pratt WB (2004) Evidence for glucocorticoid receptor transport on microtubules by dynein. J Biol Chem 279:54647–54654

    Article  PubMed  CAS  Google Scholar 

  36. Zhou J, Liu DF, Liu C, Kang ZM, Shen XH, Chen YZ, Xu T, Jiang CL (2008) Glucocorticoids inhibit degranulation of mast cells in allergic asthma via nongenomic mechanism. Allergy 63:1177–1185

    Article  PubMed  CAS  Google Scholar 

  37. Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) “Dip-Pen” nanolithography. Science 283:661–663

    Article  PubMed  CAS  Google Scholar 

  38. Mirkin CA (2007) The power of the pen: development of massively parallel dip-pen nanolithography. ACS Nano 1:79–83

    Article  PubMed  CAS  Google Scholar 

  39. Sekula S, Fuchs J, Weg-Remers S, Nagel P, Schuppler S, Fragala J, Theilacker N, Franzreb M, Wingren C, Ellmark P et al (2008) Multiplexed lipid dip-pen nanolithography on subcellular scales for the templating of functional proteins and cell culture. Small 4:1785–1793

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed in part by funds from the DFG (SPP 1394) to A.C.B.C. and S.S.N. would like to acknowledge DFG-CFN for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew C. B. Cato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cato, A.C.B., Oppong, E., Sekula-Neuner, S. (2012). Micropatterned Surfaces as Tools for the Study of the Rapid Non-Genomic Actions of Steroid Receptors. In: Castoria, G., Migliaccio, A. (eds) Advances in Rapid Sex-Steroid Action. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1764-4_15

Download citation

Publish with us

Policies and ethics