Skip to main content

Glucose Metabolism During Neural Activation

  • Chapter
  • First Online:
Neural Metabolism In Vivo

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 4))

  • 1572 Accesses

Abstract

The energy consumption of the brain is derived from the oxidation of glucose. The basal oxygen/glucose ratio (O/G) in the brain is 5.5. While 90% of glucose is oxidised, a small fraction undergoes glycolysis and gives rise to lactate. The difference between the delivery of oxygen and its utilisation is the oxygen extraction fraction (OEF). Although brain regions differ in their energy consumption under basal conditions there is little or no variation in the OEF. On activation there is an increase in energy production and a decrease in the O/G and an increase in lactate. There are various theories about the nature of the changes during the increased energy production; one of these is the astrocyte-neuron-lactate-shuttle theory according to which neurones use lactate rather than glucose for their increased energy production. An understanding of the causal connections between the changes requires the elucidation of their temporal relationships. In the present review the in vivo changes during activation of oxygen, glucose, glycogen and lactate are examined. The evidence suggests that the additional lactate is not used locally as a substrate for neuronal metabolism. It is proposed that the substantial rise in extracellular lactate is not derived from the uptake of synaptically released glutamate but the reuptake of glutamate released from astrocytes. The release of glutamate is the result of the stimulation of metabotropic glutamate receptors on the astrocytic membrane. Various roles have been proposed for the astrocytic glutamate. The lactate resulting from the reuptake of the astrocytic glutamate has no further function and is removed by diffusion or release into the circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abi-Saab WM, Maggs DG, Jones T, Jacob R, Srihari V, Thompson J, Kerr D, Leone P, Krystal JH, Spencer DD, During MJ, Sherwin RS (2002) Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: effects of hyperglycemia and hypoglycemia. J Cereb Blood Flow Metab 22:271–279

    PubMed  CAS  Google Scholar 

  • Ackermann RF, Lear JL (1989) Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose. J Cereb Blood Flow Metab 9:774–785

    PubMed  CAS  Google Scholar 

  • Ames A 3rd (2000) CNS energy metabolism as related to function. Brain Res Brain Res Rev 34:42–68

    PubMed  CAS  Google Scholar 

  • Ances BM, Buerk DG, Greenberg JH, Detre JA (2001a) Temporal dynamics of the partial pressure of brain tissue oxygen during functional forepaw stimulation in rats. Neurosci Lett 306:106–110

    PubMed  CAS  Google Scholar 

  • Ances BM, Wilson DF, Greenberg JH, Detre JA (2001b) Dynamic changes in cerebral blood flow, O2 tension, and calculated cerebral metabolic rate of O2 during functional activation using oxygen phosphorescence quenching. J Cereb Blood Flow Metab 21:511–516

    PubMed  CAS  Google Scholar 

  • Araque A, Perea G (2004) Glial modulation of synaptic transmission in culture. Glia 47:241–248

    PubMed  Google Scholar 

  • Araque A, Parpura V, Sanzgiri RP, Haydon PG (1998a) Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur J Neurosci 10:2129–2142

    PubMed  CAS  Google Scholar 

  • Araque A, Sanzgiri RP, Parpura V, Haydon PG (1998b) Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J Neurosci 18:6822–6829

    PubMed  CAS  Google Scholar 

  • Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999a) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215

    PubMed  CAS  Google Scholar 

  • Araque A, Sanzgiri RP, Parpura V, Haydon PG (1999b) Astrocyte-induced modulation of synaptic transmission. Can J Physiol Pharmacol 77:699–706

    PubMed  CAS  Google Scholar 

  • Araque A, Li N, Doyle RT, Haydon PG (2000) SNARE protein-dependent glutamate release from astrocytes. J Neurosci 20:666–673

    PubMed  CAS  Google Scholar 

  • Araque A, Martin ED, Perea G, Arellano JI, Buno W (2002) Synaptically released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slices. J Neurosci 22:2443–2450

    PubMed  CAS  Google Scholar 

  • Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28:403–450

    PubMed  CAS  Google Scholar 

  • Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145

    PubMed  CAS  Google Scholar 

  • Baker DA, Xi ZX, Shen H, Swanson CJ, Kalivas PW (2002) The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci 22:9134–9141

    PubMed  CAS  Google Scholar 

  • Ball KK, Gandhi G, Thrash J, Cruz NF, Dienel GA (2007) Astrocytic connexin distributions and rapid, extensive dye transfer via gap junctions in the inferior colliculus: Implications for [14C]glucose metabolite trafficking. J Neurosci Res 85:3267–3283

    PubMed  CAS  Google Scholar 

  • Barbour B (2001) An evaluation of synapse independence. J Neurosci 21:7969–7984

    PubMed  CAS  Google Scholar 

  • Bell JE, Hume R, Busuttil A, Burchell A (1993) Immunocytochemical detection of the microsomal glucose-6-phosphatase in human brain astrocytes. Neuropathol Appl Neurobiol 19:429–435

    PubMed  CAS  Google Scholar 

  • Bequet F, Gomez Merino D, Berthelot M, Guezennec CY (2001) Exercise-induced changes in brain glucose and serotonin revealed by microdialysis in rat hippocampus: effect of glucose supplementation. Acta Physiol Scand 173:223–230

    PubMed  CAS  Google Scholar 

  • Bergersen LH, Gundersen V (2009) Morphological evidence for vesicular glutamate release from astrocytes. Neuroscience 158:260–265

    PubMed  CAS  Google Scholar 

  • Bernardinelli Y, Magistretti PJ, Chatton JY (2004) Astrocytes generate Na+-mediated metabolic waves. Proc Natl Acad Sci USA 101:14937–14942

    PubMed  CAS  Google Scholar 

  • Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T, Volterra A (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391:281–285

    PubMed  CAS  Google Scholar 

  • Biggs CS, Fowler LJ, Whitton PS, Starr MS (1995) Impulse-dependent and tetrodotoxin-sensitive release of GABA in the rat’s substantia nigra measured by microdialysis. Brain Res 684:172–178

    PubMed  CAS  Google Scholar 

  • Brennan AM, Connor JA, Shuttleworth CW (2006) NAD(P)H fluorescence transients after synaptic activity in brain slices: predominant role of mitochondrial function. J Cereb Blood Flow Metab 26:1389–1406

    PubMed  CAS  Google Scholar 

  • Brennan AM, Connor JA, Shuttleworth CW (2007) Modulation of the amplitude of NAD(P)H fluorescence transients after synaptic stimulation. J Neurosci Res 85:3233–3243

    PubMed  CAS  Google Scholar 

  • Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22:183–192

    PubMed  CAS  Google Scholar 

  • Buxton RB (2001) The elusive initial dip. NeuroImage 13:953–958

    PubMed  CAS  Google Scholar 

  • Buxton RB, Frank LR (1997) A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab 17:64–72

    PubMed  CAS  Google Scholar 

  • Buzsaki G (2006) Rhythms of the Brain. Oxford University Press, Oxford

    Google Scholar 

  • Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929

    PubMed  CAS  Google Scholar 

  • Buzsáki G, Kaila K, Raichle M (2007) Inhibition and brain work. Neuron 56:771–783

    PubMed  Google Scholar 

  • Caesar K, Hashemi P, Douhou A, Bonvento G, Boutelle MG, Walls AB, Lauritzen M (2008) Glutamate receptor-dependent increments in lactate, glucose and oxygen metabolism evoked in rat cerebellum in vivo. J Physiol (Lond) 586:1337–1349

    CAS  Google Scholar 

  • Canal CE, McNay EC, Gold PE (2005) Increases in extracellular fluid glucose levels in the rat hippocampus following an anesthetic dose of pentobarbital or ketamine-xylazine: an in vivo microdialysis study. Physiol Behav 84:245–250

    PubMed  CAS  Google Scholar 

  • Carmignoto G, Fellin T (2006) Glutamate release from astrocytes as a non-synaptic mechanism for neuronal synchronization in the hippocampus. J Physiol 99:2–3

    Google Scholar 

  • Chatton JY, Pellerin L, Magistretti PJ (2003) GABA uptake into astrocytes is not associated with significant metabolic cost: implications for brain imaging of inhibitory transmission. Proc Natl Acad Sci USA 100:12456–12461

    PubMed  CAS  Google Scholar 

  • Chih CP, Roberts EL Jr (2003) Energy substrates for neurons during neural activity: a critical review of the astrocyte-neuron lactate shuttle hypothesis. J Cereb Blood Flow Metab 23:1263–1281

    PubMed  CAS  Google Scholar 

  • Chih CP, Lipton P, Roberts EL Jr (2001) Do active cerebral neurons really use lactate rather than glucose? Trends Neurosci 24:573–578

    PubMed  CAS  Google Scholar 

  • Choi IY, Gruetter R (2003) In vivo 13C NMR assessment of brain glycogen concentration and turnover in the awake rat. Neurochem Int 43:317–322

    PubMed  CAS  Google Scholar 

  • Cholet N, Pellerin L, Welker E, Lacombe P, Seylaz J, Magistretti PJ, Bonvento G (2001) Local injection of antisense oligonucleotides targeted to the glial glutamate transporter GLAST decreases the metabolic response to somatosensory activation. J Cereb Blood Flow Metab 21:404–412

    PubMed  CAS  Google Scholar 

  • Cohen PJH, Wollman SC, Alexander PE, Behar MG (1964) Cerebral carbohydrate metabolism in man during halothane anaesthesia. Anaesthesiology 25:185–191

    CAS  Google Scholar 

  • Collins RC, McCandless DW, Wagman IL (1987) Cerebral glucose utilization: comparison of [14C]deoxyglucose and [6-14C]glucose quantitative autoradiography. J Neurochem 49:1564–1570

    PubMed  CAS  Google Scholar 

  • Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith JS (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247:470–473

    PubMed  CAS  Google Scholar 

  • Cruz NF, Dienel GA (2002) High glycogen levels in brains of rats with minimal environmental stimuli: implications for metabolic contributions of working astrocytes. J Cereb Blood Flow Metab 22:1476–1489

    PubMed  CAS  Google Scholar 

  • Cruz NF, Ball KK, Dienel GA (2007) Functional imaging of focal brain activation in conscious rats: impact of [(14)C]glucose metabolite spreading and release. J Neurosci Res 85: 3254–3266

    PubMed  CAS  Google Scholar 

  • Dale AM, Halgren E (2001) Spatiotemporal mapping of brain activity by integration of multiple imaging modalities. Curr Opin Neurobiol 11:202–208

    PubMed  CAS  Google Scholar 

  • Day BK, Pomerleau F, Burmeister JJ, Huettl P, Gerhardt GA (2006) Microelectrode array studies of basal and potassium-evoked release of L-glutamate in the anesthetized rat brain. J Neurochem 96:1626–1635

    PubMed  CAS  Google Scholar 

  • Demestre M, Boutelle M, Fillenz M (1997) Stimulated release of lactate in freely moving rats is dependent on the uptake of glutamate. J Physiol 499:825–832

    PubMed  CAS  Google Scholar 

  • Derouiche A, Frotscher M (2001) Peripheral astrocyte processes: monitoring by selective immunostaining for the actin-binding ERM proteins. Glia 36:330–341

    PubMed  CAS  Google Scholar 

  • Diamond JS (2001) Neuronal glutamate transporters limit activation of NMDA receptors by neurotransmitter spillover on CA1 pyramidal cells. J Neurosci 21:8328–8338

    PubMed  CAS  Google Scholar 

  • Diamond JS (2002) A broad view of glutamate spillover. Nat Neurosci 5:291–292

    PubMed  CAS  Google Scholar 

  • Dienel G (2004a) Glial biology: functional interactions among glia and neurons. Neurochem Int 45:189–190

    PubMed  CAS  Google Scholar 

  • Dienel GA (2004b) Lactate muscles its way into consciousness: fueling brain activation. Am J Physiol 287:R519–R521

    CAS  Google Scholar 

  • Dienel GA, Cruz NF (2003) Neighborly interactions of metabolically-activated astrocytes in vivo. Neurochem Int 43:339–354

    PubMed  CAS  Google Scholar 

  • Dienel GA, Cruz NF (2004) Nutrition during brain activation: does cell-to-cell lactate shuttling contribute significantly to sweet and sour food for thought? Neurochem Int 45:321–351

    PubMed  CAS  Google Scholar 

  • Dienel GA, Hertz L (2001) Glucose and lactate metabolism during brain activation. J Neurosci Res 66:824–838

    PubMed  CAS  Google Scholar 

  • Dienel GA, Nelson T, Cruz NF, Jay T, Crane AM, Sokoloff L (1988) Over-estimation of glucose-6-phosphatase activity in brain in vivo. Apparent difference in rates of [2-3H]glucose and [U-14C]glucose utilization is due to contamination of precursor pool with 14C-labeled products and incomplete recovery of 14C-labeled metabolites. J Biol Chem 263:19697–19708

    PubMed  CAS  Google Scholar 

  • Dienel GA, Schmidt K, Cruz NF (2007) Astrocyte activation in vivo during graded photic stimulation. J Neurochem 103:1506–1522

    PubMed  CAS  Google Scholar 

  • Dringen R, Gebhardt R, Hamprecht B (1993) Glycogen in astrocytes: possible function as lactate supply for neighboring cells. Brain Res 623:208–214

    PubMed  CAS  Google Scholar 

  • Duong TQ, Kim DS, Ugurbil K, Kim SG (2000) Spatiotemporal dynamics of the BOLD fMRI signals: toward mapping submillimeter cortical columns using the early negative response. Magnetic Resonance in Medicine 44:231–242

    PubMed  CAS  Google Scholar 

  • Erecinska M, Silver IA (1989) ATP and brain function. J Cereb Blood Flow Metab 9:2–19

    PubMed  CAS  Google Scholar 

  • Erecinska M, Silver IA (1994) Ions and energy in mammalian brain. Prog Neurobiol 43:37–71

    PubMed  CAS  Google Scholar 

  • Fellin T, Pascual O, Haydon PG (2006) Astrocytes coordinate synaptic networks: balanced excitation and inhibition. Physiology 21:208–215

    PubMed  CAS  Google Scholar 

  • Fellows LK, Boutelle MG, Fillenz M (1992) Extracellular brain glucose levels reflect local neuronal activity: a microdialysis study in awake, freely moving rats. J Neurochem 59:2141–2147

    PubMed  CAS  Google Scholar 

  • Fellows LK, Boutelle MG, Fillenz M (1993) Physiological stimulation increases nonoxidative glucose metabolism in the brain of the freely moving rat. J Neurochem 60:1258–1263

    PubMed  CAS  Google Scholar 

  • Fillenz M (2005) The role of lactate in brain metabolism. Neurochem Int 47:413–417

    PubMed  CAS  Google Scholar 

  • Fillenz M, Lowry JP (1998) Studies of the source of glucose in the extracellular compartment of the rat brain. Dev Neurosci 20:365–368

    PubMed  CAS  Google Scholar 

  • Forsyth RJ, Bartlett K, Eyre J (1996) Dephosphorylation of 2-deoxyglucose 6-phosphate and 2-deoxyglucose export from cultured astrocytes. Neurochem Int 28:243–250

    PubMed  CAS  Google Scholar 

  • Foster KA, Beaver CJ, Turner DA (2005) Interaction between tissue oxygen tension and NADH imaging during synaptic stimulation and hypoxia in rat hippocampal slices. Neuroscience 132:645–657

    PubMed  CAS  Google Scholar 

  • Fox PT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 83:1140–1144

    PubMed  CAS  Google Scholar 

  • Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711

    PubMed  CAS  Google Scholar 

  • Fox PT, Raichle ME, Mintun MA, Dence C (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241:462–464

    PubMed  CAS  Google Scholar 

  • Fray AE, Forsyth RJ, Boutelle MG, Fillenz M (1996) The mechanisms controlling physiologically stimulated changes in rat brain glucose and lactate: a microdialysis study. J Physiol 496:49–57

    PubMed  CAS  Google Scholar 

  • Fray AE, Boutelle M, Fillenz M (1997) Extracellular glucose turnover in the striatum of unanaesthetized rats measured by quantitative microdialysis. J Physiol 504:721–726

    PubMed  CAS  Google Scholar 

  • Gadea A, Lopez-Colome AM (2001) Glial transporters for glutamate, glycine, and GABA III. Glycine transporters. J Neurosci Res 64:218–222

    PubMed  CAS  Google Scholar 

  • Gibbs ME, Anderson DG, Hertz L (2006) Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chickens. Glia 54:214–222

    PubMed  Google Scholar 

  • Gibbs ME, Hutchinson D, Hertz L (2008) Astrocytic involvement in learning and memory consolidation. Neurosci Biobehav Rev 32:927–944

    PubMed  Google Scholar 

  • Gjedde A, Marrett S (2001) Glycolysis in neurons, not astrocytes, delays oxidative metabolism of human visual cortex during sustained checkerboard stimulation in vivo. J Cereb Blood Flow Metab 21:1384–1392

    PubMed  CAS  Google Scholar 

  • Gotoh J, Kuang TY, Nakao Y, Cohen DM, Melzer P, Itoh Y, Pak H, Pettigrew K, Sokoloff L (2001) Regional differences in mechanisms of cerebral circulatory response to neuronal activation. Am J Physiol 280:H821–H829

    CAS  Google Scholar 

  • Gruetter R (2003) Glycogen: the forgotten cerebral energy store. J Neurosci Res 74:179–183

    PubMed  CAS  Google Scholar 

  • Guionie O, Clottes E, Stafford K, Burchell A (2003) Identification and characterisation of a new human glucose-6-phosphatase isoform. FEBS Lett 551:159–164

    PubMed  CAS  Google Scholar 

  • Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2:685–694

    PubMed  CAS  Google Scholar 

  • Haydon PG (2001) GLIA: listening and talking to the synapse. Nat Rev Neurosci 2:185–193

    PubMed  CAS  Google Scholar 

  • Hepp R, Perraut M, Chasserot Golaz S, Galli T, Aunis D, Langley K, Grant NJ (1999) Cultured glial cells express the SNAP-25 analogue SNAP-23. Glia 27:181–187

    PubMed  CAS  Google Scholar 

  • Herrera-Marschitz M, You ZB, Goiny M, Meana JJ, Silveira R, Godukhin OV, Chen Y, Espinoza S, Pettersson E, Loidl CF, Lubec G, Andersson K, Nylander I, Terenius L, Ungerstedt U (1996) On the origin of extracellular glutamate levels monitored in the basal ganglia of the rat by in vivo microdialysis. J Neurochem 66:1726–1735

    PubMed  CAS  Google Scholar 

  • Hertz L, Peng L, Lai JCK (1998) Functional studies in cultured astrocytes. Methods - A companion to Method Enzymol 16:293–310

    CAS  Google Scholar 

  • Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27:219–249

    PubMed  CAS  Google Scholar 

  • Hirase H, Qian L, Barthó P, Buzsáki G (2004) Calcium dynamics of cortical astrocytic networks in vivo. Plos Biol 2:0494–0499

    CAS  Google Scholar 

  • Hu Y, Wilson GS (1997a) A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor. J Neurochem 69:1484–1490

    PubMed  CAS  Google Scholar 

  • Hu Y, Wilson GS (1997b) Rapid changes in local extracellular rat brain glucose observed with an in vivo glucose sensor. J Neurochem 68:1745–1752

    PubMed  CAS  Google Scholar 

  • Huang MT, Veech RL (1986) Glucose-6-phosphatase activity in brain. Science 234:1128–1129

    PubMed  CAS  Google Scholar 

  • Hyder F, Shulman RG, Rothman DL (1998) A model for the regulation of cerebral oxygen delivery. J Appl Physiol 85:554–564

    PubMed  CAS  Google Scholar 

  • Innocenti B, Parpura V, Haydon PG (2000) Imaging extracellular waves of glutamate during calcium signaling in cultured astrocytes. J Neurosci 20:1800–1808

    PubMed  CAS  Google Scholar 

  • Jeftinija SD, Jeftinija KV, Stefanovic G, Liu F (1996) Neuroligand-evoked calcium-dependent release of excitatory amino acids from cultured astrocytes. J Neurochem 66:676–684

    PubMed  CAS  Google Scholar 

  • Jeremic A, Jeftinija K, Stevanovic J, Glavaski A, Jeftinija S (2001) ATP stimulates calcium-dependent glutamate release from cultured astrocytes. J Neurochem 77:664–675

    PubMed  CAS  Google Scholar 

  • Jones M, Berwick J, Johnston D, Mayhew J (2001) Concurrent optical imaging spectroscopy and laser-Doppler flowmetry: the relationship between blood flow, oxygenation, and volume in rodent barrel cortex. NeuroImage 13:1002–1015

    PubMed  CAS  Google Scholar 

  • Kann O, Kovács R (2007) Mitochondria and neuronal activity. Am J Physiol, Cell Physiol 292:C641–C657

    PubMed  CAS  Google Scholar 

  • Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW (2004) Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305:99–103

    PubMed  CAS  Google Scholar 

  • Korf J (2006) Is brain lactate metabolized immediately after neuronal activity through the oxidative pathway? J Cereb Blood Flow Metab 26:1584–1586

    PubMed  CAS  Google Scholar 

  • Korf J, Gramsbergen JB (2007) Timing of potential and metabolic brain energy. J Neurochem 103:1697–1708

    PubMed  CAS  Google Scholar 

  • Kullmann DM, Asztely F (1998) Extrasynaptic glutamate spillover in the hippocampus: evidence and implications. Trends Neurosci 21:8–14

    PubMed  CAS  Google Scholar 

  • Kullmann DM, Asztely F (2000) Spillover and synaptic cross talk mediated by glutamate and GABA in the mammalian brain. Extrasynaptic glutamate spillover in the hippocampus: evidence and implications. Prog Brain Res 125:339–351

    PubMed  CAS  Google Scholar 

  • Kullmann D, Min M, Asztely F, Rusakov D (1999) Extracellular glutamate diffusion determines the occupancy of glutamate receptors at CA1 synapses in the hippocampus. Philos Trans R Soc Lond, B, Biol Sci 354:395–402

    PubMed  CAS  Google Scholar 

  • Langemann H, Alessandri B, Mendelowitsch A, Feuerstein T, Landolt H, Gratzl O (2001) Extracellular levels of glucose and lactate measured by quantitative microdialysis in the human brain. Neurol Res 23:531–536

    PubMed  CAS  Google Scholar 

  • Leegsma-Vogt G, Venema K, Korf J (2003) Evidence for a lactate pool in the rat brain that is not used as an energy supply under normoglycemic conditions. J Cereb Blood Flow Metab 23:933–941

    PubMed  CAS  Google Scholar 

  • Lennie P (2003) The cost of cortical computation. Curr Biol 13:493–497

    PubMed  CAS  Google Scholar 

  • Lindauer U, Royl G, Leithner C, Kühl M, Gold L, Gethmann J, Kohl-Bareis M, Villringer A, Dirnagl U (2001) No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation. NeuroImage 13:988–1001

    PubMed  CAS  Google Scholar 

  • Lönnroth P, Jansson PA, Smith U (1987) A microdialysis method allowing characterization of interecellular water space in humans. Am J Physiol 253:652–654

    Google Scholar 

  • Lowry JP, Fillenz M (1997) Evidence for uncoupling of oxygen and glucose utilization during neuronal activation in rat striatum. J Physiol 498:497–501

    PubMed  CAS  Google Scholar 

  • Lowry JP, Demestre M, Fillenz M (1998a) Relation between cerebral blood flow and extracellular glucose in rat striatum during mild hypoxia and hyperoxia. Dev Neurosci 20:52–58

    PubMed  CAS  Google Scholar 

  • Lowry JP, O’Neill RD, Boutelle MG, Fillenz M (1998b) Continuous monitoring of extracellular glucose concentrations in the striatum of freely moving rats with an implanted glucose biosensor. J Neurochem 70:391–396

    PubMed  CAS  Google Scholar 

  • Madsen PL, Linde R, Hasselbalch SG, Paulson OB, Lassen NA (1998) Activation-induced resetting of cerebral oxygen and glucose uptake in the rat. J Cereb Blood Flow Metab 18:742–748

    PubMed  CAS  Google Scholar 

  • Madsen PL, Cruz NF, Sokoloff L, Dienel GA (1999) Cerebral oxygen/glucose ratio is low during sensory stimulation and rises above normal during recovery: excess glucose consumption during stimulation is not accounted for by lactate efflux from or accumulation in brain tissue. J Cereb Blood Flow Metab 19:393–400

    PubMed  CAS  Google Scholar 

  • Magistretti PJ, Pellerin L (1999) Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond, B, Biol Sci 354:1155–1163

    PubMed  CAS  Google Scholar 

  • Magistretti PJ, Pellerin L, Rothman DL, Shulman RG (1999) Energy on demand. Science 283: 496–497

    PubMed  CAS  Google Scholar 

  • Malarkey EB, Parpura V (2008) Mechanisms of glutamate release from astrocytes. Neurochem Int 52:142–154

    PubMed  CAS  Google Scholar 

  • Mangia S, Garreffa G, Bianciardi M, Giove F, Di Salle F, Maraviglia B (2003) The aerobic brain: lactate decrease at the onset of neural activity. Neuroscience 118:7–10

    PubMed  CAS  Google Scholar 

  • Marcaggi P, Attwell D (2004) Role of glial amino acid transporters in synaptic transmission and brain energetics. Glia 47:217–225

    PubMed  Google Scholar 

  • Marota JJ, Ayata C, Moskowitz MA, Weisskoff RM, Rosen BR, Mandeville JB (1999) Investigation of the early response to rat forepaw stimulation. Magn Reson Med 41:247–252

    PubMed  CAS  Google Scholar 

  • Masamoto K, Omura T, Takizawa N, Kobayashi H, Katura T, Maki A, Kawaguchi H, Tanishita K (2003) Biphasic changes in tissue partial pressure of oxygen closely related to localized neural activity in guinea pig auditory cortex. J Cereb Blood Flow Metab 23:1075–1084

    PubMed  Google Scholar 

  • Masamoto K, Vazquez A, Wang P, Kim SG (2009) Brain tissue oxygen consumption and supply induced by neural activation: determined under suppressed hemodynamic response conditions in the anesthetized rat cerebral cortex. Adv Exp Med Biol 645:287–292

    PubMed  Google Scholar 

  • Mason GF, Gruetter R, Rothman DL, Behar KL, Shulman RG, Novotny EJ (1995) Simultaneous determination of the rates of the TCA cycle, glucose utilization, alpha-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR. J Cereb Blood Flow Metab 15:12–25

    PubMed  CAS  Google Scholar 

  • Mayhew J, Johnston D, Berwick J, Jones M, Coffey P, Zheng Y (2000) Spectroscopic analysis of neural activity in brain: increased oxygen consumption following activation of barrel cortex. NeuroImage 12:664–675

    PubMed  CAS  Google Scholar 

  • McNay EC, Gold PE (1999) Extracellular glucose concentrations in the rat hippocampus measured by zero-net-flux: effects of microdialysis flow rate, strain, and age. J Neurochem 72:785–790

    PubMed  CAS  Google Scholar 

  • McNay EC, Fries TM, Gold PE (2000) Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand during a spatial task. Proc Natl Acad Sci USA 97:2881–2885

    PubMed  CAS  Google Scholar 

  • McNay EC, McCarty RC, Gold PE (2001) Fluctuations in brain glucose concentration during behavioral testing: dissociations between brain areas and between brain and blood. Neurobiol Learn Mem 75:325–337

    PubMed  CAS  Google Scholar 

  • Middleditch C, Marcolongo P, Benedetti A, Burchell A (1997) Glucose-6-phosphatase activity: a determinant of brain microsomal intactness. Biochem Soc Trans 25:183S

    PubMed  CAS  Google Scholar 

  • Miele M, Berners M, Boutelle MG, Kusakabe H, Fillenz M (1996a) The determination of the extracellular concentration of brain glutamate using quantitative microdialysis. Brain Res 707:131–133

    PubMed  CAS  Google Scholar 

  • Miele M, Boutelle MG, Fillenz M (1996b) The source of physiologically stimulated glutamate efflux from the striatum of conscious rats. J Physiol 497:745–751

    PubMed  CAS  Google Scholar 

  • Moghaddam B (1993) Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia. J Neurochem 60:1650–1657

    PubMed  CAS  Google Scholar 

  • Montana V, Malarkey EB, Verderio C, Matteoli M, Parpura V (2006) Vesicular transmitter release from astrocytes. Glia 54:700–715

    PubMed  Google Scholar 

  • Muyderman H, Angehagen M, Sandberg M, Bjorklund U, Olsson T, Hansson E, Nilsson M (2001) Alpha 1-adrenergic modulation of metabotropic glutamate receptor-induced calcium oscillations and glutamate release in astrocytes. J Biol Chem 276:46504–46514

    PubMed  CAS  Google Scholar 

  • Ndubuizu O, LaManna JC (2007) Brain tissue oxygen concentration measurements. Antioxid Redox Signal 9:1207–1219

    PubMed  CAS  Google Scholar 

  • Nehlig A, Coles J (2007) Cellular pathways of energy metabolism in the brain: is glucose used by neurons or astrocytes? Glia 55:1238–1250

    PubMed  Google Scholar 

  • Nehlig A, Wittendorp-Rechenmann E, Lam CD (2004) Selective uptake of [14C]2-deoxyglucose by neurons and astrocytes: high-resolution microautoradiographic imaging by cellular 14C-trajectography combined with immunohistochemistry. J Cereb Blood Flow Metab 24:1004–1014

    PubMed  CAS  Google Scholar 

  • Netchiporouk L, Shram N, Salvert D, Cespuglio R (2001) Brain extracellular glucose assessed by voltammetry throughout the rat sleep-wake cycle. Eur J Neurosci 13:1429–1434

    PubMed  CAS  Google Scholar 

  • Newman EA, Volterra A (2004) Glial control of synaptic function. Glia 47:207–208

    PubMed  Google Scholar 

  • Ni Y, Malarkey E, Parpura V (2007) Vesicular release of glutamate mediates bidirectional signaling between astrocytes and neurons. J Neurochem 103:1273–1284

    PubMed  CAS  Google Scholar 

  • Offenhauser N, Thomsen K, Caesar K, Lauritzen M (2005) Activity-induced tissue oxygenation changes in rat cerebellar cortex: interplay of postsynaptic activation and blood flow. J Physiol 565:279–294

    PubMed  CAS  Google Scholar 

  • Olson RJ, Justice JB Jr (1993) Quantitative microdialysis under transient conditions. Anal Chem 65:1017–1022

    PubMed  CAS  Google Scholar 

  • Osborne PG, Niwa O, Kato T, Yamamoto K (1997) On-line, continuous measurement of extracellular striatal glucose using microdialysis sampling and electrochemical detection. J Neurosci Methods 77:143–150

    PubMed  CAS  Google Scholar 

  • Parpura V, Scemes E, Spray DC (2004) Mechanisms of glutamate release from astrocytes: gap junction “hemichannels”, purinergic receptors and exocytotic release. Neurochem Int 45:259–264

    PubMed  CAS  Google Scholar 

  • Pasti L, Volterra A, Pozzan T, Carmignoto G (1997) Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 17:7817–7830

    PubMed  CAS  Google Scholar 

  • Pasti L, Zonta M, Pozzan T, Vicini S, Carmignoto G (2001) Cytosolic calcium oscillations in astrocytes may regulate exocytotic release of glutamate. J Neurosci 21:477–484

    PubMed  CAS  Google Scholar 

  • Patel AB, de Graaf RA, Mason GF, Rothman DL, Shulman RG, Behar KL (2005) The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo. Proc Natl Acad Sci USA 102:5588–5593

    PubMed  CAS  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91: 10625–10629

    PubMed  CAS  Google Scholar 

  • Pellerin L, Magistretti PJ (1996) Excitatory amino acids stimulate aerobic glycolysis in astrocytes via an activation of the Na+/K  +  ATPase. Dev Neurosci 18:336–342

    PubMed  CAS  Google Scholar 

  • Pellerin L, Magistretti PJ (1997) Glutamate uptake stimulates Na+, K  +  -ATPase activity in astrocytes via activation of a distinct subunit highly sensitive to ouabain. J Neurochem 69: 2132–2137

    PubMed  CAS  Google Scholar 

  • Pellerin L, Pellegri G, Bittar PG, Charnay Y, Bouras C, Martin JL, Stella N, Magistretti PJ (1998) Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci 20:291–299

    PubMed  CAS  Google Scholar 

  • Pfeiffer B, Meyermann R, Hamprecht B (1992) Immunohistochemical co-localization of glycogen phosphorylase with the astroglial markers glial fibrillary acidic protein and S-100 protein in rat brain sections. Histochemistry 97:405–412

    PubMed  CAS  Google Scholar 

  • Piet R, Vargová L, Syková E, Poulain DA, Oliet SH (2004) Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proc Natl Acad Sci USA 101:2151–2155

    PubMed  CAS  Google Scholar 

  • Porter JT, McCarthy KD (1996) Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci 16:5073–5081

    PubMed  CAS  Google Scholar 

  • Prichard J, Rothman D, Novotny E, Petroff O, Kuwabara T, Avison M, Howseman A, Hanstock C, Shulman R (1991) Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc Natl Acad Sci USA 88:5829–5831

    PubMed  CAS  Google Scholar 

  • Raichle ME (1998) Behind the scenes of functional brain imaging: a historical and physiological perspective. Proc Natl Acad Sci USA 95:765–772

    PubMed  CAS  Google Scholar 

  • Raichle ME (2001) Cognitive neuroscience. Bold insights. Nature 412:128–130

    PubMed  CAS  Google Scholar 

  • Raichle M, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. NeuroImage 37:1083–1090

    PubMed  Google Scholar 

  • Reinstrup P, Ståhl N, Mellergård P, Uski T, Ungerstedt U, Nordström CH (2000) Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery 47:701–710

    PubMed  CAS  Google Scholar 

  • Ros J, Pecinska N, Alessandri B, Landolt H, Fillenz M (2001) Lactate reduces glutamate-induced neurotoxicity in rat cortex. J Neurosci Res 66:790–794

    PubMed  CAS  Google Scholar 

  • Roy CS, Sherrington CS (1890) On the regulation of the blood supply of the brain. J Physiol 11:85–108

    PubMed  CAS  Google Scholar 

  • Rusakov DA (2001) The role of perisynaptic glial sheaths in glutamate spillover and extracellular Ca(2+) depletion. Biophys J 81:1947–1959

    PubMed  CAS  Google Scholar 

  • Santello M, Volterra A (2008) Synaptic modulation by astrocytes via Ca(2+)-dependent glutamate release. Neuroscience 22(1):253

    Google Scholar 

  • Sappey-Marinier D, Calabrese G, Fein G, Hugg JW, Biggins C, Weiner MW (1992) Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Metab 12:584–592

    PubMed  CAS  Google Scholar 

  • Scemes E, Giaume C (2006) Astrocyte calcium waves: what they are and what they do. Glia 54:716–725

    PubMed  Google Scholar 

  • Schasfoort EM, De Bruin LA, Korf J (1988) Mild stress stimulates rat hippocampal glucose utilization transiently via NMDA receptors, as assessed by lactography. Brain Res 475:58–63

    PubMed  CAS  Google Scholar 

  • Schmalbruch IK, Linde R, Paulson OB, Madsen PL (2002) Activation-induced resetting of cerebral metabolism and flow is abolished by beta-adrenergic blockade with propranolol. Stroke 33:251–255

    PubMed  CAS  Google Scholar 

  • Schurr A (2006) Lactate: the ultimate cerebral oxidative energy substrate? J Cereb Blood Flow Metab 26:142–152

    PubMed  CAS  Google Scholar 

  • Schurr A, Payne RS (2007) Lactate, not pyruvate, is neuronal aerobic glycolysis end product: an in vitro electrophysiological study. Neuroscience 147:613–619

    PubMed  CAS  Google Scholar 

  • Segal M, Greenberger V, Hofstein R (1981) Cyclic AMP-generating systems in rat hippocampal slices. Brain Res 213:351–364

    PubMed  CAS  Google Scholar 

  • Shelton MK, McCarthy KD (2000) Hippocampal astrocytes exhibit Ca2+  -elevating muscarinic cholinergic and histaminergic receptors in situ. J Neurochem 74:555–563

    PubMed  CAS  Google Scholar 

  • Shulman RG, Hyder F, Rothman DL (2001a) Cerebral energetics and the glycogen shunt: neurochemical basis of functional imaging. Proc Natl Acad Sci USA 98:6417–6422

    PubMed  CAS  Google Scholar 

  • Shulman RG, Hyder F, Rothman DL (2001b) Lactate efflux and the neuroenergetic basis of brain function. NMR Biomed 14:389–396

    PubMed  CAS  Google Scholar 

  • Shuttleworth CW, Brennan AM, Connor JA (2003) NAD(P)H fluorescence imaging of postsynaptic neuronal activation in murine hippocampal slices. J Neurosci 23:3196–3208

    PubMed  CAS  Google Scholar 

  • Sibson NR, Dhankhar A, Mason GF, Behar KL, Rothman DL, Shulman RG (1997) In vivo 13C NMR measurements of cerebral glutamine synthesis as evidence for glutamate-glutamine cycling. Proc Natl Acad Sci USA 94:2699–2704

    PubMed  CAS  Google Scholar 

  • Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar KL, Shulman RG (1998) Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci USA 95:316–321

    PubMed  CAS  Google Scholar 

  • Siesjö BK (1978) Brain Energy Metabolism. John Wiley & Sons, Chichester

    Google Scholar 

  • Silva AC, Lee SP, Yang G, Iadecola C, Kim SG (1999) Simultaneous blood oxygenation level-dependent and cerebral blood flow functional magnetic resonance imaging during forepaw stimulation in the rat. J Cereb Blood Flow Metab 19:871–879

    PubMed  CAS  Google Scholar 

  • Silver IA, Erecinska M (1994) Extracellular glucose concentration in mammalian brain: continuous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo-, hypo-, and hyperglycemic animals. J Neurosci 14:5068–5076

    PubMed  CAS  Google Scholar 

  • Silver IA, Erecinska M (1997) Energetic demands of the Na+/K  +  ATPase in mammalian astrocytes. Glia 21:35–45

    PubMed  CAS  Google Scholar 

  • Smith AD, Olson RJ, Justice JB Jr (1992) Quantitative microdialysis of dopamine in the striatum: effect of circadian variation. J Neurosci Methods 44:33–41

    PubMed  CAS  Google Scholar 

  • Sokoloff L (1980) Local cerebral energy metabolism: its relationship to local functional activity and blood flow. Bull Schweiz Akad Med Wiss 36:71–91

    PubMed  CAS  Google Scholar 

  • Sokoloff L (1981) The deoxyglucose method for the measurement of local glucose utilization and the mapping of local functional activity in the central nervous system. Int Rev Neurobiol 22:287–333

    PubMed  CAS  Google Scholar 

  • Sorg O, Magistretti PJ (1991) Characterization of the glycogenolysis elicited by vasoactive intestinal peptide, noradrenaline and adenosine in primary cultures of mouse cerebral cortical astrocytes. Brain Res 563:227–233

    PubMed  CAS  Google Scholar 

  • Sporn J, Molinoff P (1976) beta-Adrenergic receptors in rat brain. J Cyclic Nucleotide Res 2:149–161

    PubMed  CAS  Google Scholar 

  • Swanson RA, Morton MM, Sagar SM, Sharp FR (1992) Sensory stimulation induces local cerebral glycogenolysis: demonstration by autoradiography. Neuroscience 51:451–461

    PubMed  CAS  Google Scholar 

  • Thompson JK, Peterson MR, Freeman RD (2003) Single-neuron activity and tissue oxygenation in the cerebral cortex. Science 299:1070–1072

    PubMed  CAS  Google Scholar 

  • Timmerman W, Westerink BH (1997) Brain microdialysis of GABA and glutamate: what does it signify? Synapse 27:242–261

    PubMed  CAS  Google Scholar 

  • Tsacopoulos M, Magistretti PJ (1996) Metabolic coupling between glia and neurons. J Neurosci 16:877–885

    PubMed  CAS  Google Scholar 

  • Vafaee MS, Gjedde A (2000) Model of blood-brain transfer of oxygen explains nonlinear flow-metabolism coupling during stimulation of visual cortex. J Cereb Blood Flow Metab 20:747–754

    PubMed  CAS  Google Scholar 

  • van der Kuil JH, Korf J (1991) On-line monitoring of extracellular brain glucose using microdialysis and a NADPH-linked enzymatic assay. J Neurochem 57:648–654

    PubMed  Google Scholar 

  • Vanzetta I, Grinvald A (1999) Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging. Science 286:1555–1558

    PubMed  CAS  Google Scholar 

  • Vanzetta I, Grinvald A (2001) Evidence and lack of evidence for the initial dip in the anesthetized rat: implications for human functional brain imaging. NeuroImage 13:959–967

    PubMed  CAS  Google Scholar 

  • Vazquez AL, Masamoto K, Kim SG (2008) Dynamics of oxygen delivery and consumption during evoked neural stimulation using a compartment model and CBF and tissue P(O2) measurements. NeuroImage 42:49–59

    PubMed  Google Scholar 

  • Ventura R, Harris KM (1999) Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci 19:6897–6906

    PubMed  CAS  Google Scholar 

  • Verkhratsky A, Kettenmann H (1996) Calcium signalling in glial cells. Trends Neurosci 19:346–352

    PubMed  CAS  Google Scholar 

  • Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, Zempel JM, Snyder LH, Corbetta M, Raichle ME (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447:83–86

    PubMed  CAS  Google Scholar 

  • Volterra A, Steinhauser C (2004) Glial modulation of synaptic transmission in the hippocampus. Glia 47:249–257

    PubMed  Google Scholar 

  • Waldfogel D, van Gelderen P, Muellbacher W, Ziemann U, Immisch I, Hallett M (2000) The relative metabolic demand of inhibition and excitation. Nature 406:995–998

    Google Scholar 

  • Wang X, Lou N, Xu Q, Tian GF, Peng W, Han X, Kang J, Takano T, Nedergaard M (2006) Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 9:816–823

    PubMed  CAS  Google Scholar 

  • Watanabe H, Passonneau JV (1973) Factors affecting the turnover of cerebral glycogen and limit dextrin in vivo. J Neurochem 20:1543–1554

    PubMed  CAS  Google Scholar 

  • Wittendorp-Rechenmann E, Lam CD, Steibel J, Lasbennes F, Nehlig A (2002) High resolution tracer targeting combining microautoradiographic imaging by cellular C-14-trajectography with immunohistochemistry: A novel protocol to demonstrate metabolism of C-14 2-deoxyglucose by neurons and astrocytes. J Trace Microprobe Tech 20:505–515

    CAS  Google Scholar 

  • Yacoub E, Le TH, Ugurbil K, Hu X (1999) Further evaluation of the initial negative response in functional magnetic resonance imaging. Magn Reson Med 41:436–441

    PubMed  CAS  Google Scholar 

  • Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele PF, Adriany G, Ugurbil K, Hu X (2001) Investigation of the initial dip in fMRI at 7 Tesla. NMR Biomed 14:408–412

    PubMed  CAS  Google Scholar 

  • Zhang Q, Haydon PG (2005) Roles for gliotransmission in the nervous system. J Neural Transm 112:121–125

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianne Fillenz DSc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fillenz, M. (2012). Glucose Metabolism During Neural Activation. In: Choi, IY., Gruetter, R. (eds) Neural Metabolism In Vivo. Advances in Neurobiology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1788-0_21

Download citation

Publish with us

Policies and ethics