Skip to main content

A Polytope for a Product of Real Linear Functions in 0/1 Variables

  • Conference paper
  • First Online:
Mixed Integer Nonlinear Programming

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 154))

Abstract

In the context of integer programming, we develop a polyhedral method for linearizing a product of a pair of real linear functions in 0/1 variables. As an example, by writing a pair of integer variables in binary expansion, we have a technique for linearizing their product. We give a complete linear description for the resulting polytope, and we provide an efficient algorithm for the separation problem. Along the way to establishing the complete description, we also give a complete description for an extended-variable formulation, and we point out a generalization.

AMS(MOS) subject classifications. 52B11, 90C10, 90C57, 90C30.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kim Allemand, Komei Fukuda, Thomas M. Liebling, and Erich Steiner. A polynomial case of unconstrained zero–one quadratic optimization. Math. Program., 91(1, Ser. A):49–52, 2001.

    Google Scholar 

  2. Egon Balas. Projection and lifting in combinatorial optimization. In Computational combinatorial optimization (Schloß Dagstuhl, 2000), Volume 2241 of Lecture Notes in Comput. Sci., pages 26–56. Springer, Berlin, 2001.

    Google Scholar 

  3. Tamas Badics and Endre Boros. Minimization of half-products. Math. Oper. Res., 23(3):649–660, 1998.

    Google Scholar 

  4. Egon Balas and William R. Pulleyblank. The perfectly matchable subgraph polytope of a bipartite graph. Networks, 13(4):495–516, 1983.

    Google Scholar 

  5. Egon Balas and William R. Pulleyblank. The perfectly matchable subgraph polytope of an arbitrary graph. Combinatorica, 9(4):321–337, 1989.

    Google Scholar 

  6. Don Coppersmith, Oktay G¨unl¨uk, Jon Lee, and Janny Leung. A polytope for a product of real linear functions in 0/1 variables, 2003. Manuscript, November 2003.

    Google Scholar 

  7. Jinliang Cheng and Wieslaw Kubiak. A half-product based approximation scheme for agreeably weighted completion time variance. European J. Oper. Res., 162(1):45–54, 2005.

    Google Scholar 

  8. Eranda C¸ ela, Bettina Klinz, and Christophe Meyer. Polynomially solvable cases of the constant rank unconstrained quadratic 0–1 programming problem. J. Comb. Optim., 12(3):187–215, 2006.

    Google Scholar 

  9. Don Coppersmith, Jon Lee, and Janny Leung. A polytope for a product of real linear functions in 0/1 variables, 1999. IBM Research Report RC21568, September 1999.

    Google Scholar 

  10. Michel Deza and Monique Laurent. Geometry of cuts and metrics. Springer-Verlag, Berlin, 1997.

    Google Scholar 

  11. Caterina De Simone. The cut polytope and the Boolean quadric polytope. Discrete Math., 79(1):71–75, 1989/90.

    Google Scholar 

  12. Jean-Albert Ferrez, Komei Fukuda, and Thomas M. Liebling. Solving the fixed rank convex quadratic maximization in binary variables by a parallel zonotope construction algorithm. European J. Oper. Res., 166(1):35–50, 2005.

    Google Scholar 

  13. Martin Gr¨otschel, L´aszl´o Lov´asz, and Alexander Schrijver. The ellipsoid method and its consequences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

    Google Scholar 

  14. Martin Gr¨otschel, L´aszl´o Lov´asz, and Alexander Schrijver. Corrigendum to our paper: “The ellipsoid method and its consequences in combinatorial optimization”. Combinatorica, 4(4):291–295, 1984.

    Google Scholar 

  15. Martin Gr¨otschel, L´aszl´o Lov´asz, and Alexander Schrijver. Geometric algorithms and combinatorial optimization. Springer-Verlag, Berlin, second edition, 1993.

    Google Scholar 

  16. Peter L. Hammer, Pierre Hansen, Panos M. Pardalos, and David J. Rader, Jr. Maximizing the product of two linear functions in 0–1 variables. Optimization, 51(3):511–537, 2002.

    Google Scholar 

  17. Alan J. Hoffman and Joseph B. Kruskal. Integral boundary points of convex polyhedra. In Linear inequalities and related systems, pages 223–246. Princeton University Press, Princeton, N. J., 1956. Annals of Mathematics Studies, no. 38.

    Google Scholar 

  18. Adam Janiak, Mikhail Y. Kovalyov, Wieslaw Kubiak, and Frank Werner. Positive half-products and scheduling with controllable processing times. European J. Oper. Res., 165(2):416–422, 2005.

    Google Scholar 

  19. Wieslaw Kubiak. Minimization of ordered, symmetric half-products. Discrete Appl. Math., 146(3):287–300, 2005.

    Google Scholar 

  20. Jon Lee. In situ column generation for a cutting-stock problem. Computers and Operations Research, 34(8):2345–2358, 2007.

    Article  MATH  Google Scholar 

  21. George L. Nemhauser and Laurence A. Wolsey. Integer and combinatorial optimization. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons Inc., New York, 1988. A Wiley-Interscience Publication.

    Google Scholar 

  22. ManfredW. Padberg. The Boolean quadric polytope: Some characteristics, facets and relatives. Math. Programming, Ser. B, 45(1):139–172, 1989.

    Google Scholar 

  23. Itamar Pitowsky. Correlation polytopes: their geometry and complexity. Math. Programming, 50(3, (Ser. A)):395–414, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oktay Günlük .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Günlük, O., Lee, J., Leung, J. (2012). A Polytope for a Product of Real Linear Functions in 0/1 Variables. In: Lee, J., Leyffer, S. (eds) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, vol 154. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1927-3_18

Download citation

Publish with us

Policies and ethics