Skip to main content

Nanoscale Oxide Thermoelectrics

  • Chapter
  • First Online:
Sol-Gel Processing for Conventional and Alternative Energy

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

  • 2427 Accesses

Abstract

The renaissance of thermoelectrics has been bolstered by the contemporary call for energy harvesting technologies. The potential use of thermoelectrics for direct conversion of waste heat into electricity is gaining momentum and oxides are envisaged as the most promising materials for high temperature applications. Nevertheless, prior to the commercial deploying of this technology, the efficiency of thermoelectric oxides needs to be perfected. Inevitably, the large thermal conductivity of oxides needs to be reduced. Several strategies are currently being explored, including sol-gel processing of oxide thermoelectrics. The higher density of interfaces in nanoceramics fabricated from sol-gel processed powders is regarded as an effective approach to enhance phonon scattering, and thereby reduce thermal conductivity. In this chapter, the fundamentals of thermoelectrics are presented alongside the most promising oxides for the fabrication of thermoelectric modules for energy harvesting. Potential benefits of using sol-gel processed powders are highlighted and the current state-of-art all-oxide thermoelectric modules are presented. Finally, we proposed the exploration of hexagonal perovskites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alphabeth Energy, News Release (2010) Alphabet energy awarded government grants totaling $320,000. www.alphabethenergy.com

  2. Amerigon Incorporated, News Release (2009) Amerigon subsidiary BSST to test thermoelectric waste heat recovery system on BMW group and Ford vehicles. www.amerigon.com

  3. SDK, News release (2010) SDK and PLANTEC test thermoelectric power generation modules in waste incinerator. http://www.showa-denko.com

  4. Lemon S (2008) Murata working on turning laptop heat into power, IDG News Service

    Google Scholar 

  5. Koumoto K, Wang Y, Zhang R, Kosuga A, Funahashi R (2011) Oxide thermoelectric materials: a nanostructuring approach. Ann Rev Mater Res 40:363–394. doi:10.1146/annurev-matsci-070909-104521

    Article  Google Scholar 

  6. Vineis CJ, Ali Shakouri A, Majumdar A, Kanatzidis MG (2010) Nanostructured thermoeletrics: big efficiency gains from small features. Adv Mater 22:3970–3980. doi:10.1002/adma.201000839

    Article  Google Scholar 

  7. Newnham R (2004) Properties of materials: anisotropy, symmetry and structure. Oxford University Press, New York

    Google Scholar 

  8. Kittel C (1995) Introduction to solid state physics, 7th edn. Wiley, New York

    Google Scholar 

  9. Ohtaki M, Tsubota T, Eguchi K, Arai H (1996) High-temperature thermoelectric proper-ties of (Zn1-xAlx)O. J Appl Phys 79:1816–1818

    Article  Google Scholar 

  10. Ohtaki M, Araki K, Yamamoto K (2009) High thermoelectric performance of dually doped ZnO ceramics. J Electr Mater 38:1234–1238. doi:10.1007/s11664-009-0816-1

    Article  Google Scholar 

  11. Hopper EM, Zhu Q, Song JH, Peng H, Freeman AJ, Mason TO (2011) Electronic and thermoelectric analysis of phases in the In2O3(ZnO)k system. J Appl Phys 109:013713–013714. doi:10.1063/1.3530733

    Article  Google Scholar 

  12. Kinemuchi Y, Mikami M, Kobayashi K, Watari K, Hotta Y (2010) Thermoelectric properties of nanograined ZnO. J Elec Mat 39:2059–2063. doi:10.1007/s11664-009-1009-7

    Article  Google Scholar 

  13. Lee S, Yang G, Wilke RHT, Trolier-McKinstry S, Randall CA (2009) Thermopower in highly reduced n-type ferroelectric and related perovskite oxides and the role of heterogeneous non-stoichiometry. Phys Rev B 79:134110

    Article  Google Scholar 

  14. Lee KH, Kim SW, Ohta H, Koumoto K (2006) Ruddlesden-Popper phases as thermoelectric oxides: Nb-doped SrO(SrTiO3)n (n = 1, 2). J Appl Phys 100:063717

    Article  Google Scholar 

  15. Terasaki I, Sasago Y, Uchinokura K (1997) Large thermoelectric power in NaCo2O4 single crystals. Phys Rev B 56:12685–12687. doi:0163-1829/97/56~20/12685

    Article  Google Scholar 

  16. Cai KF, Müller E, Drašar C, Mrotzek A (2003) Preparation and thermoelectric properties of Al-doped ZnO ceramics. Mat Sci Eng 104:45–48. doi:10.1016/S0921-5107(03)00280-0

    Article  Google Scholar 

  17. Shang PP, Zhang BP, Li JF, Ma N (2010) Effect of sintering temperature on thermoelectric properties of La-doped SrTiO3 ceramics prepared by sol-gel process and spark plasma sintering. Solid State Sci 12:1341–1346. doi:10.1016/j.solidstatesciences.2010.05.005

    Article  Google Scholar 

  18. Liu CJ, Liao JY, Wu TW, Jen BY (2004) Preparation and transport properties of aqueous sol-gel synthesized NaCo2O4-δ. J Mater Sci 39:4569–4573

    Article  Google Scholar 

  19. Zhang YF, Lu QM, Zhang QY (2006) Synthesis and characterization of Ca3Co4O9 nanoparticles by citrate sol-gel method. Mater Lett 60:2443–2446. doi:10.1016/j.matlet.2006.01.013

    Article  Google Scholar 

  20. Nan J, Wu J, Deng Y, Nan CW (2003) Synthesis and thermoelectric properties of (NaxCa1-x)3Co4O9 ceramics. J Eur Ceram Soc 23:859–863

    Article  Google Scholar 

  21. Xu J, Wei C, Jia K (2010) Thermoelectric performance of textured Ca3-xYbxCo4O9-δ ceramics. J Alloys Compd 500:227–230. doi:10.1016/j.jallcom.2010.04.014

    Article  Google Scholar 

  22. Pei J, Chen G, Zhou N, Lu DQ, Xiao F (2011) High temperature transport and thermoelectric properties of Ca3-xErxCo4O9+δ. Phys B 406:571–574. doi:10.1016/j.physb.2010.11.043

    Article  Google Scholar 

  23. Matsubara I, Funahashi T, Takeuchi T, Sodeoka S, Shimizu T and Ueno K Fabrication of an all-oxide thermoelectric power generator. Appl Phys Lett 78:3627–3629. doi: 0003-6951/2001/78(23)/3627/3

    Google Scholar 

  24. Reddy ES, Noudem JG, Hebert S, Goupil C (2005) Fabrication and properties of four-leg ox-ide thermoelectric modules. J Phys D Appl Phys 38:3751–3755. doi:10.1088/0022-3727/38/19/026

    Article  Google Scholar 

  25. Choi SM, Lee KH, Lim CH, Seo WS (2011) Oxide-based thermoelectric power generation module using p-type Ca3Co4O9 and n-type (ZnO)7In2O3 legs. Energy Convers Manag 52:335–339. doi:10.1016/j.enconman.2010.07.005

    Article  Google Scholar 

  26. Feteira A (2009) Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective. J Am Ceram Soc 92:967–983. doi:10.1111/j.1551-2916.2009.02990.x

    Article  Google Scholar 

Download references

Acknowledgments

AF would like to acknowledge the Higher Education Funding Council for England (HEFCE) the award of a Senior Research Fellowship at Universities of Birmingham and Warwick.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Feteira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 © Springer Science+Business Media New York

About this chapter

Cite this chapter

Feteira, A., Reichmann, K. (2012). Nanoscale Oxide Thermoelectrics. In: Aparicio, M., Jitianu, A., Klein, L. (eds) Sol-Gel Processing for Conventional and Alternative Energy. Advances in Sol-Gel Derived Materials and Technologies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1957-0_15

Download citation

Publish with us

Policies and ethics