Skip to main content

Chemistry

  • Chapter
  • First Online:
Molecular Theory of the Living Cell

Abstract

The phenomenon of spontaneous generation of spatial patterns of chemical concentration gradients was first observed in a purely chemical system in 1958 (see Fig. 3.1) (Babloyantz 1986; Kondepudi and Prigogine 1998; Kondepudi 2008) and inside the living cell in 1985 (see Fig. 3.2) (Sawyer et al. 1985). These observations demonstrate that, under appropriate experimental conditions, it is possible for chemical reactions to be organized in space and time to produce oscillating chemical concentrations, metastable states, multiple steady states, fixed points (also called attractors), etc., all driven by the free energy released from exergonic (i.e., ΔG < 0) chemical reactions themselves. Such phenomena are referred to as self-organization, and physicochemical systems exhibiting self-organization are called dissipative structures (Prigogine 1977; Babloyantz 1986; Kondepudi and Prigogine 1998; Kondepudi 2008). It has been found convenient to refer to dissipative structures also as X-dissipatons, X referring to the function associated with or mediated by the dissipative structure. For example, there is some evidence (Lesne 2008; Stockholm et al. 2007) that cells execute a set of gene expression pathways (GEPs) more or less randomly in the absence of any extracellular signals until environmental signals arrive and bind to their cognate receptors, stabilizing a subset of these GEPs. Such mechanisms would account for the phenomenon of the phenotypic heterogeneity among cells with identical genomes (Lesne 2008; Stockholm et al. 2007). Randomly expressed GEPs are good examples of dissipatons, since they are dynamic, transient, and driven by dissipation of metabolic energy. Ligand-selected GEPs are also dissipatons. All living systems, from cells to multicellular organisms, to societies of organisms and to the biosphere, can be viewed as evolutionarily selected dissipatons. As indicated above, attractors, fixed points, metastable states, steady states, oscillators, etc., that are widely discussed in the nonlinear dynamical systems theory (Scott 2005) can be identified as the mathematical representations of dissipatons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberts, B.: The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92, 291–294 (1998)

    Article  Google Scholar 

  • Babloyantz, A.: Molecules, Dynamics & Life: An Introduction to Self- Organization of Matter. Wiley-Interscience, New York (1986)

    Google Scholar 

  • Bernstein, N.: The Coordination and Regulation of Movements. Oxofrd University Press, Oxford (1967)

    Google Scholar 

  • Chicurel, M.E., Chen, C.S., Ingber, D.E.: Cellular control lies in the balance of forces. Curr. Opin. Cell Biol. 10, 232–239 (1998)

    Article  Google Scholar 

  • Culler, J.: Ferdinand de Saussure. Cornell University Press, Ithaca (1991). Revised Edition

    Google Scholar 

  • Gould, E.S.: Mechanism and Structure in Organic Chemistry. Holt, Rinehart and Winston, New York (1959)

    Google Scholar 

  • Gribbins, J.: Deep Simplicity: Bringing Order to Chaos and Complexity. Random House, New York (2004)

    Google Scholar 

  • Hine, J.: Physical Organic Chemistry, 2nd edn, pp. 69–70. McGraw-Hill Book Company, New York (1962)

    Google Scholar 

  • Ingber, D.: The architecture of life. Sci. Am. 278(1), 48–57 (1998)

    Article  ADS  Google Scholar 

  • Jencks, W.: Binding energy, specificity, and enzymic catalysis: the circe effect. Adv. Enzymol. 43, 219–410 (1975)

    Google Scholar 

  • Ji, S.: Energy and negentropy in enzymic catalysis. Ann. N. Y. Acad. Sci. 227, 419–437 (1974a)

    Article  ADS  Google Scholar 

  • Ji, S.: A general theory of ATP synthesis and utilization. Ann. N. Y. Acad. Sci. 227, 211–226 (1974b)

    Article  ADS  Google Scholar 

  • Ji, S.: The principles of ligand-protein interactions and their application to the mechanism of oxidative phosphorylation. In: Yagi, K. (ed.) Structure and Function of Biomembranes, pp. 25–37. Japan Scientific Societies Press, Tokyo (1979)

    Google Scholar 

  • Ji, S.: The bhopalator – a molecular model of the living cell based on the concepts of conformons and dissipative structures. J. Theor. Biol. 116, 399–426 (1985a)

    Article  Google Scholar 

  • Ji, S.: The Bhopalator: a molecular model of the living cell. Asian J. Exp. Sci 1, 1–33 (1985b)

    Google Scholar 

  • Ji, S.: Watson-crick and prigoginian forms of genetic information. J. Theor. Biol. 130, 239–245 (1988)

    Article  Google Scholar 

  • Ji, S.: Biocybernetics: a machine theory of biology. In: Ji, S. (ed.) Molecular Theories of Cell Life and Death, pp. 1–237. Rutgers University Press, New Brunswick (1991)

    Google Scholar 

  • Ji, S.: Isomorphism between cell and human languages: molecular biological, bioinformatics and linguistic implications. Biosystems 44, 17–39 (1997a)

    Article  Google Scholar 

  • Ji, S.: The Bhopalator: an information/energy dual model of the living cell (II). Fundam. Inform. 49(1–3), 147–165 (2002b)

    MATH  Google Scholar 

  • Ji, S.: Molecular information theory: solving the mysteries of DNA. In: Ciobanu, G., Rozenberg, G. (eds.) Modeling in Molecular Biology, Natural Computing Series, pp. 141–150. Springer, Berlin (2004a)

    Chapter  Google Scholar 

  • Kondepudi, D.: Introduction to Thermodynamics. Wiley, Chichester (2008)

    Google Scholar 

  • Kondepudi, D., Prigogine, I.: Modern Thermodynamics: From Heat Engine to Dissipative Structures. Wiley, Chichester (1998)

    Google Scholar 

  • Koshland Jr., D.E.: Application of a theory of enzyme specificity to protein synthesis. Proc. Natl. Acad. Sci. U. S. A. 44, 98–104 (1958)

    Article  ADS  Google Scholar 

  • Laidler, K.J.: Chemical Kinetics. McGraw-Hill Book Company, New York (1965). Chapter 3

    Google Scholar 

  • Leigh, E.: Belousov-Zhabotinsky Reaction. http://oxygen.fvcc.edu/~dhicketh/Math222/spring05projects/ErikLeigh/BZ.htm (2007)

  • Lesne, A.: Robustness: confronting lessons from physics and biology. Biol. Rev. 83, 509–532 (2008)

    Google Scholar 

  • Lu, H.P., Xun, L., Xie, X.S.: Single-molecule enzymatic dynamics. Science 282, 1877–1882 (1998)

    Article  ADS  Google Scholar 

  • Minton, A.P.: The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J. Biol. Chem. 276, 10577–10580 (2001)

    Article  Google Scholar 

  • Moin, P., Kim, J.: Tackling turbulence with supercomputers. Sci. Am. 276(1), 62–68 (1997)

    Article  ADS  Google Scholar 

  • Moore, W.J.: Physical Chemistry, 3rd edn. Prentice-Hall, Englewood Cliffs (1963)

    Google Scholar 

  • Murdoch, D.: Niels Bohr’s Philosophy of Physics. Cambridge University Press, Cambridge (1987)

    Book  Google Scholar 

  • Murray, J.D.: How the leopard gets its spots. Sci. Am. 258(3), 80–87 (1988)

    Article  Google Scholar 

  • Nicolis, G., Prigogine, I.: Self-Organization in Nonequilibrium Systems. Wiley, New York (1977)

    MATH  Google Scholar 

  • Norris, V., et al.: Hypothesis: hyperstructures regulate bacterial structure and the cell cycle. Biochimie 81, 915–920 (1999)

    Article  Google Scholar 

  • Norris, V., den Blaauwen, T., Cabin-Flaman, A., Doi, R.H., Harshey, R., Janniere, L., Jimenez-Sanchez, A., Jin, D.J., Levin, P.A., Mileykovskaya, E., Minsky, A., Saier Jr., M., Skarstad, K.: Functional taxonomy of bacterial hyperstructures. Microbiol. Mol. Biol. Rev. 71(1), 230–253 (2007a)

    Article  Google Scholar 

  • Norris, V., den Blaauwen, T., Doi, R.H., Harshey, R.M., Janniere, L., Jimenez-Sanchez, A., Jin, D.J., Levin, P.A., Mileyknovskaya, E., Minsky, A., Misevic, G., Ripoll, C., Saier Jr., M., Skarstad, K., Thellier, M.: Toward a hyperstructure taxanomy. Annu. Rev. Microbiol. 61, 309–329 (2007b)

    Article  Google Scholar 

  • Pattee, H.: Evolving self-reference: matter, symbols, and semantic closure. Commun. and Cogn. – Artif. Intell 12(1–2), 9–27 (1995)

    Google Scholar 

  • Plotnitsky, A.: Reading Bohr: Physics and Philosophy. Springer, Kindle Edition (2006)

    MATH  Google Scholar 

  • Polanyi, M.: Life’s irreducible structure: live mechanisms and information in DNA are boundary conditions with a sequence of boundaries above them. Science 160, 1308–1312 (1968)

    Article  ADS  Google Scholar 

  • Prigogine, I., Lefever, R.: Symmetry-breaking instabilities in dissipative systems. II. J. Chem. Phys. 48, 1695–1700 (1968)

    Article  ADS  Google Scholar 

  • Prigogine, I.: Dissipative structures and biological order. Adv. Biol. Med. Phys. 16, 99–113 (1977)

    MathSciNet  Google Scholar 

  • Prigogine, I.: From Being To Becoming: Time and complexity in Physical Sciences, pp. 19–26. W. H. Freeman and Company, San Francisco (1980)

    Google Scholar 

  • Reynolds, W.L., Lumry, R.: Mechanisms of Electron Transfer. The Ronald Press Company, New York (1966). Chapter 1

    Google Scholar 

  • Sawyer, D.W., Sullivan, J.A., Mandell, G.L.: Intracellular free calcium localization in neutrophils during phagocytosis. Science 230, 663–666 (1985)

    Article  ADS  Google Scholar 

  • Scott, A. (ed.): Encyclopedia of Nonlinear Science. Routledge, New York (2005)

    MATH  Google Scholar 

  • Smith, H.A., Welch, G.R.: Cytosociology: a field-theoretic view of cell metabolism. In: Ji, S. (ed.) Molecular Theories of Cell Life and Death, pp. 282–323. Rutgers University Press, New Brunswick (1991)

    Google Scholar 

  • Stockholm, D., Benchaouir, R., Picot, J., Rameau, P., Neildez, T.M.A., Landini, G., Laplace-Builhe, C., Paldi, A.: The origin of phenotypic heterogeneity in a clonal cell population in vitro. PLoS One 2(4), 3394 (2007)

    Article  Google Scholar 

  • Tolman, R.C.: The Principles of Statistical Mechanics, pp. 42–46. Dover Publications, New York (1979)

    Google Scholar 

  • Turing, A.: The chemical basis of morphogenesis. Phil Trans Roy Soc London, Series B, Biol Sci 237(641), 37–72 (1952)

    Article  ADS  Google Scholar 

  • von Neumann, J.: In: Burks, A.W. (ed.) Theory of Self-reproducing Automata, p. 77. University of Illinois Press, Urbana (1966)

    Google Scholar 

  • Wall, F.T.: Chemical Thermodynamics: A Course of Study. W. H. Freeman and Company, San Francisco (1958)

    Google Scholar 

  • Welch, G.R., Keleti, T.: On the “Cytosociology” of enzyme in vivo: a novel thermodynamic correlates of biological evolution. J. Theor. Biol. 93, 701–735 (1981)

    Article  MathSciNet  Google Scholar 

  • Welch, G.R., Kell, D.B.: Not just catalysts—molecular machines in bioenergetics. In: Welch, G.R. (ed.) The Fluctuating Enzymes, pp. 451–492. Wiley, New York (1986)

    Google Scholar 

  • Welch, G.R., Smith, H.A.: On the field structure of metabolic space-time. In: Mishra, R.K. (ed.) Molecular and Biological Physics of Living Systems, pp. 53–85. Kluwer Academic Publishers, Dordrecht (1990)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungchul Ji PhD .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ji, S. (2012). Chemistry. In: Molecular Theory of the Living Cell. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2152-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2152-8_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-2151-1

  • Online ISBN: 978-1-4614-2152-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics