Skip to main content

Versatile Fixed-Ratio Drug Combination Delivery Using Hydrophobic Prodrug Nanoparticles

  • Chapter
  • First Online:
Multifunctional Nanoparticles for Drug Delivery Applications

Abstract

The current paradigm of cancer chemotherapy involves the co-administration of multiple anticancer agents at their maximum tolerated doses to achieve greater antitumor activity than could be realized with single agents alone. Emerging evidence, however, points to the important role drug ratios play in determining whether in vivo drug interactions are synergistic or antagonistic in nature. The CombiPlex® technology platform was developed to deliver multiple chemotherapy drugs at a defined synergistic drug ratio via a particulate carrier. The promising clinical results of CPX-351 in the treatment of newly diagnosed acute myelogenous leukemia (AML) serve as an example of the magnitude of gains that can be made when combination chemotherapy drugs are delivered to the target site at their synergistic ratio. While the CombiPlex technology had been used to develop three clinical and preclinical liposomal products, there have been several reports of drug combinations formulated into polymer-based nanoparticles, typically involving hydrophobic drugs which are not generally suitable for liposome encapsulation.

In this chapter, the rationale for delivering drug combinations at defined ratios is discussed using CPX-351 as an example formulation, one that delivers drugs to the target site and maintains the formulated drug ratio in vivo. Dual drug nanoparticle formulations are then evaluated on their ability to maintain the molar ratio of the two loaded drugs. Finally, we discuss the extension of the CombiPlex approach to drug combinations of disparate physicochemical properties through preparation and nanoparticle encapsulation of drug conjugates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frei E III, Freireich EJ (1964) Leukemia. Sci Am 210:88–96

    Article  Google Scholar 

  2. Freireich EJ, Frei E III (1964) Recent advances in acute leukemia. Prog Hematol 27:187–202

    Google Scholar 

  3. Harasym TO, Liboiron BD, Mayer LD (2010) Drug ratio-dependent antagonism: a new category of multidrug resistance and strategies for its circumvention. In: Zhou J (ed) Multi-drug resistance in cancer. Humana, New York, pp 291–323

    Chapter  Google Scholar 

  4. Chou TC (1991) The median-effect principle and the combination index for quantitation of synergism and antagonism. In: Chou TC, Rideout DC (eds) Synergy and antagonism in chemotherapy. Academic, New York, pp 61–102

    Google Scholar 

  5. Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58:621–681

    Article  Google Scholar 

  6. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  Google Scholar 

  7. Mayer LD, Harasym TO, Tardi PG, Harasym NL, Shew CR, Johnstone SA, Ramsay EC, Bally MB, Janoff AS (2006) Ratiometric dosing of anticancer drug combinations: controlling drug ratios after systemic administration regulates therapeutic activity in tumor-bearing mice. Mol Cancer Ther 5:1854–1863

    Article  Google Scholar 

  8. Mayer LD, Janoff AS (2007) Optimizing combination chemotherapy by controlling drug ratios. Mol Interv 7:216–223

    Article  Google Scholar 

  9. Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303:1818–1822

    Article  Google Scholar 

  10. Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207

    Article  Google Scholar 

  11. Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55:3752–3756

    Google Scholar 

  12. Kimby E, Nygren P, Glimelius B (2001) A systematic overview of chemotherapy effects in acute myeloid leukemia. Acta Oncol 40:231–252

    Article  Google Scholar 

  13. McCauley DL (1992) Treatment of adult acute leukemia. Clin Pharm 11:767–796

    Google Scholar 

  14. Bishop JF, Matthews JP, Young GA, Szer J, Gillett A, Joshua D, Bradstock K, Enno A, Wolf MM, Fox R, Cobcroft R, Herrmann R, Van Der Weyden M, Lowenthal RM, Page F, Garson OM, Juneja S (1996) A randomized study of high-dose cytarabine in induction in acute myeloid leukemia. Blood 87:1710–1717

    Google Scholar 

  15. Weick JK, Kopecky KJ, Appelbaum FR, Head DR, Kingsbury LL, Balcerzak SP, Bickers JN, Hynes HE, Welborn JL, Simon SR, Grever M (1996) A randomized investigation of high-dose versus standard-dose cytosine arabinoside with daunorubicin in patients with previously untreated acute myeloid leukemia: a southwest oncology group study. Blood 88:2841–2851

    Google Scholar 

  16. Curtis JE, Messner HA, Hasselback R, Elhakim TM, McCulloch EA (1994) Contributions of host and disease-related attributes to the outcome of patients with acute myelogenous leukemia. J Clin Oncol 2(Suppl 4):253–259

    Google Scholar 

  17. Harasym TO, Tardi PG, Johnstone SA, Mayer LD, Bally MB, Janoff AS (2007) Fixed drug ratio liposome formulations of combination cancer therapeutics. In: Gregoriadis G (ed) Liposome technology volume III: interactions of liposomes with biological milieu, 3rd edn. Informa Healthcare USA Inc, New York, pp 25–46

    Google Scholar 

  18. Pavillard V, Kherfellah D, Richard S, Robert J, Montaudon D (2001) Effects of the combination of camptothecin and doxorubicin or etoposide on rat glioma cells and camptothecin-resistant variants. Br J Cancer 85:1077–1083

    Article  Google Scholar 

  19. Swaffar DS, Ang CY, Desai PB, Rosenthal GA, Thomas DA, Crooks PA, John WJ (1995) Combination therapy with 5-fluorouracil and l-canavanine: in vitro and in vivo studies. Anticancer Drugs 6:586–593

    Article  Google Scholar 

  20. Tardi PG, Johnstone SA, Harasym NL, Xie S, Harasym TO, Zisman N, Harvie P, Bermudes D, Mayer LD (2009) In vivo maintenance of synergistic cytarabine: daunorubicin ratios greatly enhances therapeutic efficacy. Leuk Res 33:129–139

    Article  Google Scholar 

  21. Tardi P, Gallagher R, Johnstone S, Harasym N, Webb M, Bally M, Mayer L (2007) Coencapsulation of irinotecan and floxuridine into low cholesterol-containing liposomes that coordinate drug release in vivo. Biochim Biophys Acta 1768:678–687

    Article  Google Scholar 

  22. Lancet JE, Cortes JE, Hogge DE, Tallman M, Kovacsovics T, Damon LE, Ritchie E, Komrokji RS, Louie AC, Feldman EJ. (2010) Phase 2B randomized study of CPX-351 vs. cytarabine (CYT)  +  daunorubicin (DNR) (7  +  3 regimen) in newly diagnosed AML patients aged 60–75. In 52nd American Society of Hematology (ASH) Annual Meeting, Orlando, FL

    Google Scholar 

  23. Dicko A, Kwak S, Frazier AA, Mayer LD, Liboiron BD (2010) Biophysical characterization of a liposomal formulation of cytarabine and daunorubicin. Int J Pharm 391:248–259

    Article  Google Scholar 

  24. Dicko A, Frazier AA, Liboiron BD, Hinderliter A, Ellena JF, Xie X, Cho C, Weber T, Tardi PG, Cabral-Lilly D, Cafiso DS, Mayer LD (2008) Intra and inter-molecular interactions dictate the aggregation state of irinotecan co-encapsulated with floxuridine inside liposomes. Pharm Res 25:1702–1713

    Article  Google Scholar 

  25. Dicko A, Mayer LD, Tardi PG (2010) Use of nanoscale delivery systems to maintain synergistic drug ratios in vivo. Expert Opin Drug Deliv 7:1329–1341

    Article  Google Scholar 

  26. Drummond DC, Noble CO, Hayes ME, Park JW, Kirpotin DB (2008) Pharmacokinetics and in vivo drug release rates in liposomal nanocarrier development. J Pharm Sci 97:4696–4740

    Article  Google Scholar 

  27. Gua W, Johnson JL, Khan S, Ahmad A, Ahmad I (2005) Paclitaxel quantification in mouse plasma and tissues containing liposome-entrapped paclitaxel by liquid chromatography-tandem mass spectrometry: application to a pharmacokinetic study. Anal Biochem 336:213–220

    Article  Google Scholar 

  28. Lukyanov AN, Torchilin VP (2004) Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev 56:1273–1289

    Article  Google Scholar 

  29. Torchilin VP (2007) Targeted pharmaceutical nanocarriers for cancer therapy. AAPS J 9:E128–E147

    Article  Google Scholar 

  30. Vicent MJ, Dieudonne L, Carbajo RJ, Pineda-Lucena A (2008) Polymer conjugates as therapeutics: future trends, challenges and opportunities. Expert Opin Drug Deliv 5:593–614

    Article  Google Scholar 

  31. Na HS, Lim YK, Jeong YI, Lee HS, Lim YJ, Kang MS, Cho CS, Lee HC (2010) Combination antitumor effects of micelle-loaded anticancer drugs in a CT-26 murine colorectal carcinoma model. Int J Pharm 383:192–200

    Article  Google Scholar 

  32. Devalapally H, Duan Z, Seiden MV, Amiji MM (2007) Paclitaxel and ceramide co-administration in biodegradable polymeric nanoparticulate delivery system to overcome drug resistance in ovarian cancer. Int J Cancer 121:1830–1838

    Article  Google Scholar 

  33. Ganta S, Amiji M (2009) Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm 6:928–939

    Article  Google Scholar 

  34. Patil Y, Sadhukha T, Ma L, Panyam J (2009) Nanoparticle-mediated simultaneous and targeted delivery of paclitaxel and tariquidar overcomes tumor drug resistance. J Control Release 136:21–29

    Article  Google Scholar 

  35. Patil Y, Swaminathan SK, Sadhukha T, Ma L, Panyam J (2010) The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance. Biomaterials 31:358–365

    Article  Google Scholar 

  36. Wang Z, Chui W-K, Ho PC (2011) Nanoparticulate delivery system targeted to tumor neovasculature for combined anticancer and antiangiogenesis therapy. Pharm Res 28:585–596

    Article  Google Scholar 

  37. Zhang H, Zhao C, Cao H, Wang G, Song L, Niu G, Yang H, Ma J, Zhu S (2010) Hyperbranched poly(amine-ester) based hydrogels for controlled multi-drug release in combination chemotherapy. Biomaterials 31:5445–5454

    Article  Google Scholar 

  38. Khdair A, Chen D, Patil Y, Ma L, Dou QP, Shekhar MPV, Panyam J (2010) Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance. J Control Release 141:137–144

    Article  Google Scholar 

  39. Tang Y, Lei T, Manchanda R, Nagesetti A, Fernandez-Fernandez A, Srinivasan S, McGoron AJ (2010) Simultaneous delivery of chemotherapeutic and thermal-optical agents to cancer cells by a polymeric (PLGA) nanocarrier: an in vitro study. Pharm Res 27:2242–2253

    Article  Google Scholar 

  40. Song X, Zhao Y, Hou S, Xu F, Zhao R, He J, Cai Z, Li Y, Chen Q (2008) Dual agents loaded PLGA nanoparticles: systematic study of particle size and drug entrapment efficiency. Eur J Pharm Biopharm 69:445–453

    Article  Google Scholar 

  41. Song XR, Cai Z, Zheng Y, He G, Chui FY, Gong DQ, Hou SX, Xiong SJ, Lei XJ, Wei YQ (2009) Reversion of multidrug resistance by co-encapsulation of vincristine and verapamil in PLGA nanoparticles. Eur J Pharm Sci 37:300–305

    Article  Google Scholar 

  42. Gupta AK, Berry C, Gupta M, Curtis A (2003) Receptor-mediated targeting of magnetic nanoparticles using insulin as surface ligand to prevent endocytosis. IEEE Trans Nanobiosci 2:256–261

    Article  Google Scholar 

  43. Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL, Labhasetwar V (2005) Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm 2:194–205

    Article  Google Scholar 

  44. Dilnawaz F, Singh A, Mohanty C, Sahoo SK (2010) Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials 31:3694–3706

    Article  Google Scholar 

  45. Shin H-C, Alani AWG, Rao DA, Rockich NC, Kwon GS (2009) Multi-drug loaded polymeric micelles for simultaneous delivery of poorly soluble anticancer drugs. J Control Release 140:294–300

    Article  Google Scholar 

  46. Liboiron BD, Tardi PG, Harasym TO, Mayer LD (2011) Nanoscale delivery systems for ­combination chemotherapy. In: Kratz F (ed) Cancer drug delivery. Wiley VCH, Weinheim, Germany

    Google Scholar 

  47. Vicent MJ, Greco F, Nicholson RI, Paul A, Griffiths PC, Duncan R (2005) Polymer therapeutics designed for a combination therapy of hormore-dependent cancer. Angew Chem Int Ed 44:4061–4066

    Article  Google Scholar 

  48. Vasey PA, Kaye SB, Morrison R, Twelves C, Wilson P, Duncan R, Thomson AH, Murray LS, Hilditch TE, Murray T, Burtles S, Fraier D, Frigerio E, Cassidy J (1999) Phase 1 clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents - drug-polymer conjugates. Clin Cancer Res 5:83–94

    Google Scholar 

  49. Greco F, Vicent MJ, Gee S, Jones AT, Gee J, Nicholson RI, Duncan R (2007) Investigating the mechanism of enhanced cytotoxicity of HPMA copolymer-Dox-AGM in breast cancer cells. J Control Release 117:28–39

    Article  Google Scholar 

  50. Bae Y, Diezi TA, Zhao A, Kwon GS (2007) Mixed polymeric micelles for combination cancer chemotherapy through the concurrent delivery of multiple chemotherapeutic agents. J Control Release 122:324–330

    Article  Google Scholar 

  51. Fujiwara Y, Kawada K, Takano D, Tanimura S, Ozaki K, Kohno M (2006) Inhibition of the PI3 kinase/Akt pathway enhances doxorubicin-induced apoptotic cell death in tumor cells in a p53-dependent manner. Biochem Biophys Res Commun 340:560–566

    Article  Google Scholar 

  52. Bae Y, Alani AW, Rockich NC, Lai TS, Kwon GS (2010) Mixed pH-sensitive polymeric micelles for combination drug delivery. Pharm Res 27:2421–2432

    Article  Google Scholar 

  53. Lammers T, Subr V, Ulbrich K, Peschke P, Huber PE, Hennink WE, Storm G (2009) Simultaneous delivery of doxorubicin and gemcitabine to tumors in vivo using prototypic polymeric drug carriers. Biomaterials 30:3466–3475

    Article  Google Scholar 

  54. Yin C, Li X, Wu Q, Wang J-L, Lin X-F (2010) Multidrug nanoparticles based on novel random copolymer containing cytarabine and fluorodeoxyuridine. J Colloid Interface Sci 349:153–158

    Article  Google Scholar 

  55. Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T, Sasisekharan R (2005) Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436:568–572

    Article  Google Scholar 

  56. Wang Z, Ho PC (2010) A nanocapsular combinatorial sequential drug delivery system for antiangiogenesis and anticancer activities. Biomaterials 31:7115–7123

    Article  Google Scholar 

  57. Kolishetti N, Dhar S, Valencia PM, Lin LQ, Karnik R, Lippard SJ, Langer R, Farokhzad OM (2010) Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc Natl Acad Sci USA 107:17939–17944

    Article  Google Scholar 

  58. Karnic R, Gu F, Basto P, Cannizzaro C, Dean L, Kyei-Manu W, Langer R, Farokhzad OC (2008) Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 8:2906–2912

    Article  Google Scholar 

  59. Avgoustakis K, Beletsi A, Panagi Z, Klepetsanis P, Karydas AG, Ithakissios DS (2002) PLGA-mPEG nanoparticles of cisplatin: In vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J Control Release 79:123–135

    Article  Google Scholar 

  60. Aryal S, Hu C-MJ, Zhang L (2010) Combinatorial drug conjugation enables nanoparticle dual-drug delivery. Small 6:1442–1448

    Article  Google Scholar 

  61. Harasym T, Tardi P, Harasym N, Harvie P, Johnstone S, Mayer L (2007) Increased preclinical efficacy of irinotecan and floxuridine coencapsulated inside liposomes is associated with tumor delivery of synergistic drug ratios. Oncol Res 16:361–374

    Google Scholar 

  62. Tardi PG, Dos Santos N, Harasym TO, Johnstone SA, Zisman N, Tsang AW, Bermudes DG, Mayer LD (2009) Drug ratio-dependent antitumor activity of irinotecan and cisplatin combinations in vitro and in vivo. Mol Cancer Ther 8:2266–2275

    Article  Google Scholar 

  63. Hu X, Jing X (2009) Biodegradable amphiphilic polymer-drug conjugate micelles. Expert Opin Drug Deliv 6:1079–1090

    Article  Google Scholar 

  64. Kratz F, Abu Ajaj K, Warnecke A (2007) Anticancer carrier-linked prodrugs in clinical trials. Expert Opin Investig Drugs 16:1037–1058

    Article  Google Scholar 

  65. Fleming AB, Haverstick K, Saltzman WM (2004) In vitro cytotoxicity and in vivo distribution after direct delivery of PEG-camptothecin conjugates to the rat brain. Bioconjug Chem 15:1364–1375

    Article  Google Scholar 

  66. Gopin A, Ebner S, Attali B, Shabat D (2006) Enzymatic activation of second-generation ­dendritic prodrugs: conjugation of self-immolative dendrimers with poly(ethylene glycol) via click chemistry. Bioconjug Chem 17:1432–1440

    Article  Google Scholar 

  67. Yu D, Peng P, Dharap SS, Wang Y, Mehlig M, Chandna P, Zhao H, Filpula D, Yang K, Borowski V, Borchard G, Zhang Z, Minko T (2005) Antitumor activity of poly(ethylene glycol)-camptothecin conjugate: the inhibition of tumor growth in vivo. J Control Release 110:90–102

    Article  Google Scholar 

  68. Cavallaro G, Licciardi M, Caliceti P, Salmaso S, Giammona G (2004) Synthesis, physico-chemical and biological characterization of a paclitaxel macromolecular prodrug. Eur J Pharm Biopharm 58:151–159

    Article  Google Scholar 

  69. Singer JW, Bhatt R, Tulinsky J, Buhler KR, Heasley E, Klein P, de Vries P (2001) Water-soluble poly-(l-glutamic acid)-gly-camptothecin conjugates enhance camptothecin stability and efficacy in vivo. J Control Release 74:243–247

    Article  Google Scholar 

  70. Veronese ML, Flaherty K, Kramer A, Konkle BA, Morgan M, Stevenson JP, O’Dwyer PJ (2005) Phase I study of the novel taxane CT-2103 in patients with advanced solid tumors. Cancer Chemother Pharmacol 55:497–501

    Article  Google Scholar 

  71. Tong R, Yala L, Fan TM, Cheng J (2010) The formulation of aptamer-coated paclitaxel-­polylactide nanoconjugates and their targeting to cancer cells. Biomaterials 31:3043–3053

    Article  Google Scholar 

  72. Johnson BK, Prud’homme RK (2003) Flash nanoprecipitation of organic actives and block copolymers using a confined impinging jets mixer. Aust J Chem 56:1021–1024

    Article  Google Scholar 

  73. Johnson BK, Prud’homme RK (2003) Mechanism for rapid self-assembly of block copolymer nanoparticles. Phys Rev Lett 91:118302

    Article  Google Scholar 

  74. Ansell SM, Johnstone SA, Tardi PG, Lo L, Beck J, Xie S, Bermudes D, Prud’homme RK, Mayer LD (2008) Development of highly efficacious hydrophobic paclitaxel prodrugs delivered in nanoparticles for fixed-ratio drug combination applications. AACR Meeting Abstracts, Apr: 5734

    Google Scholar 

  75. Ansell SM, Johnstone SA, Tardi PG, Lo L, Xie S, Shu Y, Harasym TO, Harasym NL, Williams L, Bermudes D, Liboiron BD, Saad W, Prud’homme RK, Mayer LD (2008) Modulating the therapeutic activity of nanoparticle delivered paclitaxel by manipulating the hydrophobicity of prodrug conjugates. J Med Chem 51:3288–3296

    Article  Google Scholar 

  76. Albain KS, Nag SM, Calderillo-Ruiz G, Jordan JP, Llombart AC, Pluzanska A, Rolski J, Melemed AS, Reyes-Vidal JM, Sekhon JS, Simms L, O’Shaughnessy J (2008) Gemcitabine plus paclitaxel versus paclitaxel monotherapy in patients with metastatic breast cancer and prior anthracycline treatment. J Clin Oncol 26:3950–3957

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence D. Mayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Liboiron, B.D., Tardi, P.G., Mayer, L.D. (2012). Versatile Fixed-Ratio Drug Combination Delivery Using Hydrophobic Prodrug Nanoparticles. In: Svenson, S., Prud'homme, R. (eds) Multifunctional Nanoparticles for Drug Delivery Applications. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2305-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2305-8_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-2304-1

  • Online ISBN: 978-1-4614-2305-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics