Skip to main content

High Efficiency OLEDs for Lighting Applications

Completing the Solid State Lighting Portfolio

  • Chapter
  • First Online:
Applications of Organic and Printed Electronics

Part of the book series: Integrated Circuits and Systems ((ICIR))

Abstract

Organic Light-Emitting Diode (OLED) technology is developing as a promising option for large area lighting applications, with basic properties such as efficiency, color stability and lifetime which approach or even exceed those of conventional lighting and inorganic LED technology and with various interesting additional complementing features. In this Chapter, an introduction is given on the development of OLED technology for lighting applications. We discuss the working principles of efficient white multilayer OLEDs, the factors which determine the efficiency, several key elements of the fabrication technology including encapsulation methods, and the state-of-the-art as realized in various institutes and companies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peter Loebl, Volker van Elsbergen, Herbert Boerner, Claudia Goldmann, Stefan Grabowski, Dietrich Bertram (2009) White OLEDs for lighting applications, Proceedings of SPIE, Optics and Photonics 2009: Photonic devices and applications, San Diego August 2–6, 7415:74151A–1

    Google Scholar 

  2. D’Andrade BW, Forrest SR (2004) White organic light-emitting devices for solid state lighting. Adv Mater 16:1585

    Article  Google Scholar 

  3. Shinar ZJ (2004) Organic light-emitting diodes—a survey. Springer, New York

    Google Scholar 

  4. Kalinovski J (2005) Organic light-emitting diodes: principles characteristics and processes. Marcel Dekker, New York

    Google Scholar 

  5. Brütting W (ed) (2005) Physics of organic semiconductors. Wiley, Weinheim

    Google Scholar 

  6. Mullen K, Scherf U (2006) Organic light emitting devices: synthesis properties and applications. Wiley, Weinheim

    Google Scholar 

  7. Li ZR, Meng H (eds) (2007) Organic light-emitting materials and devices. Taylor and Francis, Boca Raton

    Google Scholar 

  8. So F, Kido J, Burrows P (2008) Organic light-emitting devices for solid-state lighting. MRS Bulletin 33:663–669

    Article  Google Scholar 

  9. Pope M, Svenberg CE (1982) Electronic processes in organic molecular crystals. Oxford University Press, New York

    Google Scholar 

  10. Tang CW, VanSlyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51:913

    Article  Google Scholar 

  11. Pfeiffer M, Leo K, Zhou X et al (2003) Doped organic semiconductors: physics and application in light emitting diodes. Org Electron 4:89–103

    Article  Google Scholar 

  12. Cao Y, Parker ID, Yu G, Zhang C, Heeger AJ (1999) Improved quantum efficiency for electroluminescence in semiconducting polymers. Nature 397:414–417

    Article  Google Scholar 

  13. Wilson JS et al (2001) Spin-dependent exciton formation in p-conjugated compounds. Nature 413:828–831

    Article  Google Scholar 

  14. Baldo MA, O’Brien DF, You Y et al (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395:151–154

    Article  Google Scholar 

  15. Forrest SR, Bradley DDC, Thomson ME (2003) Measuring the efficiency of organic light-emitting diodes. Adv Mater 15:1043

    Article  Google Scholar 

  16. He G, Pfeiffer M, Leo K, Hofmann M, Birnstock J, Pudzich R, Salbeck J (2004) High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission. Appl Phys Lett 85:3911

    Article  Google Scholar 

  17. Giebink NC, Forrest SR (2008) Quantum efficiency roll-off at high brightness in fluorescent and phosphorescent organic light emitting diodes. Phys Rev B 77:235215

    Article  Google Scholar 

  18. Sun Y, Giebink NC, Kanno H, Thompson ME, Forrest SR (2006) Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature 440:908–912

    Article  Google Scholar 

  19. Schwartz G, Fehse K, Pfeiffer M, Walzer K, Leo K (2008) Reduced efficiency roll-off in high-efficiency hybrid white organic light-emitting diodes. Appl Phys Lett 92:053311

    Article  Google Scholar 

  20. Segal M, Singh M, Rivoure K, Difley S, Van Voorhis T, Baldo MA (2007) Extrafluorescent electroluminescence in organic light-emitting devices. Nature Mater 6:374

    Article  Google Scholar 

  21. Jeon SO, Yook KS, Joo CW, Lee JY (2009) Highly efficient single-layer phosphorescent white organic light-emitting diodes using a spirofluorene-based host material. Opt Lett 34:407

    Article  Google Scholar 

  22. Reineke S et al (2009) White organic light-emitting diodes with fluorescent tube efficiency. Nature 459:234–239

    Article  Google Scholar 

  23. Sun Y, Forrest SR (2008) Enhanced light-outcoupling of light-emitting devices using embedded low-index grids. Nat Photonics 2:483

    Article  Google Scholar 

  24. Lu MH, Sturm JC (2002) Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment. J Appl Phys 91:595

    Article  Google Scholar 

  25. Bulovic V, Khalfin VB, Gu G, Burrows PE, Gharbuzow DZ, Forrest SR (1998) Weak microcavity effects in organic light-emitting device. Phys Rev B 58:3730

    Article  Google Scholar 

  26. Greiner H (2004) Exploring particlelike nanostructures for light outcoupling from organic LEDs by first principles calculations. Proc SPIE 5450:376–387

    Article  Google Scholar 

  27. Bässler H (1993) Charge transport in disordered organic photoconductors - A Monte Carlo simulation study. Phys Stat Sol B 175:15

    Article  Google Scholar 

  28. Pasveer WF et al (2005) Unified description of charge-carrier mobilities in disordered semiconducting polymers A. Phys Rev Lett 94:206601

    Article  Google Scholar 

  29. Coehoorn R, Pasveer WF, Bobbert PA, Michels MAJ (2005) Charge-carrier concentration dependence of the hopping mobility in organic materials with Gaussian disorder. Phys Rev Lett 94:206601

    Article  Google Scholar 

  30. Gartstein YN, Conwell EM (1995) High-field hopping mobility in molecular systems with spatially correlated energetic disorder. Chem Phys Lett 245:351

    Article  Google Scholar 

  31. Bouhassoune M, van Mensfoort SLM, Bobbert PA, Coehoorn R (2009) Carrier-density and field-dependent charge-carrier mobility in organic semiconductors with correlated Gaussian disorder. Org Electr 10:437

    Article  Google Scholar 

  32. van Mensfoort SLM, Vulto SIE, Janssen RAJ, Coehoorn R (2008) Hole transport in polyfluorene-based sandwich-type devices: Quantitative analysis of the role of energetic disorder. Phys Rev B 78:085208

    Article  Google Scholar 

  33. van Mensfoort SLM, Shabro V, de Vries RJ, Janssen RAJ, Coehoorn R (2010) Hole transport in the organic small-molecule material a-NPD: evidence for the presence of correlated disorder. J Appl Phys 107:113710

    Google Scholar 

  34. Tutis EE, Batistic I, Berner D (2004) Injection and strong current channeling in organic disordered media. Phys Rev 70:161202(R)

    Google Scholar 

  35. van der Holst JJM et al (2009) Modeling and analysis of the three-dimensional current density in sandwich-type single-carrier devices of disordered organic semiconductors. Phys Rev B 79:085203

    Article  Google Scholar 

  36. Shtein M, Gossenberger HF, Benzinger JB, Forrest SR (2001) Material transport regimes and mechanisms for growth of molecular organic thin films using low-pressure organic vapor phase deposition. J Appl Phys 98:1470

    Article  Google Scholar 

  37. Neyts K, Real A, Marescaux M, Mladenovski S, Beeckman J (2008) Conductor grid optimization for luminance loss reduction in organic light emitting diodes. J Appl Phy 103:093113–093115

    Article  Google Scholar 

  38. Berntsen AJM et al (1998) Stability of polymer light-emitting diodes. Philips J Res 51:511–525

    Article  Google Scholar 

  39. Kim J-S et al (2002) Nature of non-emissive black spots in polymer light-emitting diodes by in-situ micro-Raman spectroscopy. Adv Mater 14:206–209

    Article  Google Scholar 

  40. Burrows PE et al (2001) Ultra-barrier flexible substrates for flat panel displays. Display 22:65–69

    Article  Google Scholar 

  41. Young ND et al (2003) Low temperature poly-Si on flexible polymer substrates for active matrix displays and other applications. Proc MRS 769:17–29

    Google Scholar 

  42. T. v. Mol (2008) Flexible barrier films. N. Holst Centre, (ed.) Berlin: 4th International plastic electronics conference and showcase 2008

    Google Scholar 

  43. www.fast2light.eu

  44. Köhnen A et al (2009) The simple way to solution-processed multilayer OLEDs—layered block-copolymer networks by living cationic polymerization. Adv Mat 21:879

    Article  Google Scholar 

  45. www.hitech-projects.com/euprojects/olla/

  46. www.oled100.eu

  47. www.aeviom.eu

Download references

Acknowledgments

The authors wish to thank P. van de Weijer and S. Grabowski for useful comments. This research has received funding from the European Community’s Program No. FP7–213708 (AEVIOM, contribution R.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinder Coehoorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Coehoorn, R., van Elsbergen, V., Verschuren, C. (2013). High Efficiency OLEDs for Lighting Applications. In: Cantatore, E. (eds) Applications of Organic and Printed Electronics. Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3160-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3160-2_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-3159-6

  • Online ISBN: 978-1-4614-3160-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics