Skip to main content

Pathophysiology: Loss of β-Cell Function

  • Chapter
  • First Online:
Prevention of Type 2 Diabetes

Abstract

The pathophysiology of prediabetes is a direct extension of the physiology of glucose control. In fact, all evidence indicates that progression from normoglycemia to dysglycemia to frank hyperglycemia occurs along a continuum not just of plasma glucose concentrations but also of underlying mechanisms. Therefore, the pathophysiology of prediabetes can be described equally well as shifts in glucose tolerance category and in terms of continuous changes in glucose parameters [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferrannini E, Massari M, Nannipieri M, et al. Plasma glucose levels as predictors of diabetes: the Mexico City diabetes study. Diabetologia. 2009;52:818–24.

    Article  PubMed  CAS  Google Scholar 

  2. Boitard C, Cerasi E, Efendic S, Henquin JC, Steiner DF, Ferrannini E. Novel factors in the regulation of beta-cell function. Diabetes. 2004;53 Suppl 1:S1–3.

    Article  CAS  Google Scholar 

  3. Ferrannini E, Balkau B, Coppack SW, et al.; RISC Investigators. Insulin resistance, insulin response, and obesity as indicators of metabolic risk. J Clin Endocrinol Metab. 2007;92:2885–92.

    Article  Google Scholar 

  4. Brunzell JD, Robertson RP, Lerner RL, et al. Relationships between fasting plasma glucose levels and insulin secretion during intravenous glucose tolerance tests. J Clin Endocrinol Metab. 1976;42:222–9.

    Article  PubMed  CAS  Google Scholar 

  5. Mari A, Tura A, Pacini G, Kautzky-Willer A, Ferrannini E. Relationships between insulin secretion after intravenous and oral glucose administration in subjects with glucose tolerance ranging from normal to overt diabetes. Diabet Med. 2008;25:671–7.

    Article  PubMed  CAS  Google Scholar 

  6. Mari A, Schmitz O, Gastaldelli A, Oestergaard T, Nyholm B, Ferrannini E. Meal and oral glucose tests for assessment of beta-cell function: modeling analysis in normal subjects. Am J Physiol Endocrinol Metab. 2002;283:E1159–66.

    PubMed  CAS  Google Scholar 

  7. Nesher R, Cerasi E. Modeling phasic insulin release: immediate and time-dependent effects of glucose. Diabetes. 2002;51 Suppl 1:S53–9.

    Article  PubMed  CAS  Google Scholar 

  8. Kahn SE, Prigeon RL, McCulloch DK, et al. Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects: evidence for a hyperbolic function. Diabetes. 1993;42:1663–72.

    Article  PubMed  CAS  Google Scholar 

  9. Kahn SE, Zraika S, Utzschneider KM, et al. The beta cell lesion in type 2 diabetes: there has to be a primary functional abnormality. Diabetologia. 2009;52:1003–12.

    Article  PubMed  CAS  Google Scholar 

  10. Ferrannini E, Mari A. Beta cell function and its relation to insulin action in humans: a critical appraisal. Diabetologia. 2004;47:943–56.

    Article  PubMed  CAS  Google Scholar 

  11. Mari A, Tura A, Natali A, et al.; RISC Investigators. Impaired beta cell glucose sensitivity rather than inadequate compensation for insulin resistance is the dominant defect in glucose intolerance. Diabetologia. 2010;53:749–56.

    Article  Google Scholar 

  12. Ferrannini E, Gastaldelli A, Miyazaki Y, et al. Predominant role of reduced beta-cell sensitivity to glucose over insulin resistance in impaired glucose tolerance. Diabetologia. 2003;46:1211–9.

    Article  PubMed  CAS  Google Scholar 

  13. Stumvoll M, Häring H, Fritsche A. For debate: Starling’s curve of the pancreas—overuse of a concept? Horm Metab Res. 2003;35(7):391–5.

    Article  PubMed  CAS  Google Scholar 

  14. Ferrannini E, Gastaldelli A, Miyazaki Y, et al. Beta-cell function in subjects spanning the range from normal glucose tolerance to overt diabetes: a new analysis. J Clin Endocrinol Metab. 2005;90:493–500.

    Article  PubMed  CAS  Google Scholar 

  15. Faerch K, Borch-Johnsen K, Holst JJ, Vaag A. Pathophysiology and aetiology of impaired fasting glycemia and impaired glucose tolerance: does it matter for prevention and treatment of type 2 diabetes? Diabetologia. 2009;52:1714–23.

    Article  PubMed  CAS  Google Scholar 

  16. Faerch K, Vaag A, Holst JJ, et al. Impaired fasting glycaemia vs impaired glucose tolerance: similar impairment of pancreatic alpha and beta cell function but differential roles of incretin hormones and insulin action. Diabetologia. 2008;51:853–61.

    Article  PubMed  CAS  Google Scholar 

  17. Henquin JC, Rahier J. Pancreatic alpha cell mass in European subjects with type 2 diabetes. Diabetologia. 2011;54(7):1720–5.

    Article  PubMed  CAS  Google Scholar 

  18. Ferrannini E, Muscelli E, Natali A, et al. Relationship between Insulin Sensitivity and Cardiovascular Disease Risk (RISC) Project Investigators. Association of fasting glucagon and proinsulin concentrations with insulin resistance. Diabetologia. 2007;50:2342–7.

    Article  PubMed  CAS  Google Scholar 

  19. Færch K, Vaag A, Holst J, et al. Impaired fasting glycaemia vs impaired glucose tolerance: similar impairment of pancreatic alpha and beta cell function but differential roles of incretin hormones and insulin action. Diabetologia. 2008;51:853–61.

    Article  PubMed  Google Scholar 

  20. Muscelli E, Mari A, Natali A, et al. Impact of incretin hormones on beta-cell function in subjects with normal or impaired glucose tolerance. Am J Physiol Endocrinol Metab. 2006;291:E1144–50.

    Article  PubMed  CAS  Google Scholar 

  21. Butler AE, Janson J, Bonner-Weir S, et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52:102–10.

    Article  PubMed  CAS  Google Scholar 

  22. Rahier J, Guiot Y, Goebbels RM, et al. Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes Obes Metab. 2008;10 Suppl 4:32–42.

    Article  PubMed  Google Scholar 

  23. Ritzel RA, Butler AE, Rizza RA, et al. Relationship between beta-cell mass and fasting blood glucose concentration in humans. Diabetes Care. 2006;29:717–8.

    Article  PubMed  Google Scholar 

  24. Clark A, Jones LC, de Koning E, et al. Decreased insulin secretion in type 2 diabetes: a problem of cellular mass or function? Diabetes. 2001;50 Suppl 1:S169–71.

    Article  PubMed  CAS  Google Scholar 

  25. Ferrannini E, Gastaldelli A, Matsuda M, et al. Influence of ethnicity and familial diabetes on glucose tolerance and insulin action: a physiological analysis. J Clin Endocrinol Metab. 2003;88:3251–7.

    Article  PubMed  CAS  Google Scholar 

  26. Ferrannini E. Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus: problems and prospects. Endocr Rev. 1998;19:477–90.

    Article  PubMed  CAS  Google Scholar 

  27. Pascoe L, Tura A, Patel SK, et al; RISC Consortium; U.K. Type 2 Diabetes Genetics Consortium. Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic beta-cell function. Diabetes. 2007;56:3101–4.

    Article  Google Scholar 

  28. Pascoe L, Frayling TM, Weedon MN, et al; RISC Consortium. Beta cell glucose sensitivity is decreased by 39% in non-diabetic individuals carrying multiple diabetes-risk alleles compared with those with no risk alleles. Diabetologia. 2008;51:1989–92.

    Article  Google Scholar 

  29. Soranzo N, Sanna S, Wheeler E, et al. Common variants at 10 genomic loci influence hemoglobin A1(C) levels via glycemic and nonglycemic pathways. Diabetes. 2010;59:3229–39.

    Article  PubMed  CAS  Google Scholar 

  30. Ingelsson E, Langenberg C, Hivert MF, et al. Detailed physiologic characterization reveals diverse mechanisms for novel genetic loci regulating glucose and insulin metabolism in humans. Diabetes. 2010;59:1266–75.

    Article  PubMed  CAS  Google Scholar 

  31. Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42:105–16.

    Article  PubMed  CAS  Google Scholar 

  32. Saxena R, Hivert MF, Langenberg C, et al. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat Genet. 2010;42:142–8.

    Article  PubMed  CAS  Google Scholar 

  33. Groop L, Lyssenko V. Genetic basis of beta-cell dysfunction in man. Diabetes Obes Metab. 2009;11 Suppl 4:149–58.

    Article  PubMed  CAS  Google Scholar 

  34. Lyssenko V, Lupi R, Marchetti P, et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest. 2007;117:2155–63.

    Article  PubMed  CAS  Google Scholar 

  35. Kassem S, Bhandari S, Rodríguez-Bada P, et al. Large islets, beta-cell proliferation, and a glucokinase mutation. N Engl J Med. 2010;362:1348–50.

    Article  PubMed  CAS  Google Scholar 

  36. Walker M, Mari A, Jayapaul MK, et al. Impaired beta cell glucose sensitivity and whole-body insulin sensitivity as predictors of hyperglycaemia in non-diabetic subjects. Diabetologia. 2005;48:2470–6.

    Article  PubMed  CAS  Google Scholar 

  37. Ferrannini E, Natali A, Muscelli E, et al; RISC Investigators. Natural history and physiological determinants of changes in glucose tolerance in a non-diabetic population: the RISC study. Diabetologia. 2011;54:1507–16.

    Article  Google Scholar 

  38. Berenson GS, Agirbasli M, Nguyen QM, Chen W, Srinivasan SR. Glycemic status, metabolic syndrome, and cardiovascular risk in children. Med Clin North Am. 2011;95:409–17.

    Article  PubMed  Google Scholar 

  39. Kulkarni RN, Brüning JC, Winnay JN, et al. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell. 1999;96:329–39.

    Article  PubMed  CAS  Google Scholar 

  40. Otani K, Kulkarni RN, Baldwin AC, et al. Reduced beta-cell mass and altered glucose sensing impair insulin-secretory function in betaIRKO mice. Am J Physiol Endocrinol Metab. 2004;286:E41–9.

    Article  PubMed  CAS  Google Scholar 

  41. Bouche C, Lopez X, Fleischman A, et al. Insulin enhances glucose-stimulated insulin secretion in healthy humans. Proc Natl Acad Sci USA. 2010;107:4770–5.

    Article  PubMed  CAS  Google Scholar 

  42. Kahn CR, Brüning JC, Michael MD, Kulkarni RN. Knockout mice challenge our concepts of glucose homeostasis and the pathogenesis of diabetes mellitus. J Pediatr Endocrinol Metab. 2000;13 Suppl 6:1377–84.

    PubMed  Google Scholar 

  43. Abdul-Ghani MA, Tripathy D, DeFronzo RA. Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care. 2006;29:1130–9.

    Article  PubMed  CAS  Google Scholar 

  44. Faerch K, Vaag A, Holst JJ, et al. Natural history of insulin sensitivity and insulin secretion in the progression from normal glucose tolerance to impaired fasting glycemia and impaired glucose tolerance: the Inter99 study. Diabetes Care. 2009;32:439–44.

    Article  PubMed  CAS  Google Scholar 

  45. Hanefeld M, Koehler C, Fuecker K, et al. Insulin secretion and insulin sensitivity pattern is different in isolated impaired glucose tolerance and impaired fasting glucose: the risk factor in Impaired Glucose Tolerance for Atherosclerosis and Diabetes study. Diabetes Care. 2003;26:868–74.

    Article  PubMed  CAS  Google Scholar 

  46. Ferrannini E, Groop LC. Hepatic glucose production in insulin-resistant states. Diabetes Metab Rev. 1989;5:711–26.

    Article  PubMed  CAS  Google Scholar 

  47. Abdul-Ghani MA, Lyssenko V, Tuomi T, Defronzo RA, Groop L. The shape of plasma glucose concentration curve during OGTT predicts future risk of type 2 diabetes. Diabetes Metab Res Rev. 2010;26:280–6.

    Article  PubMed  CAS  Google Scholar 

  48. Ferrannini E, Gastaldelli A, Iozzo P. Pathophysiology of prediabetes. Med Clin North Am. 2011;95:327–39.

    Article  PubMed  CAS  Google Scholar 

  49. Gastaldelli A, Kozakova M, Højlund K, et al; RISC Investigators. Fatty liver is associated with insulin resistance, risk of coronary heart disease, and early atherosclerosis in a large European population. Hepatology. 2009;49:1537–44.

    Article  Google Scholar 

  50. Ferrannini E. The stunned beta cell: a brief history. Cell Metab. 2010;11:349–52.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ele Ferrannini MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ferrannini, E., Mari, A. (2012). Pathophysiology: Loss of β-Cell Function. In: LeRoith, D. (eds) Prevention of Type 2 Diabetes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3314-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3314-9_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3313-2

  • Online ISBN: 978-1-4614-3314-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics