Skip to main content

Engineering Fibrous Tissues and Their Interfaces with Bone

  • Chapter
  • First Online:
Structural Interfaces and Attachments in Biology
  • 1466 Accesses

Abstract

Tendons and ligaments facilitate movement and provide stability to joints in the human body. However, current surgical treatments for fibrous tissue injuries, such as tissue grafts, pose problems of donor site morbidity (autografts) or potential for pathogen transfer (allografts). Tissue engineering techniques are being investigated to overcome current clinical challenges to regenerate injured fibrous tissues and their interfaces. This chapter discusses the basic structure and function of fibrous tissues, as well as tissue engineering methods using cells, scaffolds, and exogenous factors, to recreate both tendons/ligaments and their interfaces with surrounding bone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Praemer A, Furner S, Rice D (1999) Musculoskeletal condition in the United States. American academy of orthopaedic surgeons. American Academy of Orthopaedic Surgeons, Parke Ridge, IL

    Google Scholar 

  2. Bray RC, Rangayyan RM, Frank CB (1996) Normal and healing ligament vascularity: a quantitative histological assessment in the adult rabbit medial collateral ligament. J Anat 188:87–95

    Google Scholar 

  3. Lin T, Cardenas L, Soslowsky LJ (2004) Biomechanics of tendon injury and repair. J Biomech 37(6):865–877

    Article  Google Scholar 

  4. Laurencin CT, Freeman JW (2005) Ligament tissue engineering: an evolutionary materials science approach. Biomaterials 26(36):7530–7536

    Article  Google Scholar 

  5. Tadokoro K, Matsui N, Yagi M, Kuroda R, Kurosaka M, Yoshiya S (2004) Evaluation of hamstring strength and tendon regrowth after harvesting for anterior cruciate ligament reconstruction. Am J Sports Med 32(7):1644–1650

    Article  Google Scholar 

  6. Chiou HM, Chang MC, Lo WH (1997) One-stage reconstruction of skin defect and patellar tendon rupture after total knee arthroplasty—a new technique. J Arthroplasty 12(5):575–579

    Article  Google Scholar 

  7. Yang PJ, Temenoff JS (2009) Engineering orthopedic tissue interfaces. Tissue Eng Part B Rev 15(2):127–141

    Article  Google Scholar 

  8. Goh JCH, Ouyang H-W, Teoh SH, Chan CKC, Lee EH (2003) Tissue-engineering approach to the repair and regeneration of tendons and ligaments. Tissue Eng 9(Suppl 1):31–44

    Article  Google Scholar 

  9. Khatod M, Amiel D (2003) Ligament biochemistry and physiology. In: Pedowitz R, O’Connor JJ, Akeson WH (eds) Daniel’s knee injuries, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, PA, pp 31–42

    Google Scholar 

  10. Wang JH (2006) Mechanobiology of tendon. J Biomech 39(9):1563–1582

    Article  Google Scholar 

  11. Hoffman A, Gross G (2007) Tendon and ligament engineering in the adult organism: mesenchymal stem cells and gene-therapeutic approaches. Int Orthop 31(6):791–797

    Article  Google Scholar 

  12. Lim J, Temenoff JS (2009) Tendon and ligament tissue engineering: restoring tendon/ligament and its interface. In: Meyer U, Handschel J, Meyer T, Wiesmann HP (eds) Fundamentals of tissue engineering and regenerative medicine. Springer, Berlin, pp 254–269

    Google Scholar 

  13. Doroski DM, Brink KS, Temenoff JS (2007) Techniques for biological characterization of tissue-engineered tendon and ligament. Biomaterials 28(2):187–202

    Article  Google Scholar 

  14. Hammoudi TM, Temenoff JS (2011) Biomaterials for regeneration of tendons and ligaments. In: Burdick JA, Mauck RL (eds) Biomaterials for tissue engineering applications. Springer, Berlin, pp 307–341

    Chapter  Google Scholar 

  15. Birk DE, Mayne R (1997) Localization of collagen types I, III and V during tendon development. changes in collagen types I and III are correlated with changes in fibril diameter. Eur J Cell Biol 72(4):352–361

    Google Scholar 

  16. Benjamin M, Ralphs JR (2000) The cell and developmental biology of tendons and ligaments. Int Rev Cytol 196:85–130

    Article  Google Scholar 

  17. Riley G (2003) The pathogenesis of tendinopathy: a molecular perspective. Rheumatology 43(2):131–142

    Article  Google Scholar 

  18. Laurencin CT, Ambrosio AMA, Borden MD, Cooper JA (1999) Tissue engineering: orthopedic applications. Annu Rev Biomed Eng 1:19–46

    Article  Google Scholar 

  19. McNeilly CM (1997) Tendon cells in vivo form a three dimensional network of cell processes linked by gap junctions. J Anat 190:477–478

    Google Scholar 

  20. Liu SH, Yang RS, Alshaikh R, Lane JM (1995) Collagen in tendon, ligament, and bone healing—a current review. Clin Orthop Relat Res 318:265–278

    Google Scholar 

  21. Martin RB, Burr DB, Sharkey NA (1998) Mechanical properties of ligament and tendon. In: Martin RB, Burr DB, Sharkey NA (eds) Skeletal tissue mechanics. Springer, New York, NY, pp 309–346

    Google Scholar 

  22. Wang JHC, Losifidis MI, Fu FH (2006) Biomechanical basis for tendinopathy. Clin Orthop Relat Res 443:320–332

    Article  Google Scholar 

  23. Woo SLY, Debski RE, Zeminski J, Abramowitch SD, Saw SSC, Fenwick JA (2000) Injury and repair of ligaments and tendons. Annu Rev Biomed Eng 2:83–118

    Article  Google Scholar 

  24. James R, Kesturu G, Balian G, Chhabra A (2008) Tendon: biology, biomechanics, repair, growth factors, and evolving treatment options. J Hand Surg Am 33(1):102–112

    Article  Google Scholar 

  25. Yoon JH, Halper J (2005) Tendon proteoglycans: biochemistry and function. J Musculoskelet Neuronal Interact 5(1):22–34

    Google Scholar 

  26. Birk DE, Fitch JM, Babiarz JP, Doane KJ, Linsenmayer TF (1990) Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter. J Cell Sci 95(4):649–657

    Google Scholar 

  27. Vunjak-Novakovic G, Altman G, Horan R, Kaplan DL (2004) Tissue engineering of ligaments. Annu Rev Biomed Eng 6(1):131–156

    Article  Google Scholar 

  28. Woo SLY, Abramowitch SD, Kilger R, Liang R (2006) Biomechanics of knee ligaments: injury, healing, and repair. J Biomech 39(1):1–20

    Article  Google Scholar 

  29. Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, Iozzo RV (1997) Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol 136(3):729–743

    Article  Google Scholar 

  30. McCormick RJ (1999) Extracellular modifications to muscle collagen: implications for meat quality. Poult Sci 78(5):785–791

    MathSciNet  Google Scholar 

  31. Ezura Y, Chakravarti S, Oldberg A, Chervoneva I, Birk DE (2000) Differential expression of lumican and fibromodulin regulate collagen fibrillogenesis in developing mouse tendons. J Cell Biol 151(4):779–787

    Article  Google Scholar 

  32. Border WA, Noble NA, Yamamoto T, Harper JR, Yamaguchi Y, Pierschbacher MD, Ruoslahti E (1992) Natural inhibitor of transforming growth factor-beta protects against scarring in experimental kidney disease. Nature 360(6402):361–364

    Article  Google Scholar 

  33. Ruoslahti E, Yamaguchi Y (1991) Proteoglycans as modulators of growth factor activities. Cell 64(5):867–869

    Article  Google Scholar 

  34. Elefteriou F, Exposito JY, Garrone R, Lethias C (2001) Binding of tenascin-X to decorin. FEBS Lett 495(1–2):44–47

    Article  Google Scholar 

  35. Probstmeier R, Pesheva P (1999) Tenascin-C inhibits beta(1) integrin-dependent cell adhesion and neurite outgrowth on fibronectin by a disialoganglioside-mediated signaling mechanism. Glycobiology 9(2):101–114

    Article  Google Scholar 

  36. Chiquet M, Reneda AS, Huber F, Fluck M (2003) How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biol 22(1):73–80

    Article  Google Scholar 

  37. Chiquet-Ehrismann R, Tucker RP (2004) Connective tissues: signalling by tenascins. Int J Biochem Cell Biol 36(6):1085–1089

    Article  Google Scholar 

  38. Grinnell F (1984) Fibronectin and wound healing. J Cell Biochem 26(2):107–116

    Article  Google Scholar 

  39. Jozsa L, Lehto M, Kannus P, Kvist M, Reffy A, Vieno T, Jarvinen M, Demel S, Elek E (1989) Fibronectin and laminin in Achilles tendon. Acta Orthop Scand 60(4):469–471

    Article  Google Scholar 

  40. Williams IF, McCullagh KG, Silver IA (1984) The distribution of types I and III collagen and fibronectin in the healing equine tendon. Connect Tissue Res 12(3–4):211–227

    Article  Google Scholar 

  41. O’Brien M (1997) Structure and metabolism of tendons. Scand J Med Sci Sports 7(2):55–61

    Article  Google Scholar 

  42. Woo SLY, Buckwalter JA (1988) AAOS/NIH/ORS workshop—injury and repair of the musculoskeletal soft tissues. Savannah, Georgia, June 18–20, 1987. J Orthop Res 6(6):907–931

    Article  Google Scholar 

  43. Benjamin M, Ralphs JR (1998) Fibrocartilage in tendons and ligaments–an adaptation to compressive load. J Anat 193:481–494

    Article  Google Scholar 

  44. Woo SLY, Smith DW, Hildebrand KA, Zeminski JA, Johnson LA (1998) Engineering the healing of the rabbit medial collateral ligament. Med Biol Eng Comput 36(3):359–364

    Article  Google Scholar 

  45. Moffat KL, Sun WHS, Pena PE, Chahine NO, Doty SB, Ateshian GA, Hung CT, Lu HH (2008) Characterization of the structure-function relationship at the ligament-to-bone interface. Proc Natl Acad Sci U S A 105(23):7947–7952

    Article  Google Scholar 

  46. Lu H, Jiang J (2006) Interface tissue engineering and the formulation of multiple-tissue systems. Adv Biochem Eng Biotechnol 102:91–111

    Google Scholar 

  47. Jozsa LG, Kannus P (1997) Human tendons: anatomy, physiology, and pathology. Human Kinetics, Champaign, IL

    Google Scholar 

  48. Shrive NG, Thornton GM, Hart DA, Frank CB (2003) Ligament mechanics. In: Pedowitz R, O’Connor JJ, Akeson WH (eds) Daniel’s knee injuries, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, PA, pp 97–112

    Google Scholar 

  49. Hyman J, Rodeo SA (2000) Injury and repair of tendons and ligaments. Phys Med Rehabil Clin N Am 11(2):267–288

    Google Scholar 

  50. Benazzo F, Maffulli N (2000) An operative approach to Achilles tendinopathy. Sports Med Arthrosc 8:96–101

    Article  Google Scholar 

  51. Rees JD, Wilson AM, Wolman RL (2006) Current concepts in the management of tendon disorders. Rheumatology 45:508–521

    Article  Google Scholar 

  52. Sharma P (2005) Tendon injury and tendinopathy: healing and repair. J Bone Joint Surg Am 87(1):187–202

    Article  Google Scholar 

  53. Oakes BW (2003) Tissue healing and repair: tendons and ligaments. In: Frontera WR (ed) Rehabilitation of sports injuries: scientific basis. Blackwell Science, Boston, MA, pp 8–21

    Google Scholar 

  54. Gomez MA (1995) The physiology and biochemistry of soft tissue healing. In: Griffin L (ed) Rehabilitation of the injured knee, 2nd edn. Mosby, St. Louis, MO, pp 34–44

    Google Scholar 

  55. Buckwalter JA, Hunziker EB (1996) Orthopaedics healing of bones, cartilage, tendons, and ligaments: a new era. Lancet 348(Suppl 2):18

    Article  Google Scholar 

  56. Baer GS, Harner CD (2007) Clinical outcomes of allograft versus autograft in anterior cruciate ligament reconstruction. Clin Sports Med 26(4):661–681

    Article  Google Scholar 

  57. Carey JL, Dunn WR, Dahm DL, Zeger SL, Spindler KP (2009) A systematic review of anterior cruciate ligament reconstruction with autograft compared with allograft. J Bone Joint Surg Am 91A(9):2242–2250

    Article  Google Scholar 

  58. Krych AJ, Jackson JD, Hoskin TL, Dahm DL (2008) A meta-analysis of patellar tendon autograft versus patellar tendon allograft in anterior cruciate ligament reconstruction. Arthroscopy 24(3):292–298

    Article  Google Scholar 

  59. Miller R, Azar F (2008) Knee injuries. In: Canale S, Beaty J (eds) Campbell’s operative orthopaedics. Mosby Elsevier, Philadelphia, PA, pp 2346–2575

    Google Scholar 

  60. Spindler KP, Kuhn J, Freedman K, Matthews C, Dittus R, Harrell FJ (2004) Anterior cruciate ligament reconstruction autograft choice: bone-tendon-bone versus hamstring: does it really matter? A systemic review. Am J Sports Med 32(8):1986–1995

    Article  Google Scholar 

  61. Petrigliano FA, McAllister DR, Wu BM (2006) Tissue engineering for anterior cruciate ligament reconstruction: a review of current strategies. Arthroscopy 22(4):441–451

    Article  Google Scholar 

  62. Barber F (2003) Should allografts be used for routine anterior cruciate ligament reconstructions. Arthroscopy 19:421

    Article  Google Scholar 

  63. Kruegerfranke M, Siebert CH, Scherzer S (1995) Surgical treatment of ruptures of the Achilles tendon: a review of long-term results. Br J Sports Med 29(2):121–125

    Article  Google Scholar 

  64. Uhthoff HK, Trudel G, Himori K (2003) Relevance of pathology and basic research to the surgeon treating rotator cuff disease. J Orthop Sci 8(3):449–456

    Article  Google Scholar 

  65. Huang D, Chang TF, Aggrawal A, Lee RC, Ehrlich HP (1993) Mechanism and dynamics of mechanical strengthening in ligament-equivalent fibroblast-populated collagen matrices. Annu Rev Biomed Eng 21:289

    Article  Google Scholar 

  66. Dunn MG, Liesch JB, Tiku ML, Zawadsky JP (1995) Development of fibroblast-seeded ligament analogs for ACL reconstruction. J Biomed Mater Res 29(11):1363–1371

    Article  Google Scholar 

  67. Goulet F, Germain L, Rancourt D, Caron C, Normand A, Auger FA (1975) Tendons and ligaments. In: Lanza RP, Langer R, Chick WL (eds) Principles of tissue engineering. R.G. Landes Academic, Austin, TX, pp 639–664

    Google Scholar 

  68. Bellincampi LD, Closkey RF, Prasad R, Zawadsky JP, Dunn MG (1998) Viability of fibroblast-seeded ligament analogs after autogenous implantation. J Orthop Res 16:414–420

    Article  Google Scholar 

  69. Gentleman E, Lay AN, Dickerson DA, Nauman EA, Livesay GA, Dee KC (2003) Mechanical characterization of collagen fibers and scaffolds for tissue engineering. Biomaterials 24(21):3805–3813

    Article  Google Scholar 

  70. Gentleman E, Livesay GA, Dee KC, Nauman EA (2006) Development of ligament-like structural organization and properties in cell-seeded collagen scaffolds in vitro. Ann Biomed Eng 34(5):726–736

    Article  Google Scholar 

  71. Takezawa T, Ozaki K, Takabayashi C (2007) Reconstruction of a hard connective tissue utilizing a pressed silk sheet and type-1 collagen as the scaffold for fibroblasts. Tissue Eng 13(6):1357–1366

    Article  Google Scholar 

  72. Fawzi-Grancher S, DeIsla N, Faure F (2006) Optimization of biochemical condition and substrates in vitro for tissue engineering of ligament. Ann Rev Biomed Eng 34(11):1767–1777

    Article  Google Scholar 

  73. Thomopoulos S, Harwood FL, Silva MJ (2005) Effects of several growth factors on canine flexor tendon fibroblast proliferation and collagen synthesis in vitro. J Hand Surg Am 30(3):441–447

    Article  Google Scholar 

  74. Eijk FV, Saris DBF, Riesle J, Willems WJ, Van Blitterswijk CA, Verbout AJ, Dhert WJA (2004) Tissue engineering of ligaments: a comparison of bone marrow stromal cells, anterior cruciate ligament, and skin fibroblasts as cell source. Tissue Eng 10(5/6):893–903

    Article  Google Scholar 

  75. Awad HA, Butler DL, Boivin GP, Smith FNL, Malaviya P, Huibregtse B, Caplan AI (1999) Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Eng 5(3):267–277

    Article  Google Scholar 

  76. Caplan AI (1991) Mesenchymal stem-cells. J Orthop Res 9(5):641–650

    Article  Google Scholar 

  77. Caplan AI (1994) The mesengenic process. Clin Plast Surg 21(3):429–435

    Google Scholar 

  78. Young RG, Butler DL, Weber W, Caplan AI, Gordon SL, Fink DJ (1998) Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J Orthop Res 16(4):406–413

    Article  Google Scholar 

  79. Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC, Kaplan DL (2002) Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23(20):4131–4141

    Article  Google Scholar 

  80. Butler DL, Awad HA (1999) Perspective on cell and collagen composites for tendon repair. Clin Orthop Relat Res 367(Suppl 3):324–332

    Article  Google Scholar 

  81. Chen J, Altman GH, Karageorgiou V (2003) Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res 67(2):559–570

    Article  Google Scholar 

  82. Cristino S, Grassi F, Toneguzzi S (2005) Analysis of mesenchymal stem cells grown on a three-dimensional HYAFF 11-based prototype ligament scaffold. J Biomed Mater Res 73(3):275–283

    Article  Google Scholar 

  83. Awad HA, Boivin GP, Dressler MR, Smith FNL, Young RG, Butler DL (2003) Repair of patellar tendon injuries using a cell-collagen composite. J Orthop Res 21(3):420–431

    Article  Google Scholar 

  84. Ge ZG, Goh JCH, Lee EH (2005) Selection of cell source for ligament tissue engineering. Cell Transplant 14(8):573–583

    Article  Google Scholar 

  85. Steinert AF, Kunz M, Prager P, Barthel T, Jakob FJ, Noeth U, Murray MM, Evans C, Porter RM (2011) Mesenchymal stem cell characteristics of human anterior cruciate ligament outgrowth cells. Tissue Eng Part A 17(9–10):1375–88

    Article  Google Scholar 

  86. Chen JL, Yin Z, Shen WL, Chen X, Heng BC, Zou XH, Ouyang HW (2010) Efficacy of hESC-MSCs in knitted silk-collagen scaffold for tendon tissue engineering and their roles. Biomaterials 31(36):9438–9451

    Article  Google Scholar 

  87. Pera MF, Reubinoff B, Trounson A (2000) Human embryonic stem cells. J Cell Sci 113:5–10

    Google Scholar 

  88. Chen X, Song XH, Yin Z, Zou XH, Wang L-L, Hu H, Cao T, Zheng M, Ouyang HW (2009) Stepwise differentiation of human embryonic stem cells promotes tendon regeneration by secreting fetal tendon matrix and differentiation factors. Stem Cells 27:1276–1287

    Article  Google Scholar 

  89. Amit M, Gerecht-Nir S, Itskovitz-Eldor J (2005) Culture, subcloning, spontaneous and controlled differentiation of human embryonic stem cells. In: Bongso A, Lee EH (eds) Stem cells: from bench to bedside. World Scientific, Singapore

    Google Scholar 

  90. Caplan AI (2005) Mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 11(7–8):1198–1211

    Article  Google Scholar 

  91. Vieira AC, Guedes RM, Marques AT (2009) Development of ligament tissue biodegradable devices: a review. J Biomech 42(15):2421–2430

    Article  Google Scholar 

  92. Liu Y, Ramanath HS, Wang D (2008) Tendon tissue engineering using scaffold enhancing strategies. Trends Biotechnol 26(4):201–209

    Article  Google Scholar 

  93. Heckmann L, Schlenker HJ, Fiedler J, Brenner R, Dauner M, Bergenthal G, Mattes T, Claes L, Ignatius A (2006) Human mesenchymal progenitor cell responses to a novel textured poly(L-lactide) scaffold for ligament tissue engineering. J Biomed Mater Res B Appl Biomater 81(1):82–90

    Google Scholar 

  94. Cao Y, Liu Y, Liu W, Shan Q, Buonocore SD, Cui L (2002) Bridging tendon defects using autologous tenocyte engineered tendon in a hen model. Plast Reconstr Surg 110(5):1280–1289

    Article  Google Scholar 

  95. Ouyang HW, Goh JCH, Thambyah A, Teoh SH, Lee EH (2003) Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit Achilles tendon. Tissue Eng 9(3):431–439

    Article  Google Scholar 

  96. Temenoff JS, Mikos A (2009) Biomaterials: the intersection of biology and materials science. Pearson Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  97. Juncosa-Melvin N, Boivin GP, Galloway MT, Gooch C, West JR, Butler DL (2006) Effects of cell-to-collagen ratio in stem cell-seeded constructs for Achilles tendon repair. Tissue Eng 12(4):681–689

    Article  Google Scholar 

  98. Juncosa-Melvin N, Shearn JT, Boivin GP, Gooch C, Galloway MT, West JR, Nirmalanandhan VS, Bradica G, Butler DL (2006) Effects of mechanical stimulation on the biomechanics and histology of stem cell-collagen sponge constructs for rabbit patellar tendon repair. Tissue Eng 12(8):2291–2300

    Article  Google Scholar 

  99. Juncosa-Melvin N, Matlin KS, Holdcraft RW, Nirmalanandhan VS, Butler DL (2007) Mechanical stimulation increases collagen type I and collagen type III gene expression of stem cell-collagen sponge constructs for patellar tendon repair. Tissue Eng 13(6):1219–1226

    Article  Google Scholar 

  100. Shearn JT, Juncosa-Melvin N, Boivin GP, Galloway MT, Goodwin W, Gooch C, Dunn MG, Butler DL (2007) Mechanical stimulation of tendon tissue engineered constructs: effects on construct stiffness, repair biomechanics, and their correlation. J Biomech Eng 129(6):848–854

    Article  Google Scholar 

  101. Altman GH, Diaz F, Jakuba TC, Horan RL, Chen J, Lu H, Richmond JC, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24(3):401–416

    Article  Google Scholar 

  102. Postlethwait RW (1969) Tissue reaction to surgical sutures. In: Dumphy JE, Van Winkle W (eds) Repair and regeneration. McGraw-Hill, New York

    Google Scholar 

  103. Fu SC, Wong YP, Cheuk YC (2005) TGF-beta1 reverses the effects of matrix anchorage on the gene expression of decorin and procollagen type I in tendon fibroblasts. Clin Orthop Relat Res 431:226–232

    Article  Google Scholar 

  104. Molloy T, Wang Y, Murrell GA (2003) The roles of growth factors in tendon and ligament healing. Sports Med 33(5):381–394

    Article  Google Scholar 

  105. Murphy PG, Loitz BJ, Frank C, Hart DA (1994) Influence of exogenous growth factors on the synthesis and secretion of collagen types I and III by explants of normal and healing rabbit ligaments. Biochem Cell Biol 72(9–10):403–9

    Article  Google Scholar 

  106. Marui T, Niyibizi C, Georgescu HI, Cao M, Kavalkovich KW, Levine RE, Woo SLY (1997) Effect of growth factors on matrix synthesis by ligament fibroblasts. J Orthop Res 15(1):18–23

    Article  Google Scholar 

  107. DesRosiers EA, Yahia L, Rivard CH (1996) Proliferation and matrix synthesis response of canine anterior cruciate ligament fibroblasts submitted to combined growth factors. J Orthop Res 14:200–208

    Article  Google Scholar 

  108. Kondo E (2005) Effects of administration of exogenous growth factors on biomechanical properties of the elongation-type anterior cruciate ligament injury with partial laceration. Am J Sports Med 33(2):188–196

    Article  Google Scholar 

  109. Hildebrand KA, Woo SLY, Smith DW, Allen CR, Deie M, Taylor BJ, Schmidt CC (1998) The effects of platelet-derived growth factor-BB on healing of the rabbit medial collateral ligament - an in vivo study. Am J Sports Med 26(4):549–554

    Google Scholar 

  110. Chan B, Chan K, Maffulli N, Lee K (1997) Effect of basic fibroblast growth factor. an in vitro study of tendon healing. Clin Orthop Relat Res 342:239–247

    Article  Google Scholar 

  111. Banes AJ, Tsuzaki M, Hu PQ, Brigman B, Brown T, Almekinders L, Lawrence WT, Fischer T (1995) PDGF-BB, IGF-I and mechanical load stimulate DNA synthesis in avian tendon fibroblasts in vitro. J Biomech 28(12):1505–1513

    Article  Google Scholar 

  112. Kang HJ, Kang ES (1999) Ideal concentration of growth factors in rabbit’s flexor tendon culture. Yonsei Med J 40(1):26–29

    Google Scholar 

  113. Abrahamsson SO, Lohmander S (1996) Differential effects of insulin-like growth factor-I on matrix and DNA synthesis in various regions and types of rabbit tendons. J Orthop Res 14:370

    Article  Google Scholar 

  114. Hankemeier S, Keus M, Zeichen J, Jagodzinski M, Barkhausen T, Bosch U, Krettek C, Van Griensven M (2005) Modulation of proliferation and differentiation of human bone marrow stromal cells by fibroblast growth factor 2: potential implications for tissue engineering of tendons and ligaments. Tissue Eng 11(1–2):41–49

    Article  Google Scholar 

  115. Moreau JE, Bramono DS, Horan RL, Kaplan DL, Altman GH (2008) Sequential biochemical and mechanical stimulation in the development of tissue-engineered ligaments. Tissue Eng Part A 14(7):1161–1172

    Article  Google Scholar 

  116. Moreau J, Chen J, Bramono DS (2005) Growth factor induced fibroblast differentiation from human bone marrow stromal cells in vitro. J Orthop Res 23(1):164–174

    Article  Google Scholar 

  117. Aspenberg P, Forslund C (1999) Enhanced tendon healing with GDF 5 and 6. Acta Orthop Scand 70(1):51–54

    Article  Google Scholar 

  118. Forslund C, Aspenberg P (2001) Tendon healing stimulated by injected CDMP-2. Med Sci Sports Exerc 33(5):685–687

    Google Scholar 

  119. Forslund C, Aspenberg P (2003) Improved healing of transected rabbit Achilles tendon after a single injection of cartilage-derived morphogenetic protein-2. Am J Sports Med 31(4):555–559

    Google Scholar 

  120. Forslund C, Rueger D, Aspenberg P (2003) A comparative dose–response study of cartilage-derived morphogenetic protein (CDMP)-1,-2 and-3 for tendon healing in rats. J Orthop Res 21(4):617–621

    Article  Google Scholar 

  121. Wolfman NM, Hattersley G, Cox K, Celeste AJ, Nelson R, Yamaji N, Dube JL, DiBlasioSmith E, Nove J, Song JJ, Wozney JM, Rosen V (1997) Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-beta gene family. J Clin Invest 100(2):321–330

    Article  Google Scholar 

  122. Yang GG, Crawford RC, Wang JHC (2004) Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. J Biomech 37(10):1543–1550

    Article  Google Scholar 

  123. Miyaki S, Ushida T, Nemoto K, Shimojo H, Itabashi A, Ochiai N, Miyanaga Y, Tateishi T (2001) Mechanical stretch in anterior cruciate ligament derived cells regulates type I collagen and decorin expression through extracellular signal-regulated kinase 1/2 pathway. Mater Sci Eng C Biomim Supramol Syst 17(1–2):91–94

    Article  Google Scholar 

  124. Henshaw DR, Attia E, Bhargava M, Hannafin LA (2006) Canine ACL fibroblast integrin expression and cell alignment in response to cyclic tensile strain in three-dimensional collagen gels. J Orthop Res 24(3):481–490

    Article  Google Scholar 

  125. Hannafin JA, Attia EA, Henshaw R, Warren RF, Bhargava MA (2006) Effect of cyclic strain and plating matrix on cell proliferation and integrin expression by ligament fibroblasts. J Orthop Res 24:149–158

    Article  Google Scholar 

  126. Cukierman E (2001) Taking cell-matrix adhesions to the third dimension. Science 294(5547):1708–1712

    Article  Google Scholar 

  127. Brenhardt HA, Cosgriff-Hernandez EM (2009) The role of mechanical loading in ligament tissue engineering. Tissue Eng Part B Rev 15(4):467–475

    Article  Google Scholar 

  128. Banes AJ, Qi J, Anderson DS, Maloney M, Sumanasinghe R (2009) Tissue train culture system. Culturing cells in a mechanically active environment. Hillsborough Business Center, Hillsborough, NC

    Google Scholar 

  129. Garvin J, Qi J, Maloney M, Banes AJ (2003) Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Eng 9:967–979

    Article  Google Scholar 

  130. Park SA, Kim IA, Lee YJ, Shin JW, Kim CR, Kim JK, Yang YI (2006) Biological responses of ligament fibroblasts and gene expression profiling on micropatterned silicone substrates subjected to mechanical stimuli. J Biosci Bioeng 102(5):402–412

    Article  Google Scholar 

  131. Doroski DM, Levenston ME, Temenoff JS (2010) Cyclic tensile culture promotes fibroblastic differentiation of marrow stromal cells encapsulated in poly(ethylene glycol)-based hydrogels. Tissue Eng Part A 16(11):3457–3466

    Article  Google Scholar 

  132. Altman GH, Horan RL, Martin I, Farhadi J, Stark PRH, Volloch V, Richmond JC, Vunjak-Novakovic G, Kaplan DL (2001) Cell differentiation by mechanical stress. FASEB J 15(14):270–272

    Google Scholar 

  133. Benjamin M, McGonagle D (2009) Entheses: tendon and ligament attachment sites. Scand J Med Sci Sports 19(4):520–527

    Article  Google Scholar 

  134. Sharma P, Maffulli N (2005) Basic biology of tendon injury and healing. Surgeon 3(5):309–316

    Article  Google Scholar 

  135. Jiang J, Nicoll SB, Lu H (2003) Effects of osteoblast and chondrocyte co-culture on chondrogenic and osteoblastic phenotype in vitro. In: Transactions of the 49th annual meeting of the Orthopaedic Research Society New Orleans, LA

    Google Scholar 

  136. Wang INE, Shan J, Choi R, Oh S, Kepler CK, Chen FH, Lu HH (2007) Role of osteoblast-fibroblast interactions in the formation of the ligament-to-bone interface. J Orthop Res 25(12):1609–1620

    Article  Google Scholar 

  137. Moffat K, Wang I, Rodeo S, Lu H (2009) Orthopedic interface tissue engineering for the biological fixation of soft tissue grafts. Clin Sports Med 28(1):157–176

    Article  Google Scholar 

  138. Spalazzi JP, Doty SB, Moffat KL, Levine WN, Lu H (2006) Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering. Tissue Eng 12(12):3497–3508

    Article  Google Scholar 

  139. Spalazzi JP, Dagher E, Doty SB, Guo XE, Rodeo SA, Lu HH (2008) In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J Biomed Mater Res A 86A(1):1–12

    Article  Google Scholar 

  140. Phillips JE, Burns KL, Le Doux JM, Guldberg RE, Garcia AJ (2008) Engineering graded tissue interfaces. Proc Natl Acad Sci 105(34):12170–12175

    Article  Google Scholar 

  141. Chen CH, Liu HW, Tsai CL, Yu CM, Lin IH, Hsiue GH (2008) Photoencapsulation of bone morphogenetic protein-2 and periosteal progenitor cells improve tendon graft healing in a bone tunnel. Am J Sports Med 36(3):461–473

    Article  Google Scholar 

  142. Martinek V, Latterman C, Usas A, Abramowitch S, Woo SLY, Fu FH, Huard J (2002) Enhancement of tendon-bone integration of anterior cruciate ligament grafts with bone morphogenetic protein-2 gene transfer–a histological and biomechanical study. J Bone Joint Surg Am 84A(7):1123–1131

    Google Scholar 

  143. Rodeo SA, Suzuki K, Deng XH, Wozney J, Warren RF (1999) Use of recombinant human bone morphogenetic protein-2 to enhance tendon healing in a bone tunnel. Am J Sports Med 27(4):476–488

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Yongzhi Qiu and Dr. Peter J. Yang for their contributions to the figures depicted in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnna S. Temenoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lei, J., Temenoff, J.S. (2013). Engineering Fibrous Tissues and Their Interfaces with Bone. In: Thomopoulos, S., Birman, V., Genin, G. (eds) Structural Interfaces and Attachments in Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3317-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3317-0_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3316-3

  • Online ISBN: 978-1-4614-3317-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics