Skip to main content

Modeling of Protected Nanoparticles

  • Chapter
  • First Online:
Metal Clusters and Nanoalloys

Part of the book series: Nanostructure Science and Technology ((NST))

  • 1266 Accesses

Abstract

Systems in the range between 1 and 50 nm have an intermediate size between single molecules and bulk materials. This is why they exhibit unique electronic properties which obey quantum-mechanical rules [1] that strongly depend on particle size and shape, as well as on interparticle interactions and protecting agents, if there were some. In these small systems, the outer electrons can tunnel between close particles. Mobile electrons are trapped and oscillate collectively, resulting in a plasmon resonance band. All quantum effects occur when the de Broglie wavelength of the valence electrons is of the order of the size of the particle itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alivisatos AP (1996) Science 271:933

    Article  CAS  Google Scholar 

  2. Andres RP, Bein T, Dorogi M, Feng S, Jenderson JI, Kubiak CP, Mahoney W, Osifchin RG, Reifenverger R (1996) Science 272:1323

    Article  CAS  Google Scholar 

  3. Toshima N, Yonezawa T (1998) New J Chem. 22:1179

    Article  CAS  Google Scholar 

  4. Qian X, Peng X-H, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S (2008) Nature Biotechnol 26:83

    Article  CAS  Google Scholar 

  5. Gibson JD, Khanal BP, Zubarev ER (2007) J Am Chem Soc 129

    Google Scholar 

  6. Daniel MC, Astruc D (2004) Chem Rev 104:293

    Article  CAS  Google Scholar 

  7. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Chem. Rev. 105:1103

    Article  CAS  Google Scholar 

  8. Turkevitch J, Stevenson PC, Hiller J (1951) Discuss Faraday Soc 11:55

    Article  Google Scholar 

  9. Frens G (1973) Nature Phys Sci 241:20

    CAS  Google Scholar 

  10. Giersig M, Mulvaney P (1993) Langmuir 9:3408

    Article  CAS  Google Scholar 

  11. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman RJ (1994) J Chem Soc Chem Commun 801

    Google Scholar 

  12. Saunders AE, Sigman MB Jr., Korgel BA (2004) J Phys Chem B 108:193

    Article  CAS  Google Scholar 

  13. Tzhayik O, Sawant P, Efrima S, Kovalev E, Klug JT (2002) Langmuir 18:3364

    Article  CAS  Google Scholar 

  14. Porter LA Jr., Ji D, Wescott SL, Graupe M, Czernuszewicz RS, Halas NJ, Lee TR (1998) Langmuir 14:7378

    Article  CAS  Google Scholar 

  15. Tan Y, Li Y, Zhu D (2002) Langmuir 18:3392

    Article  CAS  Google Scholar 

  16. Brust M, Fink J, Bethell D, Schiffrin DJ, Kiely CJ (1995) J Chem Soc Chem Commun 1655

    Google Scholar 

  17. Chen S (1999) Langmuir 15:7551

    Article  CAS  Google Scholar 

  18. Chen S, Murray RW (1999) Langmuir 15:682

    Article  CAS  Google Scholar 

  19. Templeton AC, Hostetler MJ, Kraft CT, Murray RW (1998) J Am Chem Soc 120:1906

    Article  CAS  Google Scholar 

  20. Hostetler MJ, Templeton AC, Murray RW (1999) Langmuir 15:3782

    Article  CAS  Google Scholar 

  21. Goulet PJG, Lennox RB (2010) J Am Chem Soc 132:9582

    Article  CAS  Google Scholar 

  22. Perrault SD, Chan WCW (2009) J Am Chem Soc 131:17042

    Article  CAS  Google Scholar 

  23. Martin MN, Basham JI, Chando P, Eah SK (2010) Langmuir 26:7410

    Article  CAS  Google Scholar 

  24. Schmid G, Pfeil R, Boese R, Bandermann F, Meyer S, Calis GHM, van der Velden JWA (1981) Chem Ber 114:3634

    Article  CAS  Google Scholar 

  25. Weare WW, Reed SM, Warner MG, Hutchison JE (2000) J Am Chem Soc 122:12890

    Article  CAS  Google Scholar 

  26. Yamamoto M, Nakamoto M (2003) Chem Lett 32:452

    Article  CAS  Google Scholar 

  27. Taleb A, Petit C, Pileni MPJ (1998) Phys Chem B 102:2214

    Article  CAS  Google Scholar 

  28. Chen F, Xu G-Q, Hor TSA (2003) Mater Lett 57:3282

    Article  CAS  Google Scholar 

  29. Gittins DI, Carusso F (2001) J Phys Chem B 105:6846

    Article  CAS  Google Scholar 

  30. Mayya KS, Schoeler B, Carusso F (2003) Adv Funct Mater 13:183

    Article  CAS  Google Scholar 

  31. Dass A, Holt K, Parker JF, Feldberg SW, Murray RW (2008) J Phys Chem C 112:20276

    Article  CAS  Google Scholar 

  32. Alivisatos AP, Johnsson KP, Peng X, Wilson TE, Loweth CJ, Bruchez MP Jr., Schultz PG (1996) Nature 382:609

    Article  CAS  Google Scholar 

  33. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) Nature 382:607

    Article  CAS  Google Scholar 

  34. Nuzzo RG, Allara DL (1983) J Am Chem Soc 105:4481

    Article  CAS  Google Scholar 

  35. Porter MD, Bright TB, Allara DL, Chidsey CED (1987) J Am Chem Soc 109:3559

    Article  CAS  Google Scholar 

  36. Strong L, Whitesides GM (1988) Langmuir 4:547

    Article  Google Scholar 

  37. Poirier GE, Pylant ED (1996) Science 272:1145

    Article  CAS  Google Scholar 

  38. Hautman J, Klein ML (1989) J Chem Phys 91:4994

    Article  CAS  Google Scholar 

  39. Sellers H, Ulman A, Shnidman Y, Eilers JE (1993) J Am Chem Soc 115:9389

    Article  CAS  Google Scholar 

  40. Mahaffy R, Bhatia R, Garrison B (1997) J Phys Chem B 101:771

    Article  CAS  Google Scholar 

  41. Luedtke WD; Landman U (1996) J Phys Chem 100:13323

    Article  CAS  Google Scholar 

  42. Luedtke WD; Landman U (1998) J Phys Chem B 102:6566

    Article  CAS  Google Scholar 

  43. Grönbeck H, Curioni A, Anderoni W (2000) J Am Chem Soc 122:3839

    Article  Google Scholar 

  44. Yourdshahyan Y, Zhang HK, Rappe AM (2001) Phys Rev B 63:081405

    Article  Google Scholar 

  45. Hayashi T, Morikawa Y, Nozoye H (2001) J Chem Phys 114:7615

    Article  CAS  Google Scholar 

  46. Akinaga Y, Nakajima T, Hirao K (2001) J Chem Phys 114:8555

    Article  CAS  Google Scholar 

  47. Gottschalck J, Hammer B (2002) J Chem Phys 116:784

    Article  CAS  Google Scholar 

  48. Yourdshahyan Y, Rappe AM (2002) J Chem Phys 117:825

    Article  CAS  Google Scholar 

  49. Kondoh H, Iwasaki M, Shimada T, Amemiya K, Tokoyama T, Ohta T (2003) Phys Rev Lett 90:066102

    Article  CAS  Google Scholar 

  50. Roper MG, Skegg MP, Fisher CJ, Lee JJ, Dhanak VR, Woodruff DP, Jones RG (2004) Chem Phys Lett 389:87

    Article  CAS  Google Scholar 

  51. Molina LM, Hammer B (2002) Chem Phys Lett 360:264

    Article  CAS  Google Scholar 

  52. Cometto FP, Paredes-Olivera P, Macagno VA, Patrito EM (2005) J Phys Chem B 109:21737

    Article  CAS  Google Scholar 

  53. Yu M, Bovet N, Satterley CJ, Bengió S, Lovelock KRJ, Milligan PK, Jones RG, Woodruff DP, Dhanak V (2006) Phys Rev Lett 97:166102

    Article  Google Scholar 

  54. Maksymovych P, Sorescu DC, Yates JT Jr. (2006) Phys Rev Lett 97:146103

    Article  Google Scholar 

  55. Mazzarello R, Cossaro A, Verdini A, Rousseau R, Casalis L, Danisman MF, Floreano L, Scandolo S, Morgante A, Scoles G (2007) Phys Rev Lett 98:016012

    Article  Google Scholar 

  56. Nagoya A, Morikawa Y (2007) J Phys Cond Matt 19:365245

    Article  Google Scholar 

  57. Jadzinsky P, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Science 318:430

    Article  CAS  Google Scholar 

  58. Martin TP (1996) Phys Rep 273:200

    Article  Google Scholar 

  59. Walter M, Akola J, Lopez-Acevedo O, Jadzinsky PD, Calero G, Ackerson CL, Whetten RL, Grönbeck H, Häkkinen H (2008) Proc Natl Ac Sci 105:9157

    Article  CAS  Google Scholar 

  60. Cossaro A, Mazzarello R, Rousseau R, Casalis L, Verdini A, Kohlmeyer A, Floreano L, Scandolo S, Morgante A, Klein ML, Scoles G (2008) Science 321:943

    Article  CAS  Google Scholar 

  61. Grönbeck H, Häkkinen H, Whetten RL (2008) J Phys Chem C 112:15940

    Article  Google Scholar 

  62. Lavrich DJ, Wetterer SM, Bernasek SL, Scoles G (1998) J Phys Chem B 102:3456

    Article  CAS  Google Scholar 

  63. Schaaff TG, Shafigullin MN, Khoury JT, Vezmar I, Whetten RL, Cullen WG, First PN, Gutiérrez-Wing C, Ascencio J, Yacamán MJ (1997) J Phys Chem B 101:7885

    Article  CAS  Google Scholar 

  64. Chen S, Ingram RS, Hostetler MJ, Pietron JJ, Murray RW, Schaaff TG, Khoury JT, Alvarez MM, Whetten RL (1998) Science 280:2098

    Article  CAS  Google Scholar 

  65. Häkkinen H, Barnett RN, Landman U (1999) Phys Rev Lett 82:3264

    Article  Google Scholar 

  66. Rossi G, Ferrando R, Rapallo A, Fortunelli A, Curley BC, Lloyd LD, Johnston RL (2005) J Chem Phys 122:194309

    Article  Google Scholar 

  67. Garzón IL, Rovira C, Michaelian K, Beltrán MR, Ordejón P, Junquera J, Sánchez-Portal D, Artacho E, Soler JM (2000) Phys Rev Lett 85:5250

    Article  Google Scholar 

  68. Garzón IL, Reyes-Nava JA, Rodríguez-Hernández JI, Sigal I, Beltrán MR, Michaelian K (2002) Phys Rev B 66:073403

    Article  Google Scholar 

  69. Garzón IL, Michaelian K, Beltrán MR, Posada-Amarillas A, Ordejón P, Artacho E, Sánchez-Portal D, Soler JM (1998) Phys Rev Lett 81:1600

    Article  Google Scholar 

  70. Häkkinen H, Walter M, Grönbeck H (2006) J Phys Chem B 110:9927

    Article  Google Scholar 

  71. Jiang DE, Tiago ML, Luo WD, Dai S (2008) J Am Chem Soc 130:2777

    Article  CAS  Google Scholar 

  72. Jiang DE, Tiago ML, Luo WD, Dai S (2008) J Phys Chem C 112:13905

    Article  CAS  Google Scholar 

  73. Pei Y, Gao Y, Zeng XC (2008) J Am Chem Soc 130:7830

    Article  CAS  Google Scholar 

  74. Tsunoyama H, Nickut P, Negishi Y, Al-Shamery K, Matsumoto Y, Tsukuda T (2007) J Phys Chem C 111:4153

    Article  CAS  Google Scholar 

  75. Whetten RL, Price RC (2007) Science 318:407

    Article  CAS  Google Scholar 

  76. Gao Y, Shao N, Zeng XC (2008) ACS Nano 2:1497

    Article  CAS  Google Scholar 

  77. Li Y, Galli G, Gygi F (2008) ACS Nano 2:1896

    Article  CAS  Google Scholar 

  78. Landman U, Luedtke WD (2004) Faraday Discuss 125:1

    Article  CAS  Google Scholar 

  79. Henz BJ, Hawa T, Zachariah MR (2008) Langmuir 24:773

    Article  CAS  Google Scholar 

  80. Pool R, Schapotschnikow P, Vlugt TJH (2007) J Phys Chem C 111:10201

    Article  CAS  Google Scholar 

  81. Jimenez A, Sarsa A, Blazquez M, Pineda T (2010) J Phys Chem C 114:21309

    Article  CAS  Google Scholar 

  82. Zhao XC, Leng YS, Cummings PT (2006) Langmuir 22:4116

    Article  CAS  Google Scholar 

  83. Mariscal MM, Olmos-Asar JA, Gutierrez-Wing C, Mayoral A, Yacamán MJ (2010) Phys Chem Chem Phys 12:11785

    Article  CAS  Google Scholar 

  84. Olmos-Asar JA, Rapallo A, Mariscal MM (2011) Phys Chem Chem Phys 13:6500

    Article  CAS  Google Scholar 

  85. Jiang DE (2010) Acta Phys Chim Sin 26:999

    CAS  Google Scholar 

  86. Hostetler MJ, Wingate JE, Jian Zhong C, Harris JE, Vachet RW, Clark MR, Londono JD, Green SJ, Stokes JJ, Wignall GD, Glish GL, Porter MD, Evans ND, Murray RW (1998) Langmuir 14:17

    Google Scholar 

  87. Schapotschnikow P, Pool R, Vlugt TJH (2008) Nano Lett 8:2930

    Article  CAS  Google Scholar 

  88. Khan SJ, Pierce F, Sorensen CM, Chakrabarti A (2009) Langmuir 25:13861

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge CONICET PIP: 112–200801–000983, Secyt UNC, Program BID (PICT 2007 N1 00340), and PME: 2006–01581 for financial support, and Gabriela Diaz Cortez for her language assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo M. Mariscal .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Olmos-Asar, J.A., Mariscal, M.M. (2013). Modeling of Protected Nanoparticles. In: Metal Clusters and Nanoalloys. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3643-0_9

Download citation

Publish with us

Policies and ethics