Skip to main content

Mitochondrial Respiratory Chain Complex II

  • Chapter
  • First Online:
Mitochondrial Disorders Caused by Nuclear Genes

Abstract

Mitochondrial succinate dehydrogenase (SDH), complex II, is an important component of both the mitochondrial respiratory chain and the Krebs cycle. This is the only one of the mitochondrial respiratory chain complexes that is completely encoded by nuclear genes; SDHA, B, C, and D. Recently, two nuclear-encoded assembly factors SDHFA1 and 2 have been identified. Mutations in all four subunit genes and the two assembly factors have now been reported. SDHA and SDHFA1 mutations primarily cause encephalomyopathy in childhood while mutations in the other three subunits and SDHFA2 have been associated with tumor formation. SDH oxidizes succinate as part of the Krebs cycle and in tandem effects the transfer of electrons to ubiquinone. Mutations affecting the former function appear to result in encephalomyelopathy, while mutations affecting electron transfer within the complex appear to result in tumor formation. The dual role of SDH thus appears to account for the major differences in the phenotypes associated with SDH deficiency. This chapter explores the structure and function of the different subunits of SDH, their role in mitochondrial function, and how their dysfunction results in disease. Identifying SDH mutations as important underlying causes of disease enables genetic counseling, early diagnosis, and management of at risk relatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun F et al (2005) Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121(7):1043–1057

    Article  PubMed  CAS  Google Scholar 

  2. Lancaster CR (2002) Succinate:Quinone oxidoreductases: an overview. Biochim Biophys Acta 1553(1–2):1–6

    PubMed  CAS  Google Scholar 

  3. Rutter J Winge DR, Schiffman JD (2010) Succinate dehydrogenase—assembly, regulation and role in human disease. Mitochondrion 10(4):393–401

    Article  PubMed  CAS  Google Scholar 

  4. Robinson KM et al (1994) The covalent attachment of FAD to the flavoprotein of Saccharomyces cerevisiae succinate dehydrogenase is not necessary for import and assembly into mitochondria. Eur J Biochem 222(3):983–990

    Article  PubMed  CAS  Google Scholar 

  5. Rustin P, Rotig A (2002) Inborn errors of complex II—unusual human mitochondrial diseases. Biochim Biophys Acta 1553(1–2):117–22

    PubMed  CAS  Google Scholar 

  6. Schafer G, Anemuller S, Moll R (2002) Archaeal complex II: ‘Classical’ and ‘non-classical’ succinate:quinone reductases with unusual features. Biochim Biophys Acta 1553(1–2):57–73

    PubMed  CAS  Google Scholar 

  7. Ghezzi D et al (2009) SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy. Nat Genet 41(6):654–656

    Article  PubMed  CAS  Google Scholar 

  8. Hao HX et al (2009) SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 325(5944):1139–1142

    Article  PubMed  CAS  Google Scholar 

  9. Sucheta A et al (1992) Diode-like behaviour of a mitochondrial electron-transport enzyme. Nature 356(6367):361–362

    Article  PubMed  CAS  Google Scholar 

  10. Yankovskaya V et al (2003) Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299(5607):700–704

    Article  PubMed  CAS  Google Scholar 

  11. Finsterer J (2008) Leigh and Leigh-like syndrome in children and adults. Pediatr Neurol 39(4):223–235

    Article  PubMed  Google Scholar 

  12. Guzy RD et al (2008) Loss of the SdhB, but not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. Mol Cell Biol 28(2):718–731.

    Article  PubMed  CAS  Google Scholar 

  13. Rivner MH et al (1989) Kearns-Sayre syndrome and complex II deficiency. Neurology 39(5):693–696

    Article  PubMed  CAS  Google Scholar 

  14. Reichmann H, Angelini C (1994) Single muscle fibre analyses in 2 brothers with succinate dehydrogenase deficiency. Eur Neurol 34(2):95–98

    Article  PubMed  CAS  Google Scholar 

  15. Bourgeron T et al (1995) Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat Genet 11(2):144–149

    Article  PubMed  CAS  Google Scholar 

  16. Parfait B et al (2000) Compound heterozygous mutations in the flavoprotein gene of the respiratory chain complex II in a patient with Leigh syndrome. Hum Genet 106(2):236–243

    Article  PubMed  CAS  Google Scholar 

  17. Van Coster R et al (2003) Homozygous Gly555Glu mutation in the nuclear-encoded 70 kDa flavoprotein gene causes instability of the respiratory chain complex II. Am J Med Genet A 120A(1):13–18

    Article  PubMed  Google Scholar 

  18. Horvath R et al (2006) Leigh syndrome caused by mutations in the flavoprotein (Fp) subunit of succinate dehydrogenase (SDHA). J Neurol Neurosurg Psychiatry 77(1):74–76

    Article  PubMed  CAS  Google Scholar 

  19. Taylor RW et al (1996) Deficiency of complex II of the mitochondrial respiratory chain in late-onset optic atrophy and ataxia. Ann Neurol 39(2):224–232

    Article  PubMed  CAS  Google Scholar 

  20. Birch-Machin MA et al (2000) Late-onset optic atrophy, ataxia, and myopathy associated with a mutation of a complex II gene. Ann Neurol 48(3):330–335

    Article  PubMed  CAS  Google Scholar 

  21. Bugiani M et al (2006) Effects of riboflavin in children with complex II deficiency. Brain Dev 28(9):576–581

    Article  PubMed  Google Scholar 

  22. Brockmann K et al (2002) Succinate in dystrophic white matter: a proton magnetic resonance spectroscopy finding characteristic for complex II deficiency. Ann Neurol 52(1):38–46

    Article  PubMed  CAS  Google Scholar 

  23. Saneto RP, Friedman SD, Shaw DW (2008) Neuroimaging of mitochondrial disease. Mitochondrion 8(5–6):396–413

    Article  PubMed  CAS  Google Scholar 

  24. Moroni I et al (2002) Cerebral white matter involvement in children with mitochondrial encephalopathies. Neuropediatrics 33(2):79–85

    Article  PubMed  CAS  Google Scholar 

  25. Pasini B , Stratakis CA (2009) SDH mutations in tumorigenesis and inherited endocrine tumours: lesson from the phaeochromocytoma-paraganglioma syndromes. J Intern Med 266(1):19–42

    Article  PubMed  CAS  Google Scholar 

  26. Baysal BE (2002) Hereditary paraganglioma targets diverse paraganglia. J Med Genet 39(9):617–622

    Article  PubMed  CAS  Google Scholar 

  27. Heutink P et al (1992) A gene subject to genomic imprinting and responsible for hereditary paragangliomas maps to chromosome 11q23-qter. Hum Mol Genet 1(1):7–10

    Article  PubMed  CAS  Google Scholar 

  28. Mariman EC et al (1995) Fine mapping of a putatively imprinted gene for familial non-chromaffin paragangliomas to chromosome 11q13.1: evidence for genetic heterogeneity. Hum Genet 95(1):56–62

    Article  PubMed  CAS  Google Scholar 

  29. Niemann S et al (2001) Assignment of PGL3 to chromosome 1 (q21-q23) in a family with autosomal dominant non-chromaffin paraganglioma. Am J Med Genet 98(1):32–36

    Article  PubMed  CAS  Google Scholar 

  30. Welander J, Soderkvist P, Gimm O (2011) Genetics and clinical characteristics of hereditary pheochromocytomas and paragangliomas. Endocr Relat Cancer 18(6): R253–R276

    Article  PubMed  CAS  Google Scholar 

  31. Bardella C, Pollard PJ, Tomlinson I (2011) SDH mutations in cancer. Biochim Biophys Acta 1807(11):1432–1443

    Article  PubMed  CAS  Google Scholar 

  32. Muller U (2011) Pathological mechanisms and parent-of-origin effects in hereditary paraganglioma/pheochromocytoma (PGL/PCC). Neurogenetics 12(3):175–181

    Article  PubMed  Google Scholar 

  33. Baysal BE et al (2000) Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287(5454):848–851

    Article  PubMed  CAS  Google Scholar 

  34. Niemann S, Muller U (2000) Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet 26(3):268–270

    Article  PubMed  CAS  Google Scholar 

  35. Astuti D et al (2001) Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 69(1):49–54

    Article  PubMed  CAS  Google Scholar 

  36. Burnichon N et al (2010) SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet 19(15):3011–3020

    Article  PubMed  CAS  Google Scholar 

  37. Semenza GL (2004) Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda) 19:176–182

    Article  CAS  Google Scholar 

  38. Smith TG, Robbins PA, Ratcliffe PJ (2008) The human side of hypoxia-inducible factor. Br J Haematol 141(3):325–334

    Article  PubMed  CAS  Google Scholar 

  39. Baysal BE, Myers EN (2002) Etiopathogenesis and clinical presentation of carotid body tumors. Microsc Res Tech 59(3):256–261

    Article  PubMed  Google Scholar 

  40. King A, Selak MA, Gottlieb E (2006) Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene 25(34):4675–82

    Article  PubMed  CAS  Google Scholar 

  41. Fogg VC, Lanning NJ, Mackeigan JP (2011) Mitochondria in cancer: at the crossroads of life and death. Chin J Cancer 30(8):526–539

    Article  PubMed  CAS  Google Scholar 

  42. Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    Article  PubMed  CAS  Google Scholar 

  43. Gottlieb E, Tomlinson IP (2005) Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev Cancer 5(11):857–66

    Article  PubMed  CAS  Google Scholar 

  44. Lee S et al (2005) Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. Cancer Cell 8(2):155–167

    Article  PubMed  Google Scholar 

  45. Korpershoek E et al (2011) SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas. J Clin Endocrinol Metab 96(9):E1472–E1476

    Article  PubMed  CAS  Google Scholar 

  46. Douwes Dekker PB et al (2003) SDHD mutations in head and neck paragangliomas result in destabilization of complex II in the mitochondrial respiratory chain with loss of enzymatic activity and abnormal mitochondrial morphology. J Pathol 201(3):480–486

    Article  Google Scholar 

  47. Saldana MJ, Salem LE, Travezan R (1973) High altitude hypoxia and chemodectomas. Hum Pathol 4(2):251–263

    Article  PubMed  CAS  Google Scholar 

  48. Astrom K et al (2003) Altitude is a phenotypic modifier in hereditary paraganglioma type 1: evidence for an oxygen-sensing defect. Hum Genet 113(3):228–237

    Article  PubMed  Google Scholar 

  49. Astuti D et al (2011) Mutation analysis of HIF prolyl hydroxylases (PHD/EGLN) in individuals with features of phaeochromocytoma and renal cell carcinoma susceptibility. Endocr Relat Cancer 18(1):73–83

    Article  PubMed  CAS  Google Scholar 

  50. Baysal BE (2008) Clinical and molecular progress in hereditary paraganglioma. J Med Genet 45(11):689–694

    Article  PubMed  CAS  Google Scholar 

  51. Cascon A et al (2004) Genetic and epigenetic profile of sporadic pheochromocytomas. J Med Genet 41(3):e30

    Google Scholar 

  52. Pigny P et al (2008) Paraganglioma after maternal transmission of a succinate dehydrogenase gene mutation. J Clin Endocrinol Metab 93(5):1609–1615

    Article  PubMed  CAS  Google Scholar 

  53. Hensen EF et al (2004) Somatic loss of maternal chromosome 11 causes parent-of-origin-dependent inheritance in SDHD-linked paraganglioma and phaeochromocytoma families. Oncogene 23(23):4076–4083

    Article  PubMed  CAS  Google Scholar 

  54. Bayley JP, Devilee P, Taschner PE (2005) The SDH mutation database: an online resource for succinate dehydrogenase sequence variants involved in pheochromocytoma, paraganglioma and mitochondrial complex II deficiency. BMC Med Genet 6:39

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

To all the patients and their families who inspire us every day.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth B. Gorman Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ganesh, J., Wong, LJ., Gorman, E. (2013). Mitochondrial Respiratory Chain Complex II. In: Wong, LJ. (eds) Mitochondrial Disorders Caused by Nuclear Genes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3722-2_13

Download citation

Publish with us

Policies and ethics