Skip to main content

Stem Cell Pathways in Brain Tumors

  • Chapter
  • First Online:
Neural Development and Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1140 Accesses

Abstract

Malignant brain tumors (including medulloblastoma, ependymoma, and high-grade gliomas) are among the most lethal cancers and are associated with poor survival rates despite advances in basic science and clinical management. These tumors are surgically removed when possible and treated with radiation and chemotherapy, however they often recur due to their infiltrative nature and a fraction of cells that is refractory to therapy. These resistant cells have self-renewal properties along with the ability to propagate a heterogeneous tumor upon transplantation in a mouse model and have been termed cancer stem cells. Cancer stem cells within the brain have been shown to be resistant to therapies including radiation and chemotherapy and rely on stem cell signaling pathways to promote their self-renewal. In addition to brain tumors, cancer stem cells have been identified in a variety of other solid tumors and provide an additional conceptual link between cancer and developmental biology that is likely to generate insight into both fields. Here we will discuss the basic biology of cancer stem cells within malignant brain tumors, provide an update on intrinsic and extrinsic pathways that regulate cancer stem cell maintenance, and outline the technology associated with enrichment strategies for cancer stem cells and the use of genetic animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson K et al (2011) Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469:356–361

    Google Scholar 

  2. Reya T et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    PubMed  CAS  Google Scholar 

  3. Rosen JM, Jordan CT (2009) The increasing complexity of the cancer stem cell paradigm. Science 324(5935):1670–1673

    PubMed  CAS  Google Scholar 

  4. Singh SK et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828

    PubMed  CAS  Google Scholar 

  5. Singh SK et al (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401

    PubMed  CAS  Google Scholar 

  6. Ignatova TN et al (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39(3):193–206

    PubMed  Google Scholar 

  7. Galli R et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64(19):7011–7021

    PubMed  CAS  Google Scholar 

  8. Hemmati HD et al (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 100(25):15178–15183

    PubMed  CAS  Google Scholar 

  9. Stupp R et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466

    PubMed  CAS  Google Scholar 

  10. Bao S et al (2006) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66(16):7843–7848

    PubMed  CAS  Google Scholar 

  11. Bao S et al (2003) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Google Scholar 

  12. Liu G et al (2006) Analysis of gene expression and chemoresistance of CD133 + cancer stem cells in glioblastoma. Mol Cancer 5:67

    PubMed  Google Scholar 

  13. Gilbertson RJ, Rich JN (2007) Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7(10):733–736

    PubMed  CAS  Google Scholar 

  14. Vescovi AL, Galli R, Reynolds BA (2006) Brain tumour stem cells. Nat Rev Cancer 6(6):425–436

    PubMed  CAS  Google Scholar 

  15. Son MJ et al (2009) SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell 4(5):440–452

    PubMed  CAS  Google Scholar 

  16. Ogden AT et al(2008) Identification of A2B5 + CD133- tumor-initiating cells in adult human gliomas. Neurosurgery 62(2):505–514 (discussion 514–5)

    Google Scholar 

  17. Bao S et al (2008) Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res 68(15):6043–6048

    PubMed  CAS  Google Scholar 

  18. Lathia JD et al (2010) Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell. 6(5):421–432

    Google Scholar 

  19. Mazzoleni S et al (2010) Epidermal growth factor receptor expression identifies functionally and molecularly distinct tumor-initiating cells in human glioblastoma multiforme and is required for gliomagenesis. Cancer Res 70(19):7500–7513

    Google Scholar 

  20. Anido J et al (2010) TGF-beta receptor inhibitors target the CD44(high)/Id1(high) glioma-initiating cell population in human glioblastoma. Cancer Cell 18(6):655–668

    Google Scholar 

  21. Read TA et al (2009) Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma. Cancer Cell 15(2):135–147

    PubMed  CAS  Google Scholar 

  22. Ward RJ et al (2009) Multipotent CD15 + cancer stem cells in patched-1-deficient mouse medulloblastoma. Cancer Res 69(11):4682–4690

    PubMed  CAS  Google Scholar 

  23. Singec I et al (2006) Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology. Nat Methods 3(10):801–806

    PubMed  CAS  Google Scholar 

  24. Reynolds BA, Rietze RL (2005) Neural stem cells and neurospheres–re-evaluating the relationship. Nat Methods 2(5):333–336

    PubMed  CAS  Google Scholar 

  25. Uchida N et al (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A 97(26):14720–14725

    PubMed  CAS  Google Scholar 

  26. Capela A, Temple S (2002) LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron 35(5):865–875

    PubMed  Google Scholar 

  27. Capela A, Temple S (2006) LeX is expressed by principle progenitor cellsprogenitor cells in the embryonic nervous system, is secreted into their environment and binds Wnt-1. Dev Biol 291(2):300–313

    PubMed  CAS  Google Scholar 

  28. Eisenbarth GS, Walsh FS, Nirenberg M (1979) Monoclonal antibody to a plasma membrane antigen of neurons. Proc Natl Acad Sci U S A 76(10):4913–4917

    PubMed  CAS  Google Scholar 

  29. Campos LS et al (2004) Beta1 integrins activate a MAPK signalling pathway in neural stem cells that contributes to their maintenance. Development 131(14):3433–3444

    PubMed  CAS  Google Scholar 

  30. Hall PE et al (2006) Integrins are markers of human neural stem cells. Stem Cells 24(9):2078–2084

    PubMed  CAS  Google Scholar 

  31. Deleyrolle LP et al (2011) Evidence for label-retaining tumour-initiating cells in human glioblastoma. Brain 134:1331–1343

    Google Scholar 

  32. Quintana E et al (2008) Efficient tumour formation by single human melanoma cells. Nature 456(7222):593–598

    PubMed  CAS  Google Scholar 

  33. Qian X et al (2000) Timing of CNSCNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28(1):69–80

    PubMed  CAS  Google Scholar 

  34. Shen Q et al (2006) The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat Neurosci 9(6):743–751

    PubMed  CAS  Google Scholar 

  35. Zencak D et al (2005) Bmi1 loss produces an increase in astroglial cells and a decrease in neural stem cell population and proliferation. J Neurosci 25(24):5774–5783

    PubMed  CAS  Google Scholar 

  36. Ke Y et al (2007) Deletion of Shp2 in the brain leads to defective proliferation and differentiation in neural stem cells and early postnatal lethality. Mol Cell Biol 27(19):6706–6717

    PubMed  CAS  Google Scholar 

  37. Fasano CA et al (2009) Bmi-1 cooperates with Foxg1 to maintain neural stem cell self-renewal in the forebrain. Genes Dev 23(5):561–574

    PubMed  CAS  Google Scholar 

  38. Godlewski J et al (2008) Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68(22):9125–9130

    PubMed  CAS  Google Scholar 

  39. Abdouh M et al (2009) BMI1 sustains human glioblastoma multiforme stem cell renewal. J Neurosci 29(28):8884–8896

    PubMed  CAS  Google Scholar 

  40. Venkataraman S et al (2010) MicroRNA 128a increases intracellular ROS level by targeting Bmi-1 and inhibits medulloblastoma cancer cell growth by promoting senescence. PLoS One 5(6):e10748

    Google Scholar 

  41. He S et al (2009) Bmi-1 over-expression in neural stem/progenitor cells increases proliferation and neurogenesis in culture but has little effect on these functions in vivo. Dev Biol 328(2):257–272

    PubMed  CAS  Google Scholar 

  42. Fasano CA et al (2007) shRNA knockdown of Bmi-1 reveals a critical role for p21-Rb pathway in NSC self-renewal during development. Cell Stem Cell 1(1):87–99

    PubMed  CAS  Google Scholar 

  43. Bruggeman SW et al (2007) Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. Cancer Cell 12(4):328–341

    PubMed  CAS  Google Scholar 

  44. Yu CC et al (2010) Medulloblastoma-derived tumor stem-like cells acquired resistance to TRAIL-induced apoptosis and radiosensitivity. Childs Nerv Syst 26(7):897–904

    Google Scholar 

  45. Tham M et al (2010) CSPG is a secreted factor that stimulates neural stem cell survival possibly by enhanced EGFR signaling. PLoS One 5(12):e15341

    Google Scholar 

  46. Gouti M, Gavalas A (2008) Hoxb1 controls cell fate specification and proliferative capacity of neural stem and progenitor cells. Stem Cells 26(8):1985–1997

    PubMed  CAS  Google Scholar 

  47. Gu F et al (2005) Suppression of Stat3 promotes neurogenesis in cultured neural stem cells. J Neurosci Res 81(2):163–171

    PubMed  CAS  Google Scholar 

  48. Yoshimatsu T et al (2006) Non-cell-autonomous action of STAT3 in maintenance of neural precursor cells in the mouse neocortex. Development 133(13):2553–2563

    PubMed  CAS  Google Scholar 

  49. Wang H et al (2009) Targeting interleukin 6 signaling suppresses glioma stem cell survival and tumor growth. Stem Cells 27(10):2393–2404

    PubMed  CAS  Google Scholar 

  50. Villalva C et al (2011) STAT3 is essential for the maintenance of neurosphere-initiating tumor cells in patients with glioblastomas: a potential for targeted therapy? Int J Cancer 128(4):826–838

    Google Scholar 

  51. Sherry MM et al (2009) STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells. Stem Cells 27(10):2383–2392

    PubMed  CAS  Google Scholar 

  52. Li GH et al (2010) Knockdown of STAT3 expression by RNAi suppresses growth and induces apoptosis and differentiation in glioblastoma stem cells. Int J Oncol 37(1):103–110

    Google Scholar 

  53. Konnikova L et al (2003) Knockdown of STAT3 expression by RNAi induces apoptosis in astrocytoma cells. BMC Cancer 3:23

    PubMed  Google Scholar 

  54. Konnikova L et al (2005) Signal transducer and activator of transcription 3 (STAT3) regulates human telomerase reverse transcriptase (hTERT) expression in human cancer and primary cells. Cancer Res 65(15):6516–6520

    PubMed  CAS  Google Scholar 

  55. Cao Y et al (2011) Erythropoietin receptor signaling through STAT3 is required for glioma stem cell maintenance. Genes Cancer 1(1): 50–61

    Google Scholar 

  56. Yu LJ et al (2008) Inhibition of STAT3 expression and signaling in resveratrol-differentiated medulloblastoma cells. Neoplasia 10(7):736–744

    PubMed  CAS  Google Scholar 

  57. Yang F et al (2005) Sunitinib induces apoptosis and growth arrest of medulloblastoma tumor cells by inhibiting STAT3 and AKT signaling pathways. Mol Cancer Res 8(1):35–45

    Google Scholar 

  58. Yang F et al (2008) Sorafenib inhibits signal transducer and activator of transcription 3 signaling associated with growth arrest and apoptosis of medulloblastomas. Mol Cancer Ther 7(11):3519–3526

    PubMed  CAS  Google Scholar 

  59. Rao G et al (2003) c-Myc enhances sonic hedgehog-induced medulloblastoma formation from nestin-expressing neural progenitors in mice. Neoplasia 5(3):198–204

    PubMed  CAS  Google Scholar 

  60. Zheng H et al (2008) p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 455(7216):1129–1133

    PubMed  CAS  Google Scholar 

  61. Su X et al (2006) Abnormal expression of REST/NRSF and Myc in neural stem/progenitor cells causes cerebellar tumors by blocking neuronal differentiation. Mol Cell Biol 26(5):1666–1678

    PubMed  CAS  Google Scholar 

  62. Wang J et al (2008) c-Myc is required for maintenance of glioma cancer stem cells. PLoS ONE 3(11):e3769

    PubMed  Google Scholar 

  63. Bar EE et al (2007) Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 25(10):2524–2533

    PubMed  CAS  Google Scholar 

  64. Fan X et al (2006) Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 66(15):7445–7452

    PubMed  CAS  Google Scholar 

  65. Fan X et al (2010) NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28(1):5–16

    Google Scholar 

  66. Wang J et al (2010) Notch promotes radioresistance of glioma stem cells. Stem Cells 28(1):17–28

    Google Scholar 

  67. Christensen K , Schroder HD and Kristensen BW (2011) CD133(+) niches and single cells in glioblastoma have different phenotypes. J Neurooncol 104(1):129–143

    Google Scholar 

  68. Dubrovska A et al (2009) The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci U S A 106(1):268–273

    PubMed  CAS  Google Scholar 

  69. Soeda A et al (2009) Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene 28(45):3949–3959

    PubMed  CAS  Google Scholar 

  70. Guryanova OA et al (2011) Nonreceptor tyrosine kinase BMX maintains self-renewal and tumorigenic potential of glioblastoma stem cells by activating STAT3. Cancer Cell 19(4):498–511

    Google Scholar 

  71. Calabrese C et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82

    PubMed  CAS  Google Scholar 

  72. Charles N et al (2010) Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell 6(2):141–152

    Google Scholar 

  73. Hovinga KE et al (2010) Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells 28(6):1019–1029

    Google Scholar 

  74. Halfter W et al (2002) A critical function of the pial basement membrane in cortical histogenesis. J Neurosci 22(14):6029–6040

    PubMed  CAS  Google Scholar 

  75. Kazanis I et al (2010) Quiescence and activation of stem and precursor cell populations in the subependymal zone of the mammalian brain are associated with distinct cellular and extracellular matrix signals. J Neurosci 30(29):9771–9781

    Google Scholar 

  76. Lathia JD et al (2007) Patterns of laminins and integrins in the embryonic ventricular zone of the CNSCNS. J Comp Neurol 505(6):630–643

    PubMed  Google Scholar 

  77. Kerever A et al (2007) Novel extracellular matrix structures in the neural stem cell niche capture the neurogenic factor fibroblast growth factor 2 from the extracellular milieu. Stem Cells 25(9):2146–2157

    PubMed  CAS  Google Scholar 

  78. Mercier F, Kitasako JT, Hatton GI (2002) Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network. J Comp Neurol 451(2):170–188

    PubMed  Google Scholar 

  79. Kawataki T et al (2007) Laminin isoforms and their integrin receptors in glioma cell migration and invasiveness: Evidence for a role of alpha5-laminin(s) and alpha3beta1 integrin. Exp Cell Res 313(18):3819–3831

    PubMed  CAS  Google Scholar 

  80. Ljubimova JY et al (2004) Association between laminin-8 and glial tumor grade, recurrence, and patient survival. Cancer 101(3):604–612

    PubMed  Google Scholar 

  81. Hambardzumyan D et al (2008) PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev 22(4):436–448

    PubMed  CAS  Google Scholar 

  82. Paez-Ribes M et al (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15(3):220–231

    PubMed  CAS  Google Scholar 

  83. Ricci-Vitiani L et al (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468(7325):824–828

    Google Scholar 

  84. Wang R et al (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468(7325):829–833

    Google Scholar 

  85. Pries AR et al (2010) The shunt problem: control of functional shunting in normal and tumour vasculature. Nat Rev Cancer 10(8):587–593

    Google Scholar 

  86. Li Z et al (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15(6):501–513

    PubMed  CAS  Google Scholar 

  87. Pietras A et al (2009) HIF-2alpha maintains an undifferentiated state in neural crest-like human neuroblastoma tumor-initiating cells. Proc Natl Acad Sci U S A 106(39):16805–16810

    PubMed  CAS  Google Scholar 

  88. Seidel S et al (2010) A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain 133(Pt 4):983–995

    Google Scholar 

  89. Heddleston JM et al (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8(20):3274–3284

    PubMed  CAS  Google Scholar 

  90. Covello KL et al (2006) HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev 20(5):557–570

    PubMed  CAS  Google Scholar 

  91. Mohyeldin A, Garzon-Muvdi T and Quinones-Hinojosa A (2010) Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7(2):150–161

    Google Scholar 

  92. Shen Q et al (2008) Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3(3):289–300

    PubMed  CAS  Google Scholar 

  93. Keith B, Simon MC (2007) Hypoxia-inducible factors, stem cells, and cancer. Cell 129(3):465–472

    PubMed  CAS  Google Scholar 

  94. Studer L et al (2000) Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci 20(19):7377–7383

    PubMed  CAS  Google Scholar 

  95. Mazumdar J et al (2010) O2 regulates stem cells through Wnt/beta-catenin signalling. Nat Cell Biol 12(10):1007–1013

    Google Scholar 

  96. Schwartz DL et al (2009) The selective hypoxia inducible factor-1 inhibitor PX-478 provides in vivo radiosensitization through tumor stromal effects. Mol Cancer Ther 8(4):947–958

    PubMed  CAS  Google Scholar 

  97. Mendez O et al (2010) Knock down of HIF-1alpha in glioma cells reduces migration in vitro and invasion in vivo and impairs their ability to form tumor spheres. Mol Cancer 9:133

    Google Scholar 

  98. Pistollato F et al (2010) Interaction of hypoxia-inducible factor-1alpha and Notch signaling regulates medulloblastoma precursor proliferation and fate. Stem Cells 28(11):1918–1929

    Google Scholar 

  99. Piccirillo SG et al (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444(7120):761–765

    PubMed  CAS  Google Scholar 

  100. Penuelas S et al (2009) TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell 15(4):315–327

    PubMed  CAS  Google Scholar 

  101. Verhaak RG et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110

    PubMed  CAS  Google Scholar 

  102. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 45 5(7216):1061–1068

    Google Scholar 

  103. Phillips HS et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173

    PubMed  CAS  Google Scholar 

  104. Hambardzumyan D et al (2011) Genetic modeling of gliomas in mice: New tools to tackle old problems. Glia 59(8):1155–1168

    Google Scholar 

  105. Dai C et al (2001) PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 15(15):1913–1925

    PubMed  CAS  Google Scholar 

  106. Holland EC et al (2000) Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 25(1):55–57

    PubMed  CAS  Google Scholar 

  107. Holland EC et al (1998) A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev 12(23):3675–3685

    PubMed  CAS  Google Scholar 

  108. Zhu Y et al (2005) Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8(2):119–130

    PubMed  CAS  Google Scholar 

  109. Kwon CH et al (2008) Pten haploinsufficiency accelerates formation of high-grade astrocytomas. Cancer Res 68(9):3286–3294

    PubMed  CAS  Google Scholar 

  110. Alcantara Llaguno S (2009) Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell 15(1):45–56

    PubMed  Google Scholar 

  111. Jacques TS et al (2010) Combinations of genetic mutations in the adult neural stem cell compartment determine brain tumour phenotypes. EMBO J 29(1):222–235

    PubMed  CAS  Google Scholar 

  112. Marumoto T et al (2009) Development of a novel mouse glioma model using lentiviral vectors. Nat Med 15(1):110–116

    PubMed  CAS  Google Scholar 

  113. Wang Y et al (2009) Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model. Cancer Cell 15(6):514–526

    PubMed  CAS  Google Scholar 

  114. Gibson Pet al (2010) Subtypes of medulloblastoma have distinct developmental origins. Nature 468(7327):1095–1099

    Google Scholar 

  115. Lindberg N et al (2009) Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma. Oncogene 28(23):2266–2275

    PubMed  CAS  Google Scholar 

  116. Hambardzumyan D et al (2009) Modeling Adult Gliomas Using RCAS/t-va Technology. Transl Oncol 2(2):89–95

    PubMed  Google Scholar 

  117. Zhu H et al (2009) Oncogenic EGFR signaling cooperates with loss of tumor suppressor gene functions in gliomagenesis. Proc Natl Acad Sci U S A 106(8):2712–2716

    PubMed  CAS  Google Scholar 

  118. Chow LM et al (2011) Cooperativity within and among Pten, p53, and Rb Pathways Induces High-Grade Astrocytoma in Adult Brain. Cancer Cell 19(3):305–316

    PubMed  CAS  Google Scholar 

  119. Dai B et al (2010) FoxM1B regulates NEDD4-1 expression, leading to cellular transformation and full malignant phenotype in immortalized human astrocytes. Cancer Res 70(7):2951–2961

    PubMed  CAS  Google Scholar 

  120. Huse JT, Holland EC (2010) Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer 10(5):319–331

    PubMed  CAS  Google Scholar 

  121. Rao G et al (2004) Sonic hedgehog and insulin-like growth factor signaling synergize to induce medulloblastoma formation from nestin-expressing neural progenitors in mice. Oncogene 23(36):6156–6162

    PubMed  CAS  Google Scholar 

  122. Yang ZJ et al (2008) Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell 14(2):135–145

    PubMed  CAS  Google Scholar 

  123. Sutter R et al (2010) Cerebellar stem cells act as medulloblastoma-initiating cells in a mouse model and a neural stem cell signature characterizes a subset of human medulloblastomas. Oncogene 29(12):1845–1856

    PubMed  CAS  Google Scholar 

  124. Marino S et al (2000) Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev 14(8):994–1004

    PubMed  CAS  Google Scholar 

  125. Gibson P et al (2010) Subtypes of medulloblastoma have distinct developmental origins. Nature 468(7327):1095–1099

    PubMed  CAS  Google Scholar 

  126. Lathia JD et al (2011) Seeing is believing: are cancer stem cells the loch ness monster of tumor biology? Stem Cell Rev 7(2):227–237

    Google Scholar 

  127. Huang EH et al (2009) Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 69(8):3382–3389

    PubMed  CAS  Google Scholar 

  128. Carpentino JE et al (2009) Aldehyde dehydrogenase-expressing colon stem cells contribute to tumorigenesis in the transition from colitis to cancer. Cancer Res 69(20):8208–8215

    PubMed  CAS  Google Scholar 

  129. Cheung AM et al (2007) Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential. Leukemia 21(7):1423–1430

    PubMed  CAS  Google Scholar 

  130. Ran D et al (2009) Aldehyde dehydrogenase activity among primary leukemia cells is associated with stem cell features and correlates with adverse clinical outcomes. Exp Hematol 37(12):1423–1434

    PubMed  CAS  Google Scholar 

  131. Pearce DJ et al (2005) Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples. Stem Cells 23(6):752–760

    PubMed  CAS  Google Scholar 

  132. Ma S et al (2008) Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol Cancer Res 6(7):1146–1153

    PubMed  CAS  Google Scholar 

  133. Ucar D et al (2009) Aldehyde dehydrogenase activity as a functional marker for lung cancer. Chem Biol Interact 178(1–3):48–55

    PubMed  CAS  Google Scholar 

  134. Ginestier C et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567

    PubMed  CAS  Google Scholar 

  135. Kadowaki M et al (2007) N-cadherin mediates cortical organization in the mouse brain. Dev Biol 304(1):22–33

    PubMed  CAS  Google Scholar 

  136. Walker MM et al (2008) The intercellular adhesion molecule, cadherin-10, is a marker for human prostate luminal epithelial cells that is not expressed in prostate cancer. Mod Pathol 21(2):85–95

    PubMed  CAS  Google Scholar 

  137. Hendrix MJ et al (2001) Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc Natl Acad Sci U S A 98(14):8018–8023

    PubMed  CAS  Google Scholar 

  138. Wang L et al (2007) Ph +/VE-cadherin + identifies a stem cell like population of acute lymphoblastic leukemia sustained by bone marrow niche cells. Blood 110(9):3334–3344

    PubMed  CAS  Google Scholar 

  139. Li C et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037

    PubMed  CAS  Google Scholar 

  140. Vermeulen L et al (2008) Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci U S A 105(36):13427–13432

    PubMed  CAS  Google Scholar 

  141. Chan KS et al (2009) Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc Natl Acad Sci U S A 106(33):14016–14021

    PubMed  CAS  Google Scholar 

  142. Al-Hajj M et al (2003) Prospective identification of tumorigenic breast cancer cells. P Natl Acad Sci USA 100(7):3983–3988

    CAS  Google Scholar 

  143. Chu P et al (2009) Characterization of a subpopulation of colon cancer cells with stem cell-like properties. Int J Cancer 124(6):1312–1321

    PubMed  CAS  Google Scholar 

  144. Takaishi S et al (2009) Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 27(5):1006–1020

    PubMed  CAS  Google Scholar 

  145. Prince ME et al (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 104(3):973–978

    PubMed  CAS  Google Scholar 

  146. Zhang S et al (2008) Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68(11):4311–4320

    PubMed  CAS  Google Scholar 

  147. Patrawala L et al (2006) Highly purified CD44 + prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25(12):1696–1708

    PubMed  CAS  Google Scholar 

  148. Lee A et al (2005) Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci 8(6):723–729

    PubMed  CAS  Google Scholar 

  149. O’Brien CA et al (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123):106–110

    PubMed  Google Scholar 

  150. Ricci-Vitiani L et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445(7123):111–115

    PubMed  CAS  Google Scholar 

  151. Nagato M et al (2005) Prospective characterization of neural stem cells by flow cytometry analysis using a combination of surface markers. J Neurosci Res 80(4):456–466

    PubMed  CAS  Google Scholar 

  152. Vaillant F et al (2008) The mammary progenitor marker CD61/beta3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res 68(19):7711–7717

    PubMed  CAS  Google Scholar 

  153. Zhang M et al (2008) Identification of tumor-initiating cells in a p53-null mouse model of breast cancer. Cancer Res 68(12):4674–4682

    PubMed  CAS  Google Scholar 

  154. Patrawala L et al (2007) Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44 + alpha2beta1 + cell population is enriched in tumor-initiating cells. Cancer Res 67(14):6796–6805

    PubMed  CAS  Google Scholar 

  155. Mulholland DJ et al (2009) Lin-Sca-1 + CD49fhigh stem/progenitors are tumor-initiating cells in the Pten-null prostate cancer model. Cancer Res 69(22):8555–8562

    PubMed  CAS  Google Scholar 

  156. Matsui W et al (2004) Characterization of clonogenic multiple myeloma cells. Blood 103(6):2332–2336

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely apologize to those whose work we were unable to discuss due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin D. Lathia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lathia, J.D., Li, M., Bonnamain, V., Rich, J.N. (2012). Stem Cell Pathways in Brain Tumors. In: Rao, M., Carpenter, M., Vemuri, M. (eds) Neural Development and Stem Cells. Stem Cell Biology and Regenerative Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3801-4_13

Download citation

Publish with us

Policies and ethics