Skip to main content

Downstream Pathways of Adenosine

  • Chapter
  • First Online:
Adenosine

Abstract

Adenosine belongs to the class of neuromodulators rather than neurotransmitters, since it is not stored in vesicles, nor released by exocytosis as a classical neurotransmitter. Moreover, it does not induce synaptic potentials but influences the release and the action of neurotransmitters. This mostly occurs through interactions with other G protein-coupled receptors as well as of receptors for neurotrophic factors, ion channels, ionotropic receptors, and neurotransmitter transporters. The actions of adenosine are operated by four different G protein-coupled membrane receptors (A1, A2A, A2B, A3), which activate several downstream signaling pathways, the main focus of the present review. Cross talk between adenosine receptors and receptors for neurotransmitters or other neuromodulators may result from interactions between common signaling cascades, as well as through receptor–receptor interactions, including receptor heteromerization. The key receptor in this synaptic interplay appears to be the A2A receptor, whereas A1 receptors mainly act as modulators of neurotransmitter release or by counteracting A2A receptor-mediated actions. We herein review some of the most recent data on the regulation of adenosine availability, as well as on the consequences of adenosine actions in synapses and the corresponding downstream signaling pathways. Moreover, we discuss how activation of adenosine receptors and regulation of extracellular adenosine levels is operated by combined mechanisms. It is highlighted that modulation of neuronal activity by adenosine involves a diversity of enzymes, receptors and signaling cascades that act in a concerted way to fine tune the activity of neurons and glia, including astrocyte-to-neuron signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altamura AC, Bassetti R, Cattaneo E, Vismara S (2005) Some biological correlates of drug resistance in schizophrenia: a multidimensional approach. World J Biol Psychiatry 6(suppl 2):23–30

    Article  PubMed  Google Scholar 

  • Andresen BT, Gillespie DG, Mi Z, Dubey RK, Jackson EK (1999) Role of adenosine A(1) receptors in modulating extracellular adenosine levels. J Pharmacol Exp Ther 291:76–80

    PubMed  CAS  Google Scholar 

  • Aronica E, Zurolo E, Iyer A, de Groot M, Anink J, Carbonell C, van Vliet EA, Baayen JC, Boison D, Gorter JA (2011) Upregulation of adenosine kinase in astrocytes in experimental and human temporal lobe epilepsy. Epilepsia 52:1645–1655

    Article  PubMed  CAS  Google Scholar 

  • Assaife-Lopes N, Sousa VC, Pereira DB, Ribeiro JA, Chao MV, Sebastião AM (2010) Activation of adenosine A2A receptors induces TrkB translocation and increases BDNF-mediated phospho-TrkB localization in lipid rafts: implications for neuromodulation. J Neurosci 30:8468–8480

    Article  PubMed  CAS  Google Scholar 

  • Baldwin SA, Mackey JR, Cass CE, Young JD (1999) Nucleoside transporters: molecular biology and implications for therapeutic development. Mol Med Today 5:216–224

    Article  PubMed  CAS  Google Scholar 

  • Baldwin SA, Beal PR, Yao SY, King AE, Cass CE, Young JD (2004) The equilibrative nucleoside transporter family, SLC29. Pflugers Arch. Eur J Physiol 447:735–743

    Article  PubMed  CAS  Google Scholar 

  • Boison D (2006) Adenosine kinase, epilepsy and stroke: mechanisms and therapies. Trends Pharmacol Sci 27:652–658

    Article  PubMed  CAS  Google Scholar 

  • Boison D, Scheurer L, Zumsteg V, Rulicke T, Litynski P, Fowler B, Brandner S, Mohler H (2002) Neonatal hepatic steatosis by disruption of the adenosine kinase gene. Proc Natl Acad Sci U S A 99:6985–6990

    Article  PubMed  CAS  Google Scholar 

  • Boison D, Chen JF, Fredholm BB (2010) Adenosine signaling and function in glial cells. Cell Death Differ 17:1071–1082

    Article  PubMed  CAS  Google Scholar 

  • Boison D, Masino SA, Geiger JD (2011) Homeostatic bioenergetic network regulation—a novel concept to avoid pharmacoresistance in epilepsy. Expert Opin Drug Discov 6:713–724

    Article  PubMed  CAS  Google Scholar 

  • Brundege JM, Diao L, Proctor WR, Dunwiddie TV (1997) The role of cyclic AMP as a precursor of extracellular adenosine in the rat hippocampus. Neuropharmacology 36:1201–1210

    Article  PubMed  CAS  Google Scholar 

  • Carriba P, Ortiz O, Patkar K, Justinova Z, Stroik J, Themann A, Müller C, Woods AS, Hope BT, Ciruela F, Casadó V, Canela EI, Lluis C, Goldberg SR, Moratalla R, Franco R, Ferré S (2007) Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. Neuropsychopharmacology 32:2249–2259

    Article  PubMed  CAS  Google Scholar 

  • Carswell HV, Graham DI, Stone TW (1997) Kainate-evoked release of adenosine from the hippocampus of the anaesthetised rat: possible involvement of free radicals. J Neurochem 68:240–247

    Article  PubMed  CAS  Google Scholar 

  • Cascalheira JF, Sebastião AM (1992) Adenine nucleotide analogues, including gamma-phosphate-substituted analogues, are metabolised extracellularly in innervated frog sartorius muscle. Eur J Pharmacol 222:49–59

    Article  PubMed  CAS  Google Scholar 

  • Ciccarelli R, Di Iorio P, Bruno V, Battaglia G, D’Alimonte I, D’Onofrio M, Nicoletti F, Caciagli F (1999) Activation of A(1) adenosine or mGlu3 metabotropic glutamate receptors enhances the release of nerve growth factor and S-100beta protein from cultured astrocytes. Glia 27:275–281

    Article  PubMed  CAS  Google Scholar 

  • Ciruela F, Saura C, CanelaEI MJ, Lluis C, Franco R (1996) Adenosine deaminase affects ligand-induced signaling by interacting with cell surface adenosine receptors. FEBS Lett 380:219–223

    Article  PubMed  CAS  Google Scholar 

  • Ciruela F, Casadó V, Rodrigues RJ, Luján R, Burgueño J, Canals M, Borycz J, Rebola N, Goldberg SR, Mallol J, Cortés A, Canela EI, López-Giménez JF, Milligan G, Lluis C, Cunha RA, Ferré S, Franco R (2006) Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J Neurosci 26:2080–2087

    Article  PubMed  CAS  Google Scholar 

  • Coelho JE, Faas GC, de Mendonça A, Ribeiro JA, Saggau P (2002) Effects of hypoxia on calcium signaling in excitatory presynaptic terminals of rat hippocampal slices. Society for Neuroscience, Orlando, Fl

    Google Scholar 

  • Costenla AR, Diógenes MJ, Canas PM, Rodrigues RJ, Nogueira C, Maroco J, Agostinho PM, Ribeiro JA, Cunha RA, de Mendonça A (2011) Enhanced role of adenosine A(2A) receptors in the modulation of LTP in the rat hippocampus upon ageing. Eur J Neurosci 34:12–21

    Article  PubMed  Google Scholar 

  • Crawley JN, Patel J, Marangos PJ (1983) Adenosine uptake inhibitors potentiate the sedative effects of adenosine. Neurosci Lett 36:169–174

    Article  PubMed  CAS  Google Scholar 

  • Cristóvão-Ferreira S, Vaz SH, Ribeiro JA, Sebastião AM (2009) Adenosine A2A receptors enhance GABA transport into nerve terminals by restraining PKC inhibition of GAT-1. J Neurochem 10:336–347

    Article  CAS  Google Scholar 

  • Cristóvão-Ferreira S, Navarro G, Brugarolas M, Pérez-Capote K, Vaz SH, Fattorini G, Conti F, Lluis C, Ribeiro JA, McCormick PJ, Casadó V, Franco R, Sebastião AM (2011) Adenosine A1R-A2AR heteromers modulate GAT-1- and GAT-3-mediated GABA uptake by astrocytes. J Neurosci 31:15629–15639

    Article  PubMed  CAS  Google Scholar 

  • Cui XA, Singh B, Park J, Gupta RS (2009) Subcellular localization of adenosine kinase in mammalian cells: the long isoform of AdK is localized in the nucleus. Biochem Biophys Res Commun 388:46–50

    Article  PubMed  CAS  Google Scholar 

  • Cunha RA, Ribeiro JA (2000) Purinergic modulation of [(3)H]GABA release from rat hippocampal nerve terminals. Neuropharmacology 39:1156–1167

    Article  PubMed  CAS  Google Scholar 

  • Cunha RA, Johansson B, Fredholm BB, Ribeiro JA, Sebastião AM (1995) Adenosine A2A receptors stimulate acetylcholine release from nerve terminals of the rat hippocampus. Neurosci Lett 196:41–44

    Article  PubMed  CAS  Google Scholar 

  • Cunha RA, Correia-de-Sá P, Sebastião AM, Ribeiro JA (1996) Preferential activation of excitatory adenosine receptors at rat hippocampal and neuromuscular synapses by adenosine formed from released adenine nucleotides. Br J Pharmacol 119:253–260

    Article  PubMed  CAS  Google Scholar 

  • Cunha RA, Sebastião AM, Ribeiro JA (1998) Inhibition by ATP of hippocampal synaptic transmission requires localized extracellular catabolism by ecto-nucleotidases into adenosine and channeling to adenosine A1 receptors. J Neurosci 18:1987–1995

    PubMed  CAS  Google Scholar 

  • Cunha RA, Brendel P, Zimmermann H, Ribeiro JA (2000) Immunologically distinct isoforms of ecto-5′-nucleotidase in nerve terminals of different areas of rat hippocampus. J Neurochem 74:334–338

    Article  PubMed  CAS  Google Scholar 

  • de la Haba G, Cantoni GL (1959) The enzymatic synthesis of S-adenosyl-L-homocysteine from adenosine and homocysteine. J Biol Chem 234:603–608

    Google Scholar 

  • de Mendonça A, Sebastião AM, Ribeiro JA (1995) Inhibition of NMDA receptor-mediated currents in isolated rat hippocampal neurones by adenosine A1 receptor activation. Neuroreport 6:1097–1100

    Article  PubMed  Google Scholar 

  • Delaney SM, Shepel PN, Geiger JD (1998) Levels of endogenous adenosine in rat striatum. I. Regulation by ionotropic glutamate receptors, nitric oxide and free radicals. J Pharmacol Exp Ther 285:561–567

    PubMed  CAS  Google Scholar 

  • Delicado EG, Rodrigues A, Sen RP, Sebastiao AM, Ribeiro JA, Miras-Portugal MT (1990) Effect of 5′-(N-ethylcarboxamido)adenosine on adenosine transport in cultured chromaffin cells. J Neurochem 54:1941–1946

    Article  PubMed  CAS  Google Scholar 

  • Deussen A, Lloyd HG, Schrader J (1989) Contribution of S-adenosylhomocysteine to cardiac adenosine formation. J Mol Cell Cardiol 21:773–782

    Article  PubMed  CAS  Google Scholar 

  • Dias RB, Ribeiro JA, Sebastião AM (2012) Enhancement of AMPA currents and GluR1 membrane expression through PKA-coupled adenosine A(2A) receptors. Hippocampus 22:276–291

    Article  PubMed  CAS  Google Scholar 

  • Diógenes MJ, Fernandes CC, Sebastião AM, Ribeiro JA (2004) Activation of adenosine A2A receptor facilitates brain-derived neurotrophic factor modulation of synaptic transmission in hippocampal slices. J Neurosci 24:2905–2913

    Article  PubMed  CAS  Google Scholar 

  • Diógenes MJ, Assaife-Lopes N, Pinto-Duarte A, Ribeiro JA, Sebastião AM (2007) Influence of age on BDNF modulation of hippocampal synaptic transmission: interplay with adenosine A2A receptors. Hippocampus 17:577–585

    Article  PubMed  CAS  Google Scholar 

  • Diógenes MJ, Costenla AR, Lopes LV, Jerónimo-Santos A, Sousa VC, Fontinha BM, Ribeiro JA, Sebastião AM (2011) Enhancement of LTP in aged rats is dependent on endogenous BDNF. Neuropsychopharmacology 36:1823–1836

    Article  PubMed  CAS  Google Scholar 

  • Dixon AK, Gubitz AK, Sirinathsinghji DJ, Richardson PJ, Freeman TC (1996) Tissue distribution of adenosine receptor mRNAs in the rat. Br J Pharmacol 118:1461–1468

    Article  PubMed  CAS  Google Scholar 

  • Dragunow M, Goddard GV (1984) Adenosine modulation of amygdala kindling. Exp Neurol 84:654–665

    Article  PubMed  CAS  Google Scholar 

  • Dunwiddie TV, Diao L (1994) Extracellular adenosine concentrations in hippocampal brain slices and the tonic inhibitory modulation of evoked excitatory responses. J Pharmacol Exp Ther 268:537–545

    PubMed  CAS  Google Scholar 

  • Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55

    Article  PubMed  CAS  Google Scholar 

  • Dunwiddie TV, Taylor M, Heginbotham LR, Proctor WR (1992) Long-term increases in excitability in the CA1 region of rat hippocampus induced by beta-adrenergic stimulation: possible mediation by cAMP. J Neurosci 12:506–517

    PubMed  CAS  Google Scholar 

  • Dunwiddie TV, Diao L, Proctor WR (1997) Adenine nucleotides undergo rapid, quantitative conversion to adenosine in the extracellular space in rat hippocampus. J Neurosci 17:7673–7682

    PubMed  CAS  Google Scholar 

  • Faure M, Voyno-Yasenetskaya TA, Bourne HR (1994) cAMP and beta gamma subunits of heterotrimeric G proteins stimulate the mitogen-activated protein kinase pathway in COS-7 cells. J Biol Chem 269:7851–7854

    PubMed  CAS  Google Scholar 

  • Fernandes CC, Pinto-Duarte A, Ribeiro JA, Sebastião AM (2008) Postsynaptic action of brain-derived neurotrophic factor attenuates alpha7 nicotinic acetylcholine receptor-mediated responses in hippocampal interneurons. J Neurosci 28:5611–5618

    Article  PubMed  CAS  Google Scholar 

  • Ferré S, Popoli P, Giménez-Llort L, Finnman U-B, Martínez E, Scotti de Carolis A, Fuxe K (1994) Postsynaptic antagonistic interaction between adenosine A1 and dopamine D1 receptors. Neuroreport 6:73–76

    Article  PubMed  Google Scholar 

  • Ferré S, Fredholm BB, Morelli M, Popoli P, Fuxe K (1997) Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 20:482–487

    Article  PubMed  Google Scholar 

  • Ferré S, Torvinen M, Antoniou K, Irenius E, Civelli O, Arenas E, Fredholm BB, Fuxe K (1998) Adenosine A1 receptor-mediated modulation of dopamine D1 receptors in stably cotransfected fibroblast cells. J Biol Chem 273:4718–4724

    Article  PubMed  Google Scholar 

  • Ferré S, Lluís C, Justinova Z, Quiroz C, Orru M, Navarro G, Canela EI, Franco R, Goldberg SR (2010) Adenosine-cannabinoid receptor interactions. Implications for striatal function. Br J Pharmacol 160:443–453

    Article  PubMed  CAS  Google Scholar 

  • Ferreira JM, Paes-de-Carvalho R (2001) Long-term activation of adenosine A(2a) receptors blocks glutamate excitotoxicity in cultures of avian retinal neurons. Brain Res 900:169–176

    Article  PubMed  CAS  Google Scholar 

  • Fields RD, Burnstock G (2006) Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci 7:423–436

    Article  PubMed  CAS  Google Scholar 

  • Fontinha BM, Diógenes MJ, Ribeiro JA, Sebastião AM (2008) Enhancement of long-term potentiation by brain-derived neurotrophic factor requires adenosine A2A receptor activation by endogenous adenosine. Neuropharmacology 54:924–933

    Article  PubMed  CAS  Google Scholar 

  • Fontinha BM, Delgado-García JM, Madroñal N, Ribeiro JA, Sebastião AM, Gruart A (2009) Adenosine A(2A) receptor modulation of hippocampal CA3-CA1 synapse plasticity during associative learning in behaving mice. Neuropsychopharmacology 34:1865–1874

    Article  PubMed  CAS  Google Scholar 

  • Fossier P, Tauc L, Baux G (1999) Calcium transients and neurotransmitter release at an identified synapse. Trends Neurosci 22:161–166

    Article  PubMed  CAS  Google Scholar 

  • Franco R, Valenzuela A, Lluis C, Blanco J (1998) Enzymatic and extraenzymatic role of ecto-adenosine deaminase in lymphocytes. Immunol Rev 161:27–42

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, Dunér-Engström M, Fastbom J, Hu PS, van der Ploeg I (1990) Role of G proteins, cyclic AMP, and ion channels in the inhibition of transmitter release by adenosine. Ann N Y Acad Sci 604:276–288

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    PubMed  CAS  Google Scholar 

  • Frenguelli BG, Wigmore G, Llaudet E, Dale N (2007) Temporal and mechanistic dissociation of ATP and adenosine release during ischaemia in the mammalian hippocampus. J Neurochem 101:1400–1413

    Article  PubMed  CAS  Google Scholar 

  • Geiger JD, Fyda DM (1991) Adenosine transport in nervous tissues. In: Stone TW (ed) Adenosine in the nervous system. Academic, London, pp 1–23

    Google Scholar 

  • Ginés S, Hillion J, Torvinen M, Le Crom S, Casadó V, Canela EI, Rondin S, Lew JY, Watson S, Zolii M, Agnatii LF, Vernie P, Lluis C, Ferré S, Fuxe K, Franco R (2000) Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc Natl Acad Sci U S A 97:8606–8611

    Article  PubMed  Google Scholar 

  • Gomes CA, Vaz SH, Ribeiro JA, Sebastião AM (2006) Glial cell line-derived neurotrophic factor (GDNF) enhances dopamine release from striatal nerve endings in an adenosine A2A receptor-dependent manner. Brain Res 1113:129–136

    Article  PubMed  CAS  Google Scholar 

  • Gomes CA, Simões PF, Canas PM, Quiroz C, Sebastião AM, Ferré S, Cunha RA, Ribeiro JA (2009) GDNF control of the glutamatergic cortico-striatal pathway requires tonic activation of adenosine A receptors. J Neurochem 108:1208–1219

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez B, Paz F, Florán L, Aceves J, Erlij D, Florán B (2006) Adenosine A2A receptor stimulation decreases GAT-1-mediated GABA uptake in the globus pallidus of the rat. Neuropharmacology 51:154–159

    Article  PubMed  CAS  Google Scholar 

  • Gouder N, Scheurer L, Fritschy JM, Boison D (2004) Overexpression of adenosine kinase in epileptic hippocampus contributes to epileptogenesis. J Neurosci 24:692–701

    Article  PubMed  CAS  Google Scholar 

  • Gracia E, Cortés A, Meana JJ, García-Sevilla J, Herhsfield MS, Canela EI, Mallol J, Lluís C, Franco R, Casadó V (2008) Human adenosine deaminase as an allosteric modulator of human A(1) adenosine receptor: abolishment of negative cooperativity for [H](R)-pia binding to the caudate nucleus. J Neurochem 107:161–170

    Article  PubMed  CAS  Google Scholar 

  • Gu JG, Foga IO, Parkinson FE, Geiger JD (1995) Involvement of bidirectional adenosine transporters in the release of L-[3H]adenosine from rat brain synaptosomal preparations. J Neurochem 64:2105–2107

    Article  PubMed  CAS  Google Scholar 

  • Gutkind JS (1998) The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J Biol Chem 273:1839–1842

    Article  PubMed  CAS  Google Scholar 

  • Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11:227–238

    Article  PubMed  CAS  Google Scholar 

  • Harvey J, Lacey MG (1997) A postsynaptic interaction between dopamine D1 and NMDA receptors promotes presynaptic inhibition in the rat nucleus accumbens via adenosine release. J Neurosci 17:5271–5280

    PubMed  CAS  Google Scholar 

  • Haun SE, Segeleon JE, Trapp VL, Clotz MA, Horrocks LA (1996) Inosine mediates the protective effect of adenosine in rat astrocyte cultures subjected to combined glucose-oxygen deprivation. J Neurochem 67:2051–2059

    Article  PubMed  CAS  Google Scholar 

  • Heese K, Fiebich BL, Bauer J, Otten U (1997) Nerve growth factor (NGF) expression in rat microglia is induced by adenosine A2a-receptors. Neurosci Lett 231:83–86

    Article  PubMed  CAS  Google Scholar 

  • Herrera C, Casadó V, Ciruela F, Schofield P, Mallol J, Lluís C, Franco R (2001) Adenosine A2B receptors behave as an alternative anchoring protein for cell surface adenosine deaminase in lymphocytes and cultured cells. Mol Pharmacol 59:127–134

    PubMed  CAS  Google Scholar 

  • Hillion J, Canals M, Torvinen M, Casado V, Scott R, Terasmaa A, Hansson A, Watson S, Olah ME, Mallol J, Canela EI, Zoli M, Agnati LF, Ibanez CF, Lluis C, Franco R, Ferre S, Fuxe K (2002) Coaggregation, cointernalization and codesensitization of adenosine A2A eceptors and dopamine D2 receptors. J Biol Chem 277:18091–18097

    Article  PubMed  CAS  Google Scholar 

  • Hirano D, Aoki Y, Ogasawara H, Kodama H, Waga I, Sakanaka C, Shimizu T, Nakamura M (1996) Functional coupling of adenosine A2a receptor to inhibition of the mitogen-activated protein kinase cascade in Chinese hamster ovary cells. Biochem J 316:81–86

    PubMed  CAS  Google Scholar 

  • Huber A, Padrun V, Déglon N, Aebischer P, Möhler H, Boison D (2001) Grafts of adenosine-releasing cells suppress seizures in kindling epilepsy. Proc Natl Acad Sci U S A 98:7611–7616

    Article  PubMed  CAS  Google Scholar 

  • Illes P, Ribeiro JA (2004) Neuronal P2 receptors of the central nervous system. Curr Top Med Chem 4:831–838

    Article  PubMed  CAS  Google Scholar 

  • Kermer V, Ritter M, Albuquerque B, Leib C, Stanke M, Zimmermann H (2010) Knockdown of tissue nonspecific alkaline phosphatase impairs neural stem cell proliferation and differentiation. Neurosci Lett 485:208–211

    Article  PubMed  CAS  Google Scholar 

  • Klaasse EC, Ijzerman AP, de Grip WJ, Beukers MW (2008) Internalization and desensitization of adenosine receptors. Purinergic Signal 4:21–37

    Article  PubMed  CAS  Google Scholar 

  • Kowaluk EA, Jarvis MF (2000) Therapeutic potential of adenosine kinase inhibitors. Expert Opin Investig Drugs 9:551–564

    Article  PubMed  CAS  Google Scholar 

  • Kreutzberg GW, Barron KD, Schubert P (1978) Cytochemical localization of 5′-nucleotidasein glial plasma membranes. Brain Res 158:247–257

    Article  PubMed  CAS  Google Scholar 

  • Langer D, Ikehara Y, Takebayashi H, Hawkes R, Zimmermann H (2007) The ectonucleotidases alkaline phosphatase and nucleoside triphosphate diphosphohydrolase 2 are associated with subsets of progenitor cell populations in the mouse embryonic, postnatal and adult neurogenic zones. Neuroscience 150:863–879

    Article  PubMed  CAS  Google Scholar 

  • Lee FS, Chao MV (2001) Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc Natl Acad Sci U S A 98:3555–3560

    Article  PubMed  CAS  Google Scholar 

  • Lerner TN, Horne EA, Stella N, Kreitzer AC (2010) Endocannabinoid signaling mediates psychomotor activation by adenosine A2A antagonists. J Neurosci 30:2160–2164

    Article  PubMed  CAS  Google Scholar 

  • Liebmann C (2001) Regulation of MAP kinase activity by peptide receptor signaling pathway: paradigms of multiplicity. Cell Signal 13:777–785

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Phillis JW (1992) Deoxycoformycin and oxypurinol: protection against focal ischemic brain injury in the rat. Brain Res 571:272–280

    Article  PubMed  CAS  Google Scholar 

  • Lloyd HG, Fredholm BB (1995) Involvement of adenosine deaminase and adenosine kinase in regulating extracellular adenosine concentration in rat hippocampal slices. Neurochem Int 26:387–389

    Article  PubMed  CAS  Google Scholar 

  • Lopes LV, Cunha RA, Kull B, Fredholm BB, Ribeiro JA (2002) Adenosine A(2A) receptor facilitation of hippocampal synaptic transmission is dependent on tonic A(1) receptor inhibition. Neuroscience 112:319–329

    Article  PubMed  CAS  Google Scholar 

  • Luttrell LM, Daaka Y, Lefkowitz RJ (1999) Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr Opin Cell Biol 11:177–183

    Article  PubMed  CAS  Google Scholar 

  • Lynch JJ 3rd, Alexander KM, Jarvis MF, Kowaluk EA (1998) Inhibition of adenosine kinase during oxygen-glucose deprivation in rat cortical neuronal cultures. Neurosci Lett 252:207–210

    Article  PubMed  CAS  Google Scholar 

  • Maienshein V, Zimmermann H (1996) Immunocytochemical localization of ecto-5′-nucleotidase in cultures of cerebellar granule cells. Neuroscience 70:429–438

    Article  Google Scholar 

  • Major PP, Agarwal RP, Kufe DW (1981) Clinical pharmacology of deoxycoformycin. Blood 58:91–96

    PubMed  CAS  Google Scholar 

  • Manzoni OJ, Manabe T, Nicoll RA (1994) Release of adenosine by activation of NMDA receptors in the hippocampus. Science 265:2098–2101

    Article  PubMed  CAS  Google Scholar 

  • Marchi M, Raiteri L, Risso F, Vallarino A, Bonfanti A, Monopoli A, Ongini E, Raiteri M (2002) Effects of adenosine A1 and A2A receptor activation on the evoked release of glutamate from rat cerebrocortical synaptosomes. Br J Pharmacol 136:434–440

    Article  PubMed  CAS  Google Scholar 

  • Marinissen MJ, Gutkind JS (2001) G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 22:368–376

    Article  PubMed  CAS  Google Scholar 

  • Meghji P (1993) Storage, release, uptake and inactivation of purines. Drug Dev Res 28:214–219

    Article  CAS  Google Scholar 

  • Meghji P, Newby AC (1990) Sites of adenosine formation, action and inactivation in the brain. Neurochem Int 16:227–232

    Article  PubMed  CAS  Google Scholar 

  • Misumi Y, Ogata S, Ohkubo K, Hirose S, Ikehara Y (1990) Primary structure of human placental 5′-nucleotidase and identification of the glycolipid anchor in the mature form. Eur J Biochem 191:563–569

    Article  PubMed  CAS  Google Scholar 

  • Montero JM, Fes JB (1982) Purification and characterization of bovine brain 5′-nucleotidase. J Neurochem 39:982–989

    Article  PubMed  CAS  Google Scholar 

  • Moshe SL (2000) Seizures early in life. Neurology 55(suppl 1):S15–S20

    PubMed  CAS  Google Scholar 

  • Motley SJ, Collins GG (1983) Endogenous adenosine inhibits excitatory transmission in the rat olfactory cortex slice. Neuropharmacology 22:1081–1086

    Article  PubMed  CAS  Google Scholar 

  • Mrhul B, Aubery M, Mannherz HG, Codogno P (1993) Dual mechanism of laminin modulation of ecto-5′-nucleotidase activity. J Cell Biochem 52:266–274

    Article  Google Scholar 

  • Nagy JI, LaBella LA, Buss M, Daddona PE (1984) Immunohistochemistry of adenosine deaminase: implications for adenosine neurotransmission. Science 224:166–168

    Article  PubMed  CAS  Google Scholar 

  • Naidoo D (1962) The activity of 5′-nucleotidase determined histochemically in the developing rat brain. J Histochem Cytochem 10:421–434

    Article  CAS  Google Scholar 

  • Neary JT, McCarthy M, Kang Y, Zuniga S (1998) Mitogenic signaling from P1 and P2 purinergic receptors to mitogen-activated protein kinase in human fetal astrocyte cultures. Neurosci Lett 242:159–162

    Article  PubMed  CAS  Google Scholar 

  • Newby AC (1984) Adenosine and the concept of “retaliatory metabolites”. Trends Biochem Sci 9:42–44

    Article  CAS  Google Scholar 

  • Newby AC, Worku Y, Holmquist CA (1985) Adenosine formation. Evidence for a direct biochemical link with energy metabolism. Adv Myocardiol 6:273–284

    PubMed  CAS  Google Scholar 

  • Olmo N, Turnay J, Risse G, Deutzmann R, vonder Mark K, Lizarbe A (1992) Modulation of 5′-nucleotidase activity in plasma membranes and intact cells by the extracellular matrix proteins laminin and fibronectin. Biochem J 282:181–188

    PubMed  CAS  Google Scholar 

  • Pak MA, Haas HL, Decking UK, Schrader J (1994) Inhibition of adenosine kinase increases endogenous adenosine and depresses neuronal activity in hippocampal slices. Neuropharmacology 33:1049–1053

    Article  PubMed  CAS  Google Scholar 

  • Palmer JL, Abeles RH (1979) The mechanism of action of S-adenosylhomocysteinase. J Biol Chem 254:1217–1226

    PubMed  CAS  Google Scholar 

  • Parkinson FE, Rudolphi KA, Fredholm BB (1994) Propentofylline: a nucleoside transport inhibitor with neuroprotective effects in cerebral ischemia. Gen Pharmacol 25:1053–1058

    Article  PubMed  CAS  Google Scholar 

  • Parkinson FE, Sinclair CJ, Othman T, Haughey NJ, Geiger JD (2002) Differences between rat primary cortical neurons and astrocytes in purine release evoked by ischemic conditions. Neuropharmacology 43:836–846

    Article  PubMed  CAS  Google Scholar 

  • Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32:421–431

    Article  PubMed  CAS  Google Scholar 

  • Perez DM, Karnik SS (2005) Multiple signaling states of G-protein-coupled receptors. Pharmacol Rev 57:147–161

    Article  PubMed  CAS  Google Scholar 

  • Phillis JW (1989) Adenosine in the control of the cerebral circulation. Cerebrovasc Brain Metab Rev 1:26–54

    PubMed  CAS  Google Scholar 

  • Phillis JW, O’Regan MH (1989) Deoxycoformycin antagonizes ischemia-induced neuronal degeneration. Brain Res Bull 22:537–540

    Article  PubMed  CAS  Google Scholar 

  • Phillis JW, O’Regan MH, Walter GA (1989) Effects of two nucleoside transport inhibitors, dipyridamole and soluflazine, on purine release from the rat cerebral cortex. Brain Res 481:309–316

    Article  PubMed  CAS  Google Scholar 

  • Pignataro G, Simon RP, Boison D (2007) Transgenic overexpression of adenosine kinase aggravates cell death in ischemia. J Cereb Blood Flow Metab 27:1–5

    Article  PubMed  CAS  Google Scholar 

  • Pinto-Duarte A, Coelho JE, Cunha RA, Ribeiro JA, Sebastião AM (2005) Adenosine A2A receptors control the extracellular levels of adenosine through modulation of nucleoside transporters activity in the rat hippocampus. J Neurochem 93:595–604

    Article  PubMed  CAS  Google Scholar 

  • Potenza RL, Tebano MT, Martire A, Domenici MR, Pepponi R, Armida M, Pèzzola A, Minghetti L, Popoli P (2007) Adenosine A(2A) receptors modulate BDNF both in normal conditions and in experimental models of Huntington’s disease. Purinergic Signal 3:333–338

    Article  PubMed  CAS  Google Scholar 

  • Pousinha PA, Diogenes MJ, Ribeiro JA, Sebastião AM (2006) Triggering of BDNF facilitatory action on neuromuscular transmission by adenosine A2A receptors. Neurosci Lett 404:143–147

    Article  PubMed  CAS  Google Scholar 

  • Radulovacki M, Virus RM, Djuricic-Nedelson M, Green RD (1983) Hypnotic effects of deoxycorformycin in rats. Brain Res 271:392–395

    Article  PubMed  CAS  Google Scholar 

  • Rajagopal R, Chen ZY, Lee FS, Chao MV (2004) Transactivation of Trk neurotrophin receptors by G-protein-coupled receptor ligands occurs on intracellular membranes. J Neurosci 24:6650–6658

    Article  PubMed  CAS  Google Scholar 

  • Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    PubMed  CAS  Google Scholar 

  • Rebola N, Lujan R, Cunha RA, Mulle C (2008) Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron 57:121–134

    Article  PubMed  CAS  Google Scholar 

  • Reichard P (1988) Interactions between deoxyribonucleotide and DNA synthesis. Annu Rev Biochem 57:349–374

    Article  PubMed  CAS  Google Scholar 

  • Resta R, YamashitaY TLF (1998) Ecto-enzyme and signaling functions of lymphocyte CD73. Immunol Rev 161:95–109

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro JA (1978) ATP; related nucleotides and adenosine on neurotransmission. Life Sci 22:1373–1380

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro JA (2005) What can adenosine neuromodulation do for neuroprotection? Curr Drug Targets CNS Neurol Disord 4:325–329

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro JA, Sebastião AM (1987) On the role, inactivation and origin of endogenous adenosine at the frog neuromuscular junction. J Physiol 384:571–585

    PubMed  CAS  Google Scholar 

  • Ribeiro JA, Sebastião AM (2010) Modulation and metamodulation of synapses by adenosine. Acta Physiol 199:161–169

    Article  CAS  Google Scholar 

  • Ribeiro JA, Sebastião AM, de Mendonça A (2002) Adenosine receptors in the nervous system: pathophysiological implications. Prog Neurobiol 68:377–392

    Article  PubMed  CAS  Google Scholar 

  • Richardson PJ, Brown SJ (1987) ATP release from affinity-purified cholinergic nerve terminals. J Neurochem 48:622–630

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg PA, Li Y (1995) Adenylyl cyclase activation underlies intracellular cyclic AMP accumulation, cyclic AMP transport, and extracellular adenosine accumulation evoked by beta-adrenergic receptor stimulation in mixed cultures of neurons and astrocytes derived from rat cerebral cortex. Brain Res 692:227–232

    Article  PubMed  CAS  Google Scholar 

  • Ruíz MA, Escriche M, Lluís C, Franco R, Martín M, Andrés A, Ros M (2000) Adenosine A(1) receptor in cultured neurons from rat cerebral cortex: colocalization with adenosine deaminase. J Neurochem 75:656–664

    Article  PubMed  Google Scholar 

  • Ryzhov S, Goldstein AE, Biaggioni I, Feoktistov I (2006) Cross-talk between G(s)- and G(q)-coupled pathways in regulation of interleukin-4 by A(2B) adenosine receptors in human mast cells. Mol Pharmacol 70:727–735

    Article  PubMed  CAS  Google Scholar 

  • Sanderson G, Scholfield CN (1986) Effects of adenosine uptake blockers and adenosine on evoked potentials of guinea-pig olfactory cortex. Pflugers Arch 406:25–30

    Article  PubMed  Google Scholar 

  • Saura CA, Mallol J, Canela EL, Lluis C, Franco R (1998) Adenosine deaminase and A1 adenosine receptors internalize together following agonist-induced receptor desensitization. J Biol Chem 273:17610–17617

    Article  PubMed  CAS  Google Scholar 

  • Schoen SW, Kreutzberg GW (1995) Evidence that 5′-nucleotidaseis associated with malleable synapses. An enzyme cytochemical investigation of the olfactory bulb of adult rats. Neuroscience 65:37–50

    Article  PubMed  CAS  Google Scholar 

  • Schoen SW, Graeber MB, Toth L, Kreutzberg GW (1991) Synaptic 5′-nucleotidase is transient and indicative of climbing fiber plasticity during the postnatal development of rat cerebellum. Brain Res Dev Brain Res 61:125–138

    Article  PubMed  CAS  Google Scholar 

  • Schoen SW, Kreutzberg GW, Singer W (1993) Cytochemical redistribution of 5′-nucleotidase in the developing cat visual cortex. Eur J Neurosci 5:210–222

    Article  PubMed  CAS  Google Scholar 

  • Schrader J, Schütz W, Bardenheuer H (1981) Role of S-adenosylhomocysteine hydrolase in adenosine metabolism in mammalian heart. Biochem J 196:65–70

    PubMed  CAS  Google Scholar 

  • Schulte G, Fredholm BB (2000) Human adenosine A(1), A(2A), A(2B), and A(3) receptors expressed in Chinese hamster ovary cells all mediate the phosphorylation of extracellular-regulated kinase 1/2. Mol Pharmacol 58:477–842

    PubMed  CAS  Google Scholar 

  • Schulte G, Fredholm BB (2003) Signaling from adenosine receptors to mitogen-activated protein kinases. Cell Signal 15:813–827

    Article  PubMed  CAS  Google Scholar 

  • Sebastião AM (2011) Neuronal ENT1 takes up synaptic adenosine even under hypoxia/ischemia. J Neurochem 118:1–3

    Article  PubMed  CAS  Google Scholar 

  • Sebastião AM, Ribeiro JA (1996) Adenosine A2 receptor-mediated excitatory actions on the nervous system. Prog Neurobiol 48:167–189

    Article  PubMed  Google Scholar 

  • Sebastião AM, Ribeiro JA (2000) Fine-tuning neuromodulation by adenosine. Trends Pharmacol Sci 21:341–346

    Article  PubMed  Google Scholar 

  • Sebastião AM, Ribeiro JA (2009a) Adenosine receptors and the central nervous system. Handb Exp Pharmacol 193:471–534

    Article  PubMed  CAS  Google Scholar 

  • Sebastião AM, Ribeiro JA (2009b) Tuning and fine-tuning synapses with adenosine. Curr Neuropharmacol 7:180–194

    Article  PubMed  Google Scholar 

  • Sebastião AM, Ribeiro JA (2009c) Triggering neurotrophic factor actions through adenosine A2A receptor activation: implications for neuroprotection. Br J Pharmacol 158:15–22

    Article  PubMed  CAS  Google Scholar 

  • Sebastião AM, de Mendonca A, Moreira T, Ribeiro JA (2001) Activation of synaptic NMDA receptors by action potential-dependent release of transmitter during hypoxia impairs recovery of synaptic transmission on reoxygenation. J Neurosci 21:8564–8571

    PubMed  Google Scholar 

  • Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9:726–735

    PubMed  CAS  Google Scholar 

  • Seidel MG, Klinger M, Freissmuth M, Höller C (1999) Activation of mitogen-activated protein kinase by the A(2A)-adenosine receptor via a rap1-dependent and via a p21(ras)-dependent pathway. J Biol Chem 274:25833–25841

    Article  PubMed  CAS  Google Scholar 

  • Sexl V, Mancusi G, Höller C, Gloria-Maercker E, Schütz W, Freissmuth M (1997) Stimulation of the mitogen-activated protein kinase via the A2A-adenosine receptor in primary human endothelial cells. J Biol Chem 272:5792–5799

    Article  PubMed  CAS  Google Scholar 

  • Shen H, Chen GJ, Harvey BK, Bickford PC, Wang Y (2005) Inosine reduces ischemic brain injury in rats. Stroke 36:654–659

    Article  PubMed  CAS  Google Scholar 

  • Shen HY, Lusardi TA, Williams-Karnesky RL, Lan JQ, Poulsen DJ, Boison D (2011) Adenosine kinase determines the degree of brain injury after ischemic stroke in mice. J Cereb Blood Flow Metab 31:1648–1659

    Article  PubMed  CAS  Google Scholar 

  • Sousa VC, Assaife-Lopes N, Ribeiro JA, Pratt JA, Brett RR, Sebastião AM (2011) Regulation of hippocampal cannabinoid CB1 receptor actions by adenosine A1 receptors and chronic caffeine administration: implications for the effects of Δ9-tetrahydrocannabinol on spatial memory. Neuropsychopharmacology 36:472–487

    Article  PubMed  CAS  Google Scholar 

  • Sowa NA, Taylor-Blake B, Zylka MJ (2010) Ecto-5′-nucleotidase (CD73) inhibits nociception by hydrolyzing AMP to adenosine in nociceptive circuits. J Neurosci 30:2235–2244

    Article  PubMed  CAS  Google Scholar 

  • Stevens B, Porta S, Haak LL, Gallo V, Fields RD (2002) Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36:855–868

    Article  PubMed  CAS  Google Scholar 

  • Stevens B, Ishibashi T, Chen JF, Fields RD (2004) Adenosine: an activity-dependent axonal signal regulating MAP kinase and proliferation in developing Schwann cells. Neuron Glia Biol 1:23–34

    Article  PubMed  Google Scholar 

  • Studer FE, Fedele DE, Marowsky A, Schwerdel C, Wernli K, Vogt K, Fritschy JM, Boison D (2006) Shift of adenosine kinase expression from neurons to astrocytes during postnatal development suggests dual functionality of the enzyme. Neuroscience 142:125–137

    Article  PubMed  CAS  Google Scholar 

  • Sugden PH, Clerk A (1998) Regulation of mitogen-activated protein kinase cascades in the heart. Adv Enzyme Regul 38:87–98

    Article  PubMed  CAS  Google Scholar 

  • Tebano MT, Martire A, Potenza RL, Grò C, Pepponi R, Armida M, Domenici MR, Schwarzschild MA, Chen JF, Popoli P (2008) Adenosine A(2A) receptors are required for normal BDNF levels and BDNF-induced potentiation of synaptic transmission in the mouse hippocampus. J Neurochem 104:279–286

    PubMed  CAS  Google Scholar 

  • Theofilas P, Brar S, Stewart KA, Shen HY, Sandau US, Poulsen D, Boison D (2011) Adenosine kinase as a target for therapeutic antisense strategies in epilepsy. Epilepsia 52:589–601

    Article  PubMed  Google Scholar 

  • Thevananther S, Rivera A, Rivkees SA (2001) A1 adenosine receptor activation inhibits neurite process formation by Rho kinase-mediated pathways. Neuroreport 12:3057–3063

    Article  PubMed  CAS  Google Scholar 

  • Vaz SH, Cristóvão-Ferreira S, Ribeiro JA, Sebastião AM (2008) Brain-derived neurotrophic factor inhibits GABA uptake by the rat hippocampal nerve terminals. Brain Res 1219:19–25

    Article  PubMed  CAS  Google Scholar 

  • Vaz SH, Jørgensen TN, Cristóvão-Ferreira S, Duflot S, Ribeiro JA, Gether U, Sebastião AM (2011) Brain-derived neurotrophic factor (BDNF) enhances GABA transport by modulating the trafficking of GABA transporter-1 (GAT-1) from the plasma membrane of rat cortical astrocytes. J Biol Chem 286:40464–40476

    Article  PubMed  CAS  Google Scholar 

  • Wiese S, Jablonka S, Holtmann B, Orel N, Rajagopal R, Chao MV, Sendtner M (2007) Adenosine receptor A2A-R contributes to motoneuron survival by transactivating the tyrosine kinase receptor TrkB. Proc Natl Acad Sci U S A 104:17210–17215

    Article  PubMed  Google Scholar 

  • Yamagata K, Hakata K, Maeda A, Mochizuki C, Matsufuji H, Chino M, Yamori Y (2007) Adenosine induces expression of glial cell line-derived neurotrophic factor (GDNF) in primary rat astrocytes. Neurosci Res 59:467–474

    Article  PubMed  CAS  Google Scholar 

  • Yarbrough GG, McGuffin-Clineschmidt JC (1981) In vivo behavioral assessment of central nervous system purinergic receptors. Eur J Pharmacol 76:137–144

    Article  PubMed  CAS  Google Scholar 

  • Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783:673–694

    Article  PubMed  CAS  Google Scholar 

  • Zamzow CR, Xiong W, Parkinson FE (2008a) Astrocytes affect the profile of purines released from cultured cortical neurons. J Neurosci Res 86:2641–2649

    Article  PubMed  CAS  Google Scholar 

  • Zamzow CR, Xiong W, Parkinson FE (2008b) Adenosine produced by neurons is metabolized to hypoxanthine by astrocytes. J Neurosci Res 86:3447–3455

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Xiong W, Albensi BC, Parkinson FE (2011) Expression of human equilibrative nucleoside transporter 1 in mouse neurons regulates adenosine levels in physiological and hypoxic-ischemic conditions. J Neurochem 118:4–11

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann H (2011) Purinergic signaling in neural development. Semin Cell Dev Biol 22:194–204

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann H, Grondal EJM, Keller F (1986) Hydrolysis of ATP and formation of adenosine at the surface of cholinergic nerve endings. In: Kreutzberg GW, Reddington M, Zimmermann H (eds) Cellular biology of ectoenzymes. Springer, Berlin, pp 35–48

    Chapter  Google Scholar 

Download references

Acknowledgments

The work in the authors’ laboratory is supported by research grants from Faculdade de Medicina, Fundação para a Ciência e Tecnologia (FCT), Gulbenkian Foundation, and the European Union (COST B30).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. Sebastião .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sebastião, A.M., Cristóvão-Ferreira, S., Ribeiro, J.A. (2013). Downstream Pathways of Adenosine. In: Masino, S., Boison, D. (eds) Adenosine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3903-5_7

Download citation

Publish with us

Policies and ethics