Skip to main content

Nanoplasmonic Sensing for Nanomaterials Science, Catalysis, and Optical Gas Detection

  • Chapter
  • First Online:
Nanoplasmonic Sensors

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

In this chapter direct and indirect nanoplasmonic sensing approaches for applications in nanomaterials science and catalysis, as well as for gas sensing are discussed. It is illustrated how the typical features of nanoplasmonic sensors, e.g., high local and absolute sensitivity, high temporal resolution, remote readout, simple experimental arrangement, and generic robustness, together with a wide range of possible application conditions make the latter a potentially very powerful experimental tool to study processes on the surface and in the bulk of nanosized systems. The possibility to locally measure temperature at the nanoscale with nanoplasmonic optical calorimetry will also be discussed. Furthermore, numerous examples of nanoplasmonic sensors for gas-sensing applications will be reviewed and the role and potential of novel plasmonic metals will be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anker JN, et al. Biosensing with plasmonic nanosensors. Nat Mater. 2008;7:442–53.

    Article  CAS  Google Scholar 

  2. Li Y, Somorjai GA. Nanoscale advances in catalysis and energy applications. Nano Lett. 2010;10(7):2289–95.

    Article  CAS  Google Scholar 

  3. Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nat Mater. 2010;9:205–13.

    Article  CAS  Google Scholar 

  4. Zhu J, Cui Y. Photovoltaics: more solar cells for less. Nat Mater. 2010;9:183–4.

    Article  CAS  Google Scholar 

  5. Maier SA, et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater. 2003;2:229–32.

    Article  CAS  Google Scholar 

  6. Arico AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater. 2005;4:366–77.

    Article  CAS  Google Scholar 

  7. Guo Y-G, Hu J-S, Wan L-J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater. 2008;20:2878–87.

    Article  CAS  Google Scholar 

  8. Schlapbach L, Zuttel A. Hydrogen-storage materials for mobile applications. Nature. 2001;414:353–8.

    Article  CAS  Google Scholar 

  9. Koo OM, Rubinstein I, Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine. 2005;1:193–212.

    Article  CAS  Google Scholar 

  10. Fredriksson H, et al. Hole-mask colloidal lithography. Adv Mater. 2007;19:4297–302.

    Article  CAS  Google Scholar 

  11. Langhammer C, Yuan Z, Zoric I, Kasemo B. Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett. 2006;6:833–8.

    Article  CAS  Google Scholar 

  12. Langhammer C, Kasemo B, Zoric I. Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios. J Chem Phys. 2007;26(19):194702.

    Article  Google Scholar 

  13. Pakizeh T, Langhammer C, Zoric I, Apell P, Kall M. Intrinsic fano interference of localized plasmons in Pd nanoparticles. Nano Lett. 2009;9:882–6.

    Article  CAS  Google Scholar 

  14. Bigall NC, et al. Monodisperse platinum nanospheres with adjustable diameters from 10 to 100 nm: Synthesis and distinct optical properties. Nano Lett. 2008;8:4588–92.

    Article  CAS  Google Scholar 

  15. Wang H, Tam F, Grady NK, Halas NJ. Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance. J Phys Chem B. 2005;109:18218–22.

    Article  CAS  Google Scholar 

  16. Chan GH, Zhao J, Hicks EM, Schatz GC, Van Duyne RP. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett. 2007;7:1947–52.

    Article  CAS  Google Scholar 

  17. Duan JL, et al. Surface plasmon resonances of Cu nanowire arrays. J Phys Chem C. 2009;113:13583–7.

    Article  CAS  Google Scholar 

  18. Langhammer C, Schwind M, Kasemo B, Zoric I. Localized surface plasmon resonances in aluminum nanodisks. Nano Lett. 2008;8:1461–71.

    Article  CAS  Google Scholar 

  19. Chan GH, Zhao J, Schatz GC, Van Duyne RP. Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles. J Phys Chem C. 2008;112:13958–63.

    Article  CAS  Google Scholar 

  20. Ekinci Y, Solak HH, Löffler JF. Plasmon resonances of aluminum nanoparticles and nanorods. J Appl Phys. 2008;104:083107.

    Article  Google Scholar 

  21. Schwind M, Zhdanov VP, Zoric I, Kasemo B. LSPR study of the kinetics of the liquid-solid phase transition in Sn nanoparticles. Nano Lett. 2010;10:931–6.

    Article  CAS  Google Scholar 

  22. Gao HW, Henzie J, Lee MH, Odom TW. Screening plasmonic materials using pyramidal gratings. Proc Natl Acad Sci U S A. 2008;105:20146–51.

    Article  CAS  Google Scholar 

  23. Berube V, Radtke G, Dresselhaus M, Chen G. Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review. Int J Energ Res. 2007;31:637–63.

    Article  CAS  Google Scholar 

  24. Langhammer C, Zoric I, Kasemo B, Clemens BM. Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme. Nano Lett. 2007;7:3122–7.

    Article  CAS  Google Scholar 

  25. Isidorsson J, Giebels I, Arwin H, Griessen R. Optical properties of MgH2 measured in situ by ellipsometry and spectrophotometry. Phys Rev B. 2003;68:115112.

    Article  Google Scholar 

  26. Zoric I, Larsson EM, Kasemo B, Langhammer C. Localized surface plasmons shed light on nanoscale metal hydrides. Adv Mater. 2010;22(41):4628–33.

    Article  CAS  Google Scholar 

  27. Fukai Y. The Metal-Hydrogen System. Berlin: Springer; 1993.

    Google Scholar 

  28. Yeshchenko OA, Dmitruk IM, Alexeenko AA, Dmytruk AM. Size-dependent melting of spherical copper nanoparticles embedded in a silica matrix. Phys Rev B. 2007;75:085434.

    Article  Google Scholar 

  29. Yeshchenko OA, et al. Surface plasmon as a probe for melting of silver nanoparticles. Nanotechnology. 2009;21(4):045203.

    Article  Google Scholar 

  30. Yeshchenko OA, et al. Influence of interparticle interaction on melting of gold nanoparticles in Au/polytetrafluoroethylene nanocomposites. J Appl Phys. 2009;105:094326.

    Article  Google Scholar 

  31. Ung T, Liz-Marzan LM, Mulvaney P. Redox catalysis using Ag@SiO2 colloids. J Phys Chem B. 1999;103:6770–3.

    Article  CAS  Google Scholar 

  32. Mulvaney P, Pérez-Juste J, Giersig M, Liz-Marzán L, Pecharromán C. Drastic surface plasmon mode shifts in gold nanorods due to electron charging. Plasmonics. 2006;1:61–6.

    Article  CAS  Google Scholar 

  33. Novo C, Funston AM, Mulvaney P. Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat Nanotechnol. 2008;3:598–602.

    Article  CAS  Google Scholar 

  34. Novo C, Funston AM, Gooding AK, Mulvaney P. Electrochemical charging of single gold nanorods. J Am Chem Soc. 2009;131:14664–6.

    Article  CAS  Google Scholar 

  35. Larsson EM, Langhammer C, Zoric I, Kasemo B. Nanoplasmonic probes of catalytic reactions. Science. 2009;326:1091–4.

    Article  CAS  Google Scholar 

  36. Langhammer C, Zhdanov VP, Zoric I, Kasemo B. Size-dependent kinetics of hydriding and dehydriding of Pd nanoparticles. Phys Rev Lett. 2010;104:135502.

    Article  Google Scholar 

  37. Kobayashi T, Ando M, Haruta M. Enhancing effect of gold deposition in the optical detection of reducing gases in air by metal oxide thin films. Sensor Actuat B. 1993;13–14:545–6.

    Article  Google Scholar 

  38. Haruta M, Yamada N, Kobayashi T, Iijima S. Gold catalysts prepared by coprecipitiation for low-temperature oxidation of hydrogen and carbon monoxide. J Catal. 1989;115:301–9.

    Article  CAS  Google Scholar 

  39. Ando M, Kobayashi T, Haruta M. Enhancement in the optical CO sensitivity of NiO film by the deposition of ultrafine gold particles. J Chem Soc Farad T. 1994;90:1011–3.

    Article  CAS  Google Scholar 

  40. Ando M, Zehetner J, Kobayashi T, Haruta M. Large optical CO sensitivity of NO2-pretreated Au-NiO composite films. Sensor Actuat B. 1996;35–36:513–6.

    Article  Google Scholar 

  41. Ando M, Kobayashi T, Haruta M. Optical CO detection by use of CuO/Au composite film. Sensor Actuat B. 1995;24–25:851–3.

    Article  Google Scholar 

  42. Ando M, Chabicovsky R, Haruta M. Optical hydrogen sensitivity of nobel metal—tungsten oxide composite films prepared by sputter deposition. Sensor Actuat B. 2001;76:13–7.

    Article  Google Scholar 

  43. Ando M, Kobayashi T, Haruta M. Optical recognition of CO and H2 by use of a gas-sensitive Au-Co3O4 composite film. J Mater Chem. 1997;7:1779–83.

    Article  CAS  Google Scholar 

  44. Buso D, et al. Self-assembled gold nanoparticle monolayers in sol-gel matrices: synthesis and gas sensing applications. J Mater Chem. 2009;19:2051–7.

    Article  CAS  Google Scholar 

  45. Ando M, Kobayashi T, Iijima S, Haruta M. Optical CO sensitivity of Au-CuO composite film by use of the plasmon absorption change. Sensor Actuat B. 2003;96:589–95.

    Article  Google Scholar 

  46. Manera MG, et al. Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films. Sensor Actuat B: Chem. 2008;132:107–15.

    Article  Google Scholar 

  47. Sirinakis G, Siddique R, Manning I, Rogers PH, Carpenter MA. Development and characterization of Au-YSZ surface plasmon resonance based sensing materials: High temperature detection of CO. J Phys Chem B. 2006;110:13508–11.

    Article  CAS  Google Scholar 

  48. Rogers PH, Sirinakis G, Carpenter MA. Direct observations of electrochemical reactions within Au-YSZ thin films via absorption shifts in the an nanoparticle surface plasmon resonance. J Phys Chem C. 2008;112:6749–57.

    Article  CAS  Google Scholar 

  49. Rogers PH, Sirinakis G, Carpenter MA. Plasmonic-based detection of NO2 in a harsh environment. J Phys Chem C. 2008;112:8784–90.

    Article  CAS  Google Scholar 

  50. Liu M, Pelton M, Guyot-Sionnest P. Reduced damping of surface plasmons at low temperatures. Phys Rev B. 2009;79:035418.

    Article  Google Scholar 

  51. Langhammer C, Larsson EM, Kasemo B, Zoric I. Indirect nanoplasmonic sensing: ultrasensitive experimental platform for nanomaterials science and optical nano-calorimetry. Nano Lett. 2010;10(9):3529–38.

    Article  CAS  Google Scholar 

  52. Langhammer C, Zhdanov VP, Zoric I, Kasemo B. Size-dependent hysteresis in the formation and decomposition of hydride in metal nanoparticles. Chem Phys Lett. 2010;488:62–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Langhammer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Langhammer, C., Larsson, E.M., Kasemo, B., Zoric, I. (2012). Nanoplasmonic Sensing for Nanomaterials Science, Catalysis, and Optical Gas Detection. In: Dmitriev, A. (eds) Nanoplasmonic Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3933-2_8

Download citation

Publish with us

Policies and ethics