Skip to main content

Fundamentals of Tribology and the Use of Ferrography and Bio-Ferrography for Monitoring the Degradation of Natural and Artificial Joints

  • Chapter
  • First Online:
Degradation of Implant Materials

Abstract

Here, we summarize the principles of tribology and demonstrate the importance of wear particle analysis in condition monitoring. The principles of Ferrography, a technique that was originally developed for condition monitoring of engineering systems, are explained. A new modification of this technique, known as Bio-Ferrography, is reviewed and its application in magnetic isolation of target cells or tissues is demonstrated. Routes for magnetic labeling of biological matter and synthetic polymers are also presented. The hip and knee natural joints are discussed, along with osteoarthritis—their most common noninflammatory disorder. The use of Ferrography and Bio-Ferrography for isolating bone and cartilage particles from the synovial fluids in osteoarthritic joints is reviewed. Artificial joints and the use of Ferrography and Bio-Ferrography for monitoring their wear, either during the development stage or during service, are also reviewed. The concept of soft bearing materials is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ASM International (2002) ASM handbook, vol 18: friction, lubrication and wear technology. ASM International, Metals Park, OH

    Google Scholar 

  2. ASM International (2002) ASM handbook, vol 11: failure analysis and prevention. ASM International, Metals Park, OH

    Google Scholar 

  3. ASTM International (1987) ASTM G40—10b: standard terminology relating to wear and erosion. ASTM International, West Conshohocken, PA

    Google Scholar 

  4. Levi O, Eliaz N (2009) Failure analysis and condition monitoring of an open-loop oil system using ferrography. Tribol Lett 36:17–29

    Article  CAS  Google Scholar 

  5. Lakstein D, Eliaz N, Levi O, Backstein D, Kosashvili Y, Safir O, Gross AE (2011) Fracture of cementless femoral stems at the mid-stem junction in modular revision hip arthroplasty systems. J Bone Joint Surg Am 93:57–65

    Article  Google Scholar 

  6. Bowen ER, Westcott VC (1976) Wear particle atlas (revised), vol. 1. Naval Air Engineering Center contract number N00156-74-C01682. Naval Air Engineering Center, Lakehurst, NJ

    Google Scholar 

  7. Eliaz N, Latanision RM (2007) Preventative maintenance and failure analysis of aircraft components. Corros Rev 25:107–144

    Article  CAS  Google Scholar 

  8. Neale MJ (1973) Tribology handbook. Wiley, New York

    Google Scholar 

  9. Lockwood FE, Dalley R (1992) Lubricant analysis. In: Henry SD et al (eds) ASM handbook, vol 18. ASM International, Metals Park, OH, pp 299–312

    Google Scholar 

  10. Staff report (1986) Ferrography: a tool for wear-particle analysis. Hydraul Pneum November:59–61

    Google Scholar 

  11. Davies A (1997) Handbook of condition monitoring: techniques and methodology. Chapman & Hall, London

    Google Scholar 

  12. Seifert WW, Westcott VC (1972) A method for the study of wear particles in lubricating oil. Wear 21:27–42

    Article  Google Scholar 

  13. Westcott VC (1977) Method and apparatus for segregating particulate matter. US Patent 4,047,814

    Google Scholar 

  14. Reda AA, Bowen R, Westcott VC (1975) Characteristics of particles generated at the interface between sliding steel surfaces. Wear 34:261–273

    Article  CAS  Google Scholar 

  15. Scott D, Seifert WW, Westcott VC (1974) The particles of wear. Sci Am 230:88–97

    Article  Google Scholar 

  16. Roylance BJ (2005) Ferrography—then and now. Tribol Int 38:857–862

    Article  CAS  Google Scholar 

  17. Stecki JS, Kuhnell BT (1985) Condition monitoring of jet engines. Lubr Eng 41:485–493

    CAS  Google Scholar 

  18. Doyle ED, Atkin ML (1985) A review and case study of wear mechanisms and condition monitoring. In: Joint national symposium 1985: the influence of aviation on engineering and the future of aeronautics in Australia, preprints. The Institution of Engineers, Melbourne, Australia, p 23

    Google Scholar 

  19. Stecki JS (1980) Failure prediction using ferrographic oil analysis techniques. In: Proceedings of the conference on lubrication, friction and wear in engineering. The Institution of Engineering, Melbourne, Australia, p. 281

    Google Scholar 

  20. Zborowski M, Malchesky PS, Savon SR, Green R, Hall GS, Nosé Y (1991) Modification of ferrography method for analysis of lymphocytes and bacteria. Wear 142:135–149

    Article  Google Scholar 

  21. Bowen ER (1979) Development of real time ferrograph, final rep. 80015. Naval Air Propulsion Center, Lakehurst, NJ

    Google Scholar 

  22. Merhib CP (1980) The on-line ferrograph. In: Proceedings of the conference on lubrication, friction and wear in Engineering. The Institution of Engineering, Melbourne, Australia, p 277

    Google Scholar 

  23. Centers PW (1983) Laboratory evaluation of the on-line ferrograph. Wear 90:1–9

    Article  CAS  Google Scholar 

  24. Barwell FT (1984) The role of particle analysis—a review of ferrography. In: Dowson D, Taylor CM, Godet M, Berthe D (eds) Developments in numerical and experimental methods applied to tribology. Butterworths, London, p 3

    Google Scholar 

  25. Whittington HW, Flynn BW, Mills GH (1992) An on-line wear debris monitor. Meas Sci Technol 3:656–661

    Article  Google Scholar 

  26. Seifert WW, Westcott VC, Desjardins JB (1998) Flow unit for ferrographic analysis. US Patent No. 5714059

    Google Scholar 

  27. Guilfoyle I (2000) New on the market: Bio-Ferrograph 2100. Nature 407:818

    Google Scholar 

  28. Desjardins JB, Seifert WW, Wenstrup RS, Westcott VC (2001) Ferrographic apparatus. US Patent No. 6303030

    Google Scholar 

  29. Guilfoyle I (2001) Bio-Ferrograph 2100 users manual. Belmont, MA

    Google Scholar 

  30. Parkansky N, Alterkop B, Boxman RL, Leitus G, Berkh O, Barkay Z, Rosenberg Yu, Eliaz N (2008) Magnetic properties of carbon nano-particles produced by a pulsed arc submerged in ethanol. Carbon 46:215–219

    Article  CAS  Google Scholar 

  31. Šafařík I, Šafaříková M (1999) Use of magnetic techniques for the isolation of cells. J Chromatogr B 722:33–53

    Article  Google Scholar 

  32. Evans CH, Russel AP, Westcott VC (1989) Approaches to paramagnetic separations in biology and medicine. Part Sci Technol 7:97–109

    Article  Google Scholar 

  33. Evans CH (1990) Biochemistry of the lanthanides. Plenum Press, New York

    Google Scholar 

  34. Evans CH, Tew WP (1981) Isolation of biological materials by use of erbium (III)-induced magnetic susceptibilities. Science 213:653–654

    Article  CAS  Google Scholar 

  35. Evans CH (1983) Application of ferrography to the study of wear and arthritis in human joints. Wear 90:281–292

    Article  CAS  Google Scholar 

  36. Meyer DM, Tillinghast A, Hanumara NC, Franco A (2006) Bio-ferrography to capture and separate polyethylene wear debris from hip simulator fluid and compared with conventional filter method. J Tribol 128:436–441

    Article  CAS  Google Scholar 

  37. Mears DC, Hanley EN, Rutkowski R, Westcott VC (1978) Ferrography: its application to the study of human joint wear. Wear 50:115–125

    Article  CAS  Google Scholar 

  38. Mears DC, Hanley EN, Rutkowski R, Westcott VC (1978) Ferrographic analysis of wear particles in arthroplastic joints. J Biomed Mater Res 12:867–875

    Article  CAS  Google Scholar 

  39. Evans CH, Mears DC (1981) The wear particles of synovial fluid: their ferrographic analysis and pathophysiological significance. Bulletin Prosthet Res Fall:13–26

    Google Scholar 

  40. Elsner JJ, Mezape Y, Hakshur K, Shemesh M, Linder-Ganz E, Shterling A, Eliaz N (2010) Wear rate evaluation of a novel polycarbonate-urethane cushion form bearing for artificial hip joints. Acta Biomater 6:4698–4707

    Article  CAS  Google Scholar 

  41. Elsner JJ, Shemesh M, Mezape Y, Levenshtein M, Hakshur K, Shterling A, Linder-Ganz E, Eliaz N (2011) Long-term evaluation of a compliant cushion form acetabular bearing for hip joint replacement: a 20 million cycles wear simulation. J Orthop Res 29:1859–1866

    Article  Google Scholar 

  42. Mendel K, Eliaz N, Benhar I, Hendel D, Halperin N (2010) Magnetic isolation of particles suspended in synovial fluid for diagnostics of natural joint chondropathies. Acta Biomater 6:4430–4438

    Article  CAS  Google Scholar 

  43. Evans CH, Bowen ER, Bowen J, Tew WP, Westcott VC (1980) Synovial fluid analysis by ferrography. J Biochem Biophys Methods 2:11–18

    Article  CAS  Google Scholar 

  44. Evans CH, Mears DC, McKnight JL (1981) A preliminary ferrographic survey of the wear particles in human synovial fluid. Arthritis Rheum 24:912–918

    Article  CAS  Google Scholar 

  45. Evans CH, Mears DC, Stanitski CL (1982) Ferrographic analysis of wear in human joints: evaluation by comparison with arthroscopic examination of symptomatic knees. J Bone Joint Surg 64B:572–578

    Google Scholar 

  46. Hunter JA, Mills GH, Sturrock RD (1982) Ferrography: a new method for isolation of particles from biological fluids. J Clin Pathol 35:689–690

    Article  CAS  Google Scholar 

  47. Mills GH, Hunter JA (1983) A preliminary use of ferrography in the study of arthritic diseases. Wear 90:107–111

    Article  Google Scholar 

  48. Podsiadlo P, Kuster M, Stachowiak GW (1997) Numerical analysis of wear particles from non-arthritic and osteoarthritic human knee joints. Wear 210:318–325

    Article  CAS  Google Scholar 

  49. Kuster MS, Podsiadlo P, Stachowiak GW (1998) Shape of wear particles found in human knee joints and their relationship to osteoarthritis. Br J Rheumatol 37:978–984

    Article  CAS  Google Scholar 

  50. Graindorge SL, Stachowiak GW (2000) Changes occurring in the surface morphology of articular cartilage during wear. Wear 241:143–150

    Article  CAS  Google Scholar 

  51. Chemicon International, Inc (1998) Introduction to Antibodies. Temecula, CA

    Google Scholar 

  52. Janeway CA Jr, Travers P, Walport M, Shlomchik MJ (2001) Immunobiology, 5th edn. Garland Publishing, New York

    Google Scholar 

  53. Goodchild S, Love T, Hopkins N, Mayers C (2005) Engineering antibodies for biosensor technologies. Adv Appl Microbiol 58C:185–226

    Article  Google Scholar 

  54. Goding JE (1996) Monoclonal antibodies: principles and practice, 3rd edn. Academic, San Diego, p 141

    Google Scholar 

  55. Hakshur K, Benhar I, Bar-Ziv Y, Halperin N, Segal D, Eliaz N (2011) The effect of hyaluronan injections into human knees on the number of bone and cartilage wear particles captured by bio-ferrography. Acta Biomater 7:848–857

    Article  CAS  Google Scholar 

  56. Zhang P, Johnson WP, Rowland R (1999) Bacterial tracking using ferrographic separation. Environ Sci Technol 33:2456–2460

    Article  CAS  Google Scholar 

  57. Johnson WP, Zhang P, Fuller ME, Scheibe TD, Mailloux BJ, Onstott TC, Deflaun MF, Hubbard SS, Radtke J, Kovacik WP, Holben W (2001) Ferrographic tracking of bacterial transport in the field at the Narrow Channel Focus Area, Oyster, VA. Environ Sci Technol 35:182–191

    Article  CAS  Google Scholar 

  58. Johnson WP, Zhang P, Gardner PM, Fuller ME, DeFlaun MF (2001) Evidence for detachment of indigenous bacteria from aquifer sediment in response to arrival of injected bacteria. Appl Environ Microbiol 67:4908–4913

    Article  CAS  Google Scholar 

  59. Johnson WP, McIntosh OW (2003) Tracking of injected and resident (previously injected) bacterial cells in groundwater using ferrographic capture. Microbiol Methods 54:153–164

    Article  CAS  Google Scholar 

  60. Graham MD, Selvin PR (1982) Separation of lanthanide binding cells. IEEE Trans Magn 18:1523–1525

    Article  Google Scholar 

  61. Russell AP, Westcott VC, Demaria A, Johns M (1983) The concentration and separation of bacteria and cells by ferrography. Wear 90:159–165

    Article  Google Scholar 

  62. Jones WR (1983) Wear particle analysis using the ferrograph. NASA Technical Memorandum 83422. NASA, Cleveland, OH

    Google Scholar 

  63. Zhang P, Johnson WP (1999) Rapid selective ferrographic enumeration of bacteria. J Magn Magn Mater 194:267–274

    Article  CAS  Google Scholar 

  64. Fuller M, Mailloux B, Zhang P, Streger S, Hall J, Vainberg S, Beavis A, Johnson W, Onstott T, DeFlaun M (2001) Field-scale evaluation of CFDA/SE staining coupled with multiple detection methods for assessing the transport of bacteria in situ. FEMS Microbiol Ecol 37:55–66

    Article  CAS  Google Scholar 

  65. DeFlaun MF, Fuller ME, Zhang P, Johnson WP, Mailloux BJ, Holben WE, Kovacik WP, Balkwill DL, Onstott TC (2001) Comparison of methods for monitoring bacterial transport in the subsurface. J Microbiol Methods 47:219–231

    Article  CAS  Google Scholar 

  66. Zhang P, Johnson WP, Scheibe TD, Choi KH, Dobbs FC, Mailloux BJ (2001) Extended tailing of bacteria following breakthrough at the Narrow Channel Focus Area, Oyster, Virginia. Water Resour Res 37:2687–2698

    Article  Google Scholar 

  67. Drake LA, Meyer AE, Forsberg RL, Baier RE, Doblin MA, Heinemann S, Johnson WP, Koch M, Rublee PA, Dobbs FC (2005) Potential invasion of microorganisms and pathogens via ‘interior hull fouling’: biofilms inside ballast water tanks. Biol Invasions 7:969–982

    Article  Google Scholar 

  68. Fang B, Zborowski M, Moore LR (1999) Detection of rare MCF-7 breast carcinoma cells from mixture of human peripheral leukocytes by magnetic deposition analysis. Cytometry 36:294–302

    Article  CAS  Google Scholar 

  69. Turpen PB (2000) Isolation of cells using bioferrography. Cytometry 42:324

    Google Scholar 

  70. Desjardins JB (2001) private communication. Guilfoyle Inc., Belmont, MA, April, 4

    Google Scholar 

  71. Ishay JS, Barkay Z, Eliaz N, Plotkin M, Volynchik S, Bergman DJ (2008) Gravity orientation in social wasp comb cells (Vespinae) and the possible role of embedded minerals. Naturwissenschaften 95:333–342

    Article  CAS  Google Scholar 

  72. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83:761–769

    Article  CAS  Google Scholar 

  73. Latorre M, Rinaldi C (2009) Applications of magnetic nanoparticles in medicine: Magnetic fluid hyperthermia. PRHSJ 28:227–238

    Google Scholar 

  74. Yildiz I, Shukla S, Steinmetz NF (2011) Applications of viral nanoparticles in medicine. Curr Opin Biotechnol 22:1–8

    Article  CAS  Google Scholar 

  75. Thibodeau GA, Patton KT (1999) Anatomy and physiology, 4th edn. Mosby, St. Louis, MO

    Google Scholar 

  76. Sokoloff L (1978) The joints and synovial fluid, vol 1 & 2. Academic, London

    Google Scholar 

  77. Buchanan WW, Kean WF (2002) Osteoarthritis II: pathology and pathogenesis. Inflammopharmacol 10:23–52

    Article  CAS  Google Scholar 

  78. Goldberg VM, Buckwalter JA (2005) Hyaluronans in the treatment of osteoarthritis of the knee: evidence for disease-modifying activity. Osteoarthritis Cartilage 13:216–224

    Article  CAS  Google Scholar 

  79. Kirchner M, Marshall D (2006) A double-blind randomized controlled trial comparing alternate forms of high molecular weight hyaluronan for the treatment of osteoarthritis of the knee. Osteoarthritis Cartilage 14:154–162

    Article  CAS  Google Scholar 

  80. Watterson JR, Esdaile JM (2000) Viscosupplementation: therapeutic mechanisms and clinical potential in osteoarthritis of the knee. J Am Acad Orthop Surg 8:277–284

    CAS  Google Scholar 

  81. The Institute for Clinical Care Council for Osteoarthritis Pain Management. http://www.clincare.org/council-for-osteoarthritis-pain-management. Accessed 14 July 2011

  82. Eyre D (2002) Review: collagen of articular cartilage. Arthritis Res 4:30–35

    Article  CAS  Google Scholar 

  83. Klein J (2009) Repair or replacement: a joint perspective. Science 323:47–48

    Article  CAS  Google Scholar 

  84. Chen M, Briscoe WH, Armes SP, Klein J (2009) Lubrication at physiological pressures by polyzwitterionic brushes. Science 323:1698–1701

    Article  CAS  Google Scholar 

  85. Klein J (2006) Molecular mechanisms of synovial joint lubrication. Proc IMechE J J Eng Tribol 220:691–710

    Article  CAS  Google Scholar 

  86. Unsworth A, Dowson D, Wright V (1975) Some new evidence on human joint lubrication. Ann Rheum Dis 34:277–285

    Article  CAS  Google Scholar 

  87. Scholes SC, Unsworth A, Blamey JM, Burgess IC, Jones E, Smith N (2005) Design aspects of compliant soft layer bearings for an experimental hip prosthesis. Proc Instn Mech Engrs H 219:79–87

    Article  CAS  Google Scholar 

  88. Dowson D (1981) Basic tribology. In: Dowson D, Wright V (eds) An introduction to the biomechanics of joints and joint replacement. Mechanical Engineering Publications Limited, London, p 49

    Google Scholar 

  89. Arthritis program. Arthritis related statistics (2008) Centers for Disease Control and Prevention, Atlanta, GA. http://www.cdc.gov/arthritis/data_statistics/arthritis_related_statistics.htm. Accessed 16 July 2011

  90. Wieland HA, Michaelis M, Kirschbaum BJ, Rudolphi KA (2005) Osteoarthritis—an untreatable disease. Nat Rev Drug Discov 4:331–344

    Article  CAS  Google Scholar 

  91. DeGroot J, Bank RA, Tchetverikov I, Verzijl N, TeKoppele JM (2002) Molecular markers for osteoarthritis: the road ahead. Curr Opin Rheumatol 14:585–589

    Article  CAS  Google Scholar 

  92. Hannan MT, Felson DT, Pincus T (2000) Analysis of the discordance between radiographic changes and knee pain in osteoarthritis of the knee. J Rheumatol 27:1513–1517

    CAS  Google Scholar 

  93. Moreland LW (2003) Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis: mechanisms of action. Arthritis Res Ther 5:54–67

    Article  CAS  Google Scholar 

  94. Herrero-Beaumont GR, Sánchez-Pernaute O, Acebes C, Palacios I, Mas S, Rodriguez I, Egido J, Vivanco F (2001) Cartilage and bone biological markers in the synovial fluid of osteoarthritic patients after hyaluronan injections in the knee. Clin Chim Acta 308:107–115

    Article  CAS  Google Scholar 

  95. Tortora GJ, Derrickson BH (2009) Principles of anatomy and physiology, vol 1, 12th edn. Wiley, Hoboken, NJ

    Google Scholar 

  96. Robb WJ, Healy WL, Berry DJ, Hozack WJ, Kyle RF, Lewallen DG, Trousdale RT, Jiranek WA, Iorio R (2008) Orthopaedic surgeon workforce assessment for THA/TKA in the US—preparing for an epidemic. The 75th Annual Meeting of the American Academy of Orthopaedic Surgeons (AAOS), San Francisco, CA

    Google Scholar 

  97. Georgiades G, Babis GC, Hartofilakidis G (2009) Charnley low-friction arthroplasty in young patients with osteoarthritis: outcomes at a minimum of twenty-two years. J Bone Joint Surg Am 91:2846–2851

    Article  Google Scholar 

  98. Clohisy JC, Calvert G, Tull F, McDonald D, Maloney WJ (2004) Reasons for revision hip surgery: a retrospective review. Clin Orthop Relat Res 429:188–192

    Article  Google Scholar 

  99. Ulrich SD, Seyler TM, Bennett D, Delanois RE, Saleh KJ, Thongtrangan I, Kuskowski M, Cheng EY, Sharkey PF, Parvizi J, Stiehl JB, Mont MA (2008) Total hip arthroplasties: what are the reasons for revision? Int Orthop 32:597–604

    Article  Google Scholar 

  100. Howie DW, Vernon-Roberts B, Oakeshott R, Manthey B (1988) A rat model of resorption of bone at the cement-bone interface in the presence of polyethylene wear particles. J Bone Joint Surg Am 70:257–263

    CAS  Google Scholar 

  101. Willert HG, Semlitch M (1977) Reactions of the articular capsule to wear products of artificial joint prosthesis. J Biomed Mater Res 11:157–164

    Article  CAS  Google Scholar 

  102. Jin ZM, Dowson D, Fisher J (1997) Analysis of fluid film lubrication in artificial hip joint replacements with surfaces of high elastic modulus. Proc Instn Mech Engrs H 211:247–256

    Article  CAS  Google Scholar 

  103. Tipper JL, Firkins PJ, Besong AA, Barbour PSM, Nevelos J, Stone MH, Ingham E, Fisher J (2001) Characterization of wear debris from UHMWPE on zirconia ceramic, metal-on-metal and alumina ceramic-on-ceramic hip prostheses generated in a physiological anatomical hip joint simulator. Wear 250:120–128

    Article  Google Scholar 

  104. Doorn PF, Campbell PA, Worrall J, Benya PD, McKellop HA, Amstutz HC (1998) Metal wear particle characterization from metal on metal total hip replacements: transmission electron microscopy study of periprosthetic tissues and isolated particles. J Biomed Mater Res 42:103–111

    Article  CAS  Google Scholar 

  105. Case CP, Langkamer VG, James C, Palmer MR, Kemp AJ, Heap PF, Solomon L (1994) Widespread dissemination of metal debris from implants. J Bone Joint Surg Br 76:701–712

    CAS  Google Scholar 

  106. Langkamer VG, Case CP, Heap P, Taylor A, Collins C, Pearse M, Solomon L (1992) Systemic distribution of wear debris after hip replacement. A cause for concern? J Bone Joint Surg Br 74:831–839

    CAS  Google Scholar 

  107. Willert HG, Buchhorn GH, Fayyazi A, Flury R, Winder M, Köster G, Lohmann CH (2005) Metal-on-metal bearings and hypersensitivity in patients with artificial joints. A clinical and histomorphological study. J Bone Joint Surg Am 87:28–36

    Article  Google Scholar 

  108. Korovessis P, Petsinis G, Repanti M, Repantis T (2006) Metallosis after contemporary metal-on-metal total hip arthroplasty. Five to nine year follow-up. J Bone Joint Surg Am 88:1183–1191

    Article  CAS  Google Scholar 

  109. Khan I, Smith N, Jones E, Finch DS, Cameron RE (2005) Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part I: materials selection and evaluation. Biomaterials 26:621–631

    Article  CAS  Google Scholar 

  110. Khan I, Smith N, Jones E, Finch DS, Cameron RE (2005) Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part II: in vivo investigation. Biomaterials 26:633–643

    Article  CAS  Google Scholar 

  111. Scholes SC, Burgess IC, Marsden HR, Unsworth A, Jones E, Smith N (2006) Compliant layer acetabular cups: friction testing of a range of materials and designs for a new generation of prosthesis that mimics the natural joint. Proc Instn Mech Engrs H 220:583–596

    Article  CAS  Google Scholar 

  112. Stachowiak GW, Podsiadlo P (1997) Analysis of wear particle boundaries found in sheep knee joints during in vitro wear tests without muscle compensation. J Biomech 30:415–419

    Article  CAS  Google Scholar 

  113. Kirk TB, Stachowiak GW (1994) Computer wear particle analysis for the study of arthritic disorders. In: Engin AE, Ertas A (eds) Proceedings of the 1994 engineering systems design and analysis conference, vol 4. The American Society of Mechanical Engineers, New York, p 69

    Google Scholar 

  114. Evans CH (1985) Ferrographic and biochemical studies on the wear particles of human and prosthetic joints. University of Pittsburgh, PA, Kappa Delta Award

    Google Scholar 

  115. Jeffery AK, Blunn GW, Archer CW, Bentley G (1991) Three-dimensional collagen architecture in bovine articular cartilage. J Bone Joint Surg Br 73:795–801

    CAS  Google Scholar 

  116. Hughes S, Sweetnam R (1980) The basis and practice of orthopaedics. Heinemann, London, UK

    Google Scholar 

  117. Eliaz N (2008) Electrocrystallization of calcium phosphates. Isr J Chem 48:159–168

    Article  CAS  Google Scholar 

  118. Oegema TR, Carpenter RJ, Hofmeister F, Thompson RC (1997) The interaction of the zone of calcified cartilage and subchondral bone in osteoarthritis. Microsc Res Tech 37:324–332

    Article  Google Scholar 

  119. Russ JC (1990) Computer-assisted microscopy: the measurement and analysis of images. Plenum Press, New York

    Book  Google Scholar 

  120. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteoarthritis. Ann Rheum Dis 16:494–501

    Article  CAS  Google Scholar 

  121. Wallbridge N, Dowson D (1982) The walking activity of patients with artificial hip joints. Eng Med 11:95–96

    Article  CAS  Google Scholar 

  122. Sauer WL, Anthony ME (1998) Predicting the clinical wear performance of orthopaedic bearing surfaces. In: Jacobs JJ, Craig TL (eds) ASTM STP 1346: alternative bearing surfaces in total joint replacement. American Society for Testing and Materials, West Conshohoken, p 1

    Chapter  Google Scholar 

  123. Silva M, Shepherd EF, Jackson WO, Dorey FJ, Schmalzried TP (2002) Average patient walking activity approaches 2 million cycles per year. J Arthrop 17:693–697

    Article  Google Scholar 

  124. Essner A, Wang A (2009) Tribological assessment of UHMWPE in the hip. In: Kurtz SM (ed) UHMWPE biomaterials handbook, 2nd edn. Academic, Boston, p 369

    Chapter  Google Scholar 

  125. Siebert W, Mai S, Moroni A, Chiarello E, Giannini S (2009) A two-year prospective and retrospective multi-center study of the TriboFit hip system. J Long Term Eff Med Implants 19:149–155

    Article  Google Scholar 

  126. Moroni A, Nocco E, Hoque M, Diremigio E, Buffoli D, Cantù F, Catalani S, Apostoli P (2012) Cushion bearings versus large diameter head metal-on-metal bearings in total hip arthroplasty. Arch Orthop Trauma Surg 132:123–129

    Article  Google Scholar 

  127. Green TR, Fisher J, Stone M, Wroblewski BM, Ingham E (1998) Polyethylene particles of a ‘critical size’ are necessary for the induction of cytokines by macrophages in vitro. Biomaterials 19:2297–2302

    Article  CAS  Google Scholar 

  128. Galvin AL, Tipper JL, Jennings LM, Stone MH, Jin ZM, Ingham E, Fisher I (2007) Wear and biological activity of highly crosslinked polyethylene in the hip under low serum protein concentrations. Proc Inst Mech Eng Part H J Eng Med 221:1–10

    Article  CAS  Google Scholar 

  129. Smith RA, Maghsoodpour A, Hallab NJ (2010) In vivo response to cross-linked polyethylene and polycarbonate-urethane particles. J Biomed Mater Res A 93:227–234

    Google Scholar 

  130. Oral E, Muratoglu OK (2009) Highly crosslinked UHMWPE doped with vitamin E. In: Kurtz SM (ed) UHMWPE biomaterials handbook, 2nd edn. Academic, Boston, p 221

    Chapter  Google Scholar 

  131. Schroder DT, Kelly NH, Wright TM, Parks ML (2011) Retrieved highly crosslinked UHMWPE acetabular liners have similar wear damage as conventional UHMWPE. Clin Orthop Relat Res 469:387–394

    Article  Google Scholar 

  132. Furmanski J, Anderson M, Bal S, Greenwald AS, Halley D, Penenberg B, Ries M, Pruitt L (2009) Clinical fracture of cross-linked UHMWPE acetabular liners. Biomaterials 30:5572–5582

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noam Eliaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eliaz, N., Hakshur, K. (2012). Fundamentals of Tribology and the Use of Ferrography and Bio-Ferrography for Monitoring the Degradation of Natural and Artificial Joints. In: Eliaz, N. (eds) Degradation of Implant Materials. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3942-4_10

Download citation

Publish with us

Policies and ethics