Skip to main content

Biodegradable Metals

  • Chapter
  • First Online:
Degradation of Implant Materials

Abstract

Temporary implants based on controlled corrosion of metals are currently investigated as biodegradable metals. Intended corrosion of implants is a paradigm-changing approach in biomaterial sciences. This chapter will provide a comprehensive overview on historic approaches to biodegradable metals and will discuss current research and challenges in this novel field of biomaterial sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schuster J (1975) The metallosis. Ferdinand Enke, Stuttgart

    Google Scholar 

  2. Heffernan EJ, Hayes MM, Alkubaidan FO, Clarkson PW, Munk PL (2008) Aggressive angiomyxoma of the thigh. Skeletal Radiol 37:673–678

    Article  CAS  Google Scholar 

  3. Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, Windhagen H (2005) In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26:3557–3563

    Article  CAS  Google Scholar 

  4. Heublein B, Rohde R, Kaese V, Niemeyer M, Hartung W, Haverich A (2003) Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart 89:651–656

    Article  CAS  Google Scholar 

  5. Peuster M, Wohlsein P, Brugmann M, Ehlerding M, Seidler K, Fink C, Brauer H, Fischer A, Hausdorf G (2001) A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal—results 6–18 months after implantation into New Zealand white rabbits. Heart 86:563–569

    Article  CAS  Google Scholar 

  6. Witte F (2010) The history of biodegradable magnesium implants: a review. Acta Biomater 6:1680–1692

    Article  CAS  Google Scholar 

  7. Mantovani D, Witte F (2010) Editorial. Acta Biomaterialia 6:1679

    Google Scholar 

  8. Huse EC (1878) A new ligature? Chicago Med J Exam 172:2

    Google Scholar 

  9. Witte F, Abeln I, Switzer E, Kaese V, Meyer-Lindenberg A, Windhagen H (2008) Evaluation of the skin sensitizing potential of biodegradable magnesium alloys. J Biomed Mater Res A 86A:1041–1047

    Article  CAS  Google Scholar 

  10. Peuster M, Fink C, Wohlsein P, Bruegmann M, Gunther A, Kaese V, Niemeyer M, Haferkamp H, Schnakenburg C (2003) Degradation of tungsten coils implanted into the subclavian artery of New Zealand white rabbits is not associated with local or systemic toxicity. Biomaterials 24:393–399

    Article  CAS  Google Scholar 

  11. Seelig MG (1924) A study of magnesium wire as an absorbable suture and ligature material. Arch Surg 8:669–680

    Article  Google Scholar 

  12. Lambotte A (1932) L’utilisation du magnésium comme matériel perdu dans l’ostéosynthèse. Bull Mém Soc Nat Cir 28

    Google Scholar 

  13. Eliezer A, Witte F (2010) The role of biological environments on magnesium alloys as biomaterials. In: Kainer KU (ed) 7th International conference on magnesium alloys and their applications. Wiley-VCH, Dresden, pp 822–827

    Google Scholar 

  14. Bundy K (1995) In vivo. In: Baboian R (ed) Corrosion tests and standards. ASTM, Fredericksburg, VA, pp 411–419

    Google Scholar 

  15. Witte F, Fischer J, Nellesen J, Crostack HA, Kaese V, Pisch A, Beckmann F, Windhagen H (2006) In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 27:1013–1018

    Article  CAS  Google Scholar 

  16. Mueller W-D, Mele MFLd, Nascimento ML, Zeddies M (2009) Degradation of magnesium and its alloys: dependence on the composition of the synthetic biological media. J Biomed Mater Res A 90A:487–495

    Article  CAS  Google Scholar 

  17. Mueller WD, Lucia Nascimento M, Lorenzo de Mele MF (2010) Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications. Acta Biomater 6:1749–1755

    Article  CAS  Google Scholar 

  18. Rettig R, Virtanen S (2009) Composition of corrosion layers on a magnesium rare-earth alloy in simulated body fluids. J Biomed Mater Res A 88A:359–369

    Article  CAS  Google Scholar 

  19. Eliezer A, Witte F (2010) Corrosion behavior of magnesium alloys in biomedical environments. J Adv Mater Res 95:17–22

    Article  CAS  Google Scholar 

  20. Rudee ML, Price TM (1985) The initial stages of adsorption of plasma derived proteins on artificial surfaces in a controlled flow environment. J Biomed Mater Res 19:57–66

    Article  CAS  Google Scholar 

  21. Neumann AW, Hum OS, Francis DW, Zingg W, van Oss CJ (1980) Kinetic and thermodynamic aspects of platelet adhesion from suspension to various substrates. J Biomed Mater Res 14:499–509

    Article  CAS  Google Scholar 

  22. Clark GC, Williams DF (1982) The effects of proteins on metallic corrosion. J Biomed Mater Res 16:125–134

    Article  CAS  Google Scholar 

  23. Eliaz N (2008) Biomaterials and corrosion. In: Raj UKMaB (ed) Corrosion science and technology: mechanism, mitigation and monitoring. Narosa Publishing House, New Delhi, pp 356–397

    Google Scholar 

  24. Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, Feyerabend F (2008) Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci 12:63–72

    Article  CAS  Google Scholar 

  25. Witte F, Fischer J, Nellesen J, Beckmann F (2006) Microtomography of magnesium implants in bone and their degradation. Progress in Biomedical Optics and Imaging - Proceedings of SPIE 2006:6318, art. no. 631806

    Google Scholar 

  26. Witte F, Fischer J, Nellesen J, Vogt C, Vogt J, Donath T, Beckmann F (2009) In vivo corrosion and corrosion protection of magnesium alloy LAE442. Acta Biomater 6(5):1792–1799

    Article  Google Scholar 

  27. Shaw BA (2003) Corrosion resistance of magnesium alloys. In: ASM handbook, vol 13a: Corrosion: fundamentals, testing and protection. ASM International, London

    Google Scholar 

  28. Xu L, Yu G, Zhang E, Pan F, Yang K (2007) In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. J Biomed Mater Res A 83:703–711

    Google Scholar 

  29. Song GL, Atrens A (1999) Corrosion mechanisms of magnesium alloys. Adv Eng Mater 1:11–33

    Article  CAS  Google Scholar 

  30. Lango T, Morland T, Brubakk AO (1996) Diffusion coefficients and solubility coefficients for gases in biological fluids and tissues: a review. Undersea Hyperb Med 23:247–272

    CAS  Google Scholar 

  31. Piiper J, Canfield RE, Rahn H (1962) Absorption of various inert gases from subcutaneous gas pockets in rats. J Appl Physiol 17:268

    CAS  Google Scholar 

  32. Vaupel P (1976) Effect of percentual water-content in tissues and liquids on diffusion-coefficients of O2, Co2, N2, and H2. Pflugers Arch Eur J Physiol 361:201–204

    Article  CAS  Google Scholar 

  33. Wen CE, Yamada Y, Shimojima K, Chino Y, Hosokawa H, Mabuchi M (2004) Compressibility of porous magnesium foam: dependency on porosity and pore size. Mater Lett 58:357–360

    Article  CAS  Google Scholar 

  34. Witte F, Ulrich H, Rudert M, Willbold E (2007) Biodegradable magnesium scaffolds. Part I: Appropriate inflammatory response. J Biomed Mater Res A 81:748–756

    CAS  Google Scholar 

  35. Bosiers M, Deloose K, Verbist ü, Peeters P (2005) First clinical application of absorbable metal stents in the treatment of critical limb ischemia: 12-month results. Vasc Dis Manag 2(4):86–91

    Google Scholar 

  36. Erbel R, Di Mario C, Bartunek J, Bonnier J, de Bruyne B, Eberli FR, Erne P, Haude M, Heublein B, Horrigan M, Ilsley C, Bose D, Koolen J, Luscher TF, Weissman N, Waksman R (2007) Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet 369:1869–1875

    Article  CAS  Google Scholar 

  37. Zhu YY, Wu GM, Zhao Q (2010) Research progress of magnesium-based alloy in biomedical application. Chin J Biomed Eng 29:932–938

    Google Scholar 

  38. Zeng R, Dietzel W, Witte F, Hort N, Blawert C (2008) Progress and challenge for magnesium alloys as biomaterials. Adv Eng Mater 10:B3–B14

    Google Scholar 

  39. Virtanen S (2011) Biodegradable Mg and Mg alloys: corrosion and biocompatibility. Mater Sci Eng B 176(20):1600

    Article  CAS  Google Scholar 

  40. Xin Y, Hu T, Chu PK (2011) In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomater 7:1452–1459

    Article  CAS  Google Scholar 

  41. Chen H, Zhao XX (2011) Biodegradable magnesium-alloy stent: current situation in research. J Interv Radiol 20:62–64

    Google Scholar 

  42. Moravej M, Purnama A, Fiset M, Couet J, Mantovani D (2010) Electroformed pure iron as a new biomaterial for degradable stents: in vitro degradation and preliminary cell viability studies. Acta Biomater 6:1843–1851

    Article  CAS  Google Scholar 

  43. Hermawan H, Purnama A, Dube D, Couet J, Mantovani D (2010) Fe-Mn alloys for metallic biodegradable stents: degradation and cell viability studies. Acta Biomater 6:1852–1860

    Article  CAS  Google Scholar 

  44. Schinhammer M, Hanzi AC, Loffler JF, Uggowitzer PJ (2010) Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomater 6:1705–1713

    Article  CAS  Google Scholar 

  45. Roberge P (2000) Handbook of corrosion engineering. McGraw-Hill, Toronto

    Google Scholar 

  46. Shreir L, Jarman R, Burstein G (2000) Corrosion, meal/environment reactions. Butterworth-Heinemann, Oxford

    Google Scholar 

  47. Hermawan H, Dube D, Mantovani D (2010) Developments in metallic biodegradable stents. Acta Biomater 6:1693–1697

    Article  CAS  Google Scholar 

  48. Peuster M, Hesse C, Schloo T, Fink C, Beerbaum P, von Schnakenburg C (2006) Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials 27:4955–4962

    Article  CAS  Google Scholar 

  49. Waksman R, Pakala R, Baffour R, Seabron R, Hellinga D, Tio FO (2008) Short-term effects of biocorrodible iron stents in porcine coronary arteries. J Interv Cardiol 21:15–20

    Article  Google Scholar 

  50. Mueller PP, May T, Perz A, Hauser H, Peuster M (2006) Control of smooth muscle cell proliferation by ferrous iron. Biomaterials 27:2193–2200

    Article  CAS  Google Scholar 

  51. Moszner F, Sologubenko AS, Schinhammer M, Lerchbacher C, Hanzi AC, Leitner H, Uggowitzer PJ, Loffler JF (2011) Precipitation hardening of biodegradable Fe-Mn-Pd alloys. Acta Mater 59:981–991

    Article  CAS  Google Scholar 

  52. Moravej M, Prima F, Fiset M, Mantovani D (2010) Electroformed iron as new biomaterial for degradable stents: development process and structure-properties relationship. Acta Biomater 6:1726–1735

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Witte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Witte, F., Eliezer, A. (2012). Biodegradable Metals. In: Eliaz, N. (eds) Degradation of Implant Materials. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3942-4_5

Download citation

Publish with us

Policies and ethics