Skip to main content

Dynamics, Control, and Stabilization of Turning Flight in Fruit Flies

  • Conference paper
  • First Online:
Natural Locomotion in Fluids and on Surfaces

Abstract

Complex behaviors of flying insects require interactions among sensory-neural systems, wing actuation biomechanics, and flapping-wing aerodynamics. Here, we review our recent progress in understanding these layers for maneuvering and stabilization flight of fruit flies. Our approach combines kinematic data from flying insects and aerodynamic simulations to distill reduced-order mathematical models of flight dynamics, wing actuation mechanisms, and control and stabilization strategies. Our central findings include: (1) During in-flight turns, fruit flies generate torque by subtly modulating wing angle of attack, in effect paddling to push off the air; (2) These motions are generated by biasing the orientation of a biomechanical brake that tends to resist rotation of the wing; (3) A simple and fast sensory-neural feedback scheme determines this wing actuation and thus the paddling motions needed for stabilization of flight heading against external disturbances. These studies illustrate a powerful approach for studying the integration of sensory-neural feedback, actuation, and aerodynamic strategies used by flying insects.

The authors thank the NSF for support.

AMS(MOS) subject classifications. 37N25, 76Z10, 92B05, 70E99

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ristroph L, Berman GJ, Bergou AJ, Wang ZJ, Cohen I (2009) Automated hull reconstruction motion tracking (HRMT) applied to sideways maneuvers of free-flying insects. J Exp Biol 212:1324–1335

    Article  Google Scholar 

  2. Ristroph L, Bergou AJ, Ristroph G, Coumes K, Berman GJ, Guckenheimer J, Wang ZJ, Cohen I (2010) Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles. PNAS 107:4820–4824

    Article  Google Scholar 

  3. Bergou AJ, Ristroph L, Guckenheimer J, Wang ZJ, Cohen I (2010) Fruit flies modulate passive wing pitching to generate in-flight turns. Phys Rev Lett 104:148101

    Article  Google Scholar 

  4. Collett TS, Land MF (1975) Visual control of flight behavior in the hoverfly, Syritta pipiens L. J Comp Physiol A 99:1–66

    Article  Google Scholar 

  5. Reichardt W, Poggio T (1976) Visual control of orientation behavior in the fly. Q Rev Biophys 9:311–375

    Article  Google Scholar 

  6. Mayer M, Vogtmann K, Bausenwein B, Wolf R, Heisenberg M (1988) Flight control during ‘free yaw turns’ in Drosophila melanogaster. J Comp Physiol A 163:389–399

    Article  Google Scholar 

  7. Heisenberg M, Wolf R (1993) The sensory-motor link in motion-dependent flight control of flies. In: Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, pp 265–283

    Google Scholar 

  8. Heide G, Goetz KG (1996) Optomotor control of course and altitude in Drosophila is correlated with distinct activities of at least three pairs of steering muscles. J Exp Biol 199:1711–1726

    Google Scholar 

  9. Fry SN, Sayaman R, Dickinson MH (2003) The aerodynamics of free-flight maneuvers of Drosophila. Science 300:495–498

    Article  Google Scholar 

  10. Dickinson MH (2005) The initiation and control of rapid flight maneuvers in fruit flies. Integr Comp Biol 45:274–281

    Article  Google Scholar 

  11. Bender JA, Dickinson MH (2006) Visual stimulation of saccades in magnetically tethered Drosophila. J Exp Biol 209:3170–3182

    Article  Google Scholar 

  12. Hedrick TL, Cheng B, Deng X (2009) Wingbeat time and the scaling of passive rotational damping in flapping flight. Science 324:252–255

    Article  Google Scholar 

  13. Tammero LF, Dickinson MH (2002) The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. J Exp Biol 205:327–343

    Google Scholar 

  14. Dickinson MH, Tu MS (1997) The function of Dipteran flight muscle. Comp Biochem Physiol A 116:223–238

    Article  Google Scholar 

  15. Reiser MB, Dickinson MH (2008) A modular display system for insect behavioral response. J Neurosci Methods 167:127–139

    Article  Google Scholar 

  16. Sane SP (2003) The aerodynamics of insect flight. J Exp Biol 206:4191–4208

    Article  Google Scholar 

  17. Lehmann F-O (2004) The mechanisms of lift enhancement in insect flight. Naturwissenschaften 91:101–122

    Article  Google Scholar 

  18. Wang ZJ (2005) Dissecting insect flight. Annu Rev Fluid Mech 37:183–210

    Article  Google Scholar 

  19. Jensen M (1956) Biology and physics of locust flight. III. The aerodynamics of locust flight. Philos Trans R Soc Ser B 239:511–552

    Google Scholar 

  20. Ellington CP (1984) The aerodynamics of hovering insect flight. I. The quasi-steady analysis. Philos Trans R Soc Ser B 305:1–15

    Google Scholar 

  21. Bennett L (1970) Insect flight: lift and the rate of change of incidence. Science 167:177–179

    Article  Google Scholar 

  22. Dickinson MH, Lehmann F-O, Goetz KG (1993) The active control of wing rotation by Drosophila. J Exp Biol 182:173–189

    Google Scholar 

  23. Ellington CP, van den Berg C, Willmott AP, Thomas ALR (1996) Leading-edge vortices in insect flight. Nature 384:626–630

    Article  Google Scholar 

  24. Dickinson MH, Lehmann F-O, Sane S (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960

    Article  Google Scholar 

  25. Lentink D, Dickinson MH (2009) Rotational accelerations stabilize leading edge vortices on revolving fly wings. J Exp Biol 212:2705–2719

    Article  Google Scholar 

  26. Dickson WB, Polidoro P, Tanner MM, Dickinson MH (2010) A linear systems analysis of the yaw dynamics of a dynamically scaled insect model. J Exp Biol 213:3047–3061

    Article  Google Scholar 

  27. Sun M, Tang J (2002) Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J Exp Biol 205:55–70

    Google Scholar 

  28. Ramamurti R, Sandberg WC (2002) A three-dimensional computational study of the aerodynamic mechanisms of insect flight. J Exp Biol 205:1507–1518

    Google Scholar 

  29. Wang ZJ, Birch J, Dickinson MH (2004) Unsteady forces in hovering flight: computation vs experiments. J Exp Biol 207:449

    Article  Google Scholar 

  30. Pesavento U, Wang ZJ (2009) Flapping wing flight can save aerodynamic power compared to steady flight. Phys Rev Lett 103:118102

    Article  Google Scholar 

  31. Young J, Walker SM, Bomphrey RJ, Taylor GK, Thomas ALR (2009) Details of wing design and deformation enhance aerodynamic function and flight efficiency. Science 325:1549–1552

    Article  Google Scholar 

  32. Pesavento U, Wang ZJ (2004) Falling paper: Navier-stokes solutions, model of fluid forces, and center of mass elevation. Phys Rev Lett 93:144501

    Article  Google Scholar 

  33. Andersen A, Pesavento U, Wang ZJ (2005) Unsteady aerodynamics of fluttering and tumbling plates. J Fluid Mech 541:65–90

    Article  MathSciNet  MATH  Google Scholar 

  34. Sane SP, Dickinson MH (2002) The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J Exp Biol 205:1087–1096

    Google Scholar 

  35. Featherstone R, Orin D (2000) Robot dynamics: equations and algorithms. In: IEEE international conference robotics & automation, San Francisco, pp 826–834

    Google Scholar 

  36. Deng X, Schenato L, Wu WC, Sastry SS (2006) Flapping flight for biomimetic insects: part I – system modeling. IEEE Trans Robot 22:776–788

    Article  Google Scholar 

  37. Deng X, Schenato L, Sastry SS (2006) Flapping flight for biomimetic insects: part II – flight control design. IEEE Trans Robot 22:789–803

    Article  Google Scholar 

  38. Hedrick TL, Daniel TL (2006) Flight control in the hawkmoth Manduca sexta: the inverse problem of hovering. J Exp Biol 209:3114–3130

    Article  Google Scholar 

  39. Dickson WB, Straw AD, Dickinson MH (2008) Integrative model of Drosophila flight. AIAA J 46:2150–2164

    Article  Google Scholar 

  40. Faruque I, Humbert JS (2010) Dipteran insect flight dynamics. Part 1: longitudinal motion about hover. J Theor Biol 264:538–552

    Article  Google Scholar 

  41. Faruque I, Humbert JS (2010) Dipteran insect flight dynamics. Part 2: lateral-directional motion about hover. J Theor Biol 265:306–313

    Article  Google Scholar 

  42. Sun M, Wu JH (2003) Aerodynamic force generation and power requirements in forwar flight in a fruit fly with modeled wing motion. J Exp Biol 206:3065–3083

    Article  Google Scholar 

  43. Gao N, Aono H, Liu H (2011) Perturbation analysis of 6DoF flight dynamics and passive dynamic stability of hovering fruit fly Drosophila melanogaster. J Theor Biol 270:98–111

    Article  Google Scholar 

  44. Hesselberg T, Lehmann F-O (2007) Turning behavior depends on frictional damping in the fruit fly Drosophila. J Exp Biol 210:4319–4334

    Article  Google Scholar 

  45. Dickinson MH, Lehmann F-O, Sane S (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960

    Article  Google Scholar 

  46. Bechhoefer J (2005) Feedback for physicists: a tutorial essay on control. Rev Mod Phys 77:783–836

    Article  Google Scholar 

  47. Pringle JWS (1948) The gyroscopic mechanism of the halteres of Diptera. Philos Trans R Soc Lond B 233:347–384

    Article  Google Scholar 

  48. Dickinson MH (1999) Haltere-mediated equilibrium reflexes of the fruit fly, Drosophila melanogaster. Philos Trans R Soc Lond B 354:903–916

    Article  Google Scholar 

  49. Heide G (1983) Neural mechanisms of flight control in Diptera. In: BIONA report 2, Fischer, Stuttgart, pp 35–52

    Google Scholar 

  50. Taylor GK, Krapp HG (2007) Sensory systems and flight stability: what do insects measure and why? Adv Insect Physiol 34:231–316

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif Ristroph .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this paper

Cite this paper

Ristroph, L., Bergou, A.J., Berman, G.J., Guckenheimer, J., Wang, Z.J., Cohen, I. (2012). Dynamics, Control, and Stabilization of Turning Flight in Fruit Flies. In: Childress, S., Hosoi, A., Schultz, W., Wang, J. (eds) Natural Locomotion in Fluids and on Surfaces. The IMA Volumes in Mathematics and its Applications, vol 155. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3997-4_6

Download citation

Publish with us

Policies and ethics