Skip to main content

The Oocyte-to-Embryo Transition

  • Chapter
  • First Online:
Germ Cell Development in C. elegans

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 757))

Abstract

The oocyte-to-embryo transition refers to the process whereby a fully grown, relatively quiescent oocyte undergoes maturation, fertilization, and is converted into a developmentally active, mitotically dividing embryo, arguably one of the most dramatic transitions in biology. This transition occurs very rapidly in Caenorhabditis elegans, with fertilization of a new oocyte occurring every 23 min and the first mitotic division occurring 45 min later. Molecular events regulating this transition must be very precisely timed. This chapter reviews our current understanding of the coordinated temporal regulation of different events during this transition. We divide the oocyte-to-embryo transition into a number of component processes, which are coordinated primarily through the MBK-2 kinase, whose activation is intimately tied to completion of meiosis, and the OMA-1/OMA-2 proteins, whose expression and functions span multiple processes during this transition. The oocyte-to-embryo transition occurs in the absence of de novo transcription, and all the factors required for the process, whether mRNA or protein, are already present within the oocyte. Therefore, all regulation of this transition is posttranscriptional. The combination of asymmetric partitioning of maternal factors, protein modification-mediated functional switching, protein degradation, and highly regulated translational repression ensure a smooth oocyte-to-embryo transition. We will highlight protein degradation and translational repression, two posttranscriptional processes which play particularly critical roles in this transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albertson DG (1984) Formation of the first cleavage spindle in nematode embryos. Dev Biol 101(1):61–72

    Article  PubMed  CAS  Google Scholar 

  • Albertson DG, Thomson JN (1993) Segregation of holocentric chromosomes at meiosis in the nematode, Caenorhabditis elegans. Chromosome Res 1(1):15–26

    Article  PubMed  CAS  Google Scholar 

  • Archambault V, Glover DM (2009) Polo-like kinases: conservation and divergence in their ­functions and regulation. Nat Rev Mol Cell Biol 10(4):265–275

    Article  PubMed  CAS  Google Scholar 

  • Batchelder C, Dunn MA, Choy B, Suh Y, Cassie C, Shim EY, Shin TH, Mello C, Seydoux G, Blackwell TK (1999) Transcriptional repression by the Caenorhabditis elegans germ-line protein PIE-1. Genes Dev 13(2):202–212

    Article  PubMed  CAS  Google Scholar 

  • Begasse ML, Hyman AA (2011) The first cell cycle of the Caenorhabditis elegans embryo: spatial and temporal control of an asymmetric cell division. Results Probl Cell Differ 53:109–133

    Article  PubMed  CAS  Google Scholar 

  • Bowerman B, Kurz T (2006) Degrade to create: developmental requirements for ubiquitin-­mediated proteolysis during early C. elegans embryogenesis. Development 133(5):773–784

    Article  PubMed  CAS  Google Scholar 

  • Bowerman B, Draper BW, Mello CC, Priess JR (1993) The maternal gene skn-1 encodes a protein that is distributed unequally in early C. elegans embryos. Cell 74(3):443–452

    Article  PubMed  CAS  Google Scholar 

  • Burrows AE, Sceurman BK, Kosinski ME, Richie CT, Sadler PL, Schumacher JM, Golden A (2006) The C. elegans Myt1 ortholog is required for the proper timing of oocyte maturation. Development 133(4):697–709

    Article  PubMed  CAS  Google Scholar 

  • Cheng KC, Klancer R, Singson A, Seydoux G (2009) Regulation of MBK-2/DYRK by CDK-1 and the pseudophosphatases EGG-4 and EGG-5 during the oocyte-to-embryo transition. Cell 139(3):560–572

    Article  PubMed  CAS  Google Scholar 

  • Clandinin TR, Mains PE (1993) Genetic studies of mei-1 gene activity during the transition from meiosis to mitosis in Caenorhabditis elegans. Genetics 134(1):199–210

    PubMed  CAS  Google Scholar 

  • Clark-Maguire S, Mains PE (1994a) Localization of the mei-1 gene product of Caenorhaditis elegans, a meiotic-specific spindle component. J Cell Biol 126(1):199–209

    Article  PubMed  CAS  Google Scholar 

  • Clark-Maguire S, Mains PE (1994b) mei-1, a gene required for meiotic spindle formation in Caenorhabditis elegans, is a member of a family of ATPases. Genetics 136(2):533–546

    PubMed  CAS  Google Scholar 

  • DeRenzo C, Seydoux G (2004) A clean start: degradation of maternal proteins at the oocyte-to-embryo transition. Trends Cell Biol 14(8):420–426

    Article  PubMed  CAS  Google Scholar 

  • DeRenzo C, Reese KJ, Seydoux G (2003) Exclusion of germ plasm proteins from somatic lineages by cullin-dependent degradation. Nature 424(6949):685–689

    Article  PubMed  CAS  Google Scholar 

  • Detwiler MR, Reuben M, Li X, Rogers E, Lin R (2001) Two zinc finger proteins, OMA-1 and OMA-2, are redundantly required for oocyte maturation in C. elegans. Dev Cell 1(2):187–199

    Article  PubMed  CAS  Google Scholar 

  • Dow MR, Mains PE (1998) Genetic and molecular characterization of the Caenorhabditis elegans gene, mel-26, a postmeiotic negative regulator of mei-1, a meiotic-specific spindle component. Genetics 150(1):119–128

    PubMed  CAS  Google Scholar 

  • Draper BW, Mello CC, Bowerman B, Hardin J, Priess JR (1996) MEX-3 is a KH domain protein that regulates blastomere identity in early C. elegans embryos. Cell 87(2):205–216

    Article  PubMed  CAS  Google Scholar 

  • Evans TC, Hunter CP (2005) Translational control of maternal RNAs. WormBook, ed. The C. elegans Research Community, WormBook. doi:/10.1895/wormbook.1.34.1, http://www.wormbook.org.

  • Evans TC, Crittenden SL, Kodoyianni V, Kimble J (1994) Translational control of maternal glp-1 mRNA establishes an asymmetry in the C. elegans embryo. Cell 77(2):183–194

    Article  PubMed  CAS  Google Scholar 

  • Ghosh D, Seydoux G (2008) Inhibition of transcription by the Caenorhabditis elegans germline protein PIE-1: genetic evidence for distinct mechanisms targeting initiation and elongation. Genetics 178(1):235–243

    Article  PubMed  CAS  Google Scholar 

  • Goldstein B, Hird SN (1996) Specification of the anteroposterior axis in Caenorhabditis elegans. Development 122(5):1467–1474

    PubMed  CAS  Google Scholar 

  • Gönczy P, Rose LS (2005) Asymmetric cell division and axis formation in the embryo. WormBook, ed. The C. elegans Research Community, WormBook. doi:/10.1895/wormbook.1.30.1, http://www.wormbook.org

  • Guedes S, Priess JR (1997) The C. elegans MEX-1 protein is present in germline blastomeres and is a P granule component. Development 124(3):731–739

    PubMed  CAS  Google Scholar 

  • Guven-Ozkan T, Nishi Y, Robertson SM, Lin R (2008) Global transcriptional repression in C. elegans germline precursors by regulated sequestration of TAF-4. Cell 135:149–160

    Article  PubMed  CAS  Google Scholar 

  • Guven-Ozkan T, Robertson SM, Nishi Y, Lin R (2010) zif-1 translational repression defines a second, mutually exclusive OMA function in germline transcriptional repression. Development 137(20):3373–3382

    Article  PubMed  CAS  Google Scholar 

  • Hansen D, Schedl T (2012) Stem cell proliferation versus meiotic fate decision in C. elegans. Advances in Experimental Medicine and Biology 757:71–99. (Chap. 4, this volume) Springer, New York

    Google Scholar 

  • Jadhav S, Rana M, Subramaniam K (2008) Multiple maternal proteins coordinate to restrict the translation of C. elegans nanos-2 to primordial germ cells. Development 135(10):1803–1812

    Article  PubMed  CAS  Google Scholar 

  • Johnson JL, Lu C, Raharjo E, McNally K, McNally FJ, Mains PE (2009) Levels of the ubiquitin ligase substrate adaptor MEL-26 are inversely correlated with MEI-1/katanin microtubule-severing activity during both meiosis and mitosis. Dev Biol 330(2):349–357

    Article  PubMed  CAS  Google Scholar 

  • Jones AR, Francis R, Schedl T (1996) GLD-1, a cytoplasmic protein essential for oocyte differentiation, shows stage- and sex-specific expression during Caenorhabditis elegans germline development. Dev Biol 180(1):165–183

    Article  PubMed  CAS  Google Scholar 

  • Kemphues KJ, Priess JR, Morton DG, Cheng NS (1988) Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52(3):311–320

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Spike CA, Greenstein D (2012) Control of oocyte growth and meiotic maturation in C. elegans. Advances in Experimental Medicine and Biology 757:277–320. (Chap. 10, this volume) Springer, New York

    Google Scholar 

  • Lai WS, Carballo E, Strum JR, Kennington EA, Phillips RS, Blackshear PJ (1999) Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Mol Cell Biol 19(6):4311–4323

    PubMed  CAS  Google Scholar 

  • Lee MH, Schedl T (2001) Identification of in vivo mRNA targets of GLD-1, a maxi-KH motif containing protein required for C. elegans germ cell development. Genes Dev 15(18):2408–2420

    Article  PubMed  CAS  Google Scholar 

  • Li W, DeBella LR, Guven-Ozkan T, Lin R, Rose LS (2009) An eIF4E-binding protein regulates katanin protein levels in C. elegans embryos. J Cell Biol 187(1):33–42

    Article  PubMed  CAS  Google Scholar 

  • Lin R (2003) A gain-of-function mutation in oma-1, a C. elegans gene required for oocyte maturation, results in delayed degradation of maternal proteins and embryonic lethality. Dev Biol 258(1):226–239

    Article  PubMed  CAS  Google Scholar 

  • Lochhead PA, Sibbet G, Morrice N, Cleghon V (2005) Activation-loop autophosphorylation is mediated by a novel transitional intermediate form of DYRKs. Cell 121(6):925–936

    Article  PubMed  CAS  Google Scholar 

  • Mains PE, Kemphues KJ, Sprunger SA, Sulston IA, Wood WB (1990) Mutations affecting the meiotic and mitotic divisions of the early Caenorhabditis elegans embryo. Genetics 126(3):593–605

    PubMed  CAS  Google Scholar 

  • Marcello MR, Singaravelu G, Singson A (2012) Fertilization. Advances in Experimental Medicine and Biology 757:321–350. (Chap. 11, this volume) Springer, New York

    Google Scholar 

  • Maruyama R, Velarde NV, Klancer R, Gordon S, Kadandale P, Parry JM, Hang JS, Rubin J, Stewart-Michaelis A, Schweinsberg P, Grant BD, Piano F, Sugimoto A, Singson A (2007) EGG-3 regulates cell-surface and cortex rearrangements during egg activation in Caenorhabditis elegans. Curr Biol 17(18):1555–1560

    Article  PubMed  CAS  Google Scholar 

  • McCarter J, Bartlett B, Dang T, Schedl T (1999) On the control of oocyte meiotic maturation and ovulation in Caenorhabditis elegans. Dev Biol 205(1):111–128

    Article  PubMed  CAS  Google Scholar 

  • Mello CC, Draper BW, Krause M, Weintraub H, Priess JR (1992) The pie-1 and mex-1 genes and maternal control of blastomere identity in early C. elegans embryos. Cell 70(1):163–176

    Article  PubMed  CAS  Google Scholar 

  • Mello CC, Schubert C, Draper B, Zhang W, Lobel R, Priess JR (1996) The PIE-1 protein and germline specification in C. elegans embryos. Nature 382(6593):710–712

    Article  PubMed  CAS  Google Scholar 

  • Merritt C, Rasoloson D, Ko D, Seydoux G (2008) 3’ UTRs are the primary regulators of gene expression in the C. elegans germline. Curr Biol 18(19):1476–1482

    Article  PubMed  CAS  Google Scholar 

  • Munro E, Nance J, Priess JR (2004) Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans embryo. Dev Cell 7(3):413–424

    Article  PubMed  CAS  Google Scholar 

  • Nakajo N, Yoshitome S, Iwashita J, Iida M, Uto K, Ueno S, Okamoto K, Sagata N (2000) Absence of Wee1 ensures the meiotic cell cycle in Xenopus oocytes. Genes Dev 14(3):328–338

    PubMed  CAS  Google Scholar 

  • Nebreda AR, Ferby I (2000) Regulation of the meiotic cell cycle in oocytes. Curr Opin Cell Biol 12(6):666–675

    Article  PubMed  CAS  Google Scholar 

  • Nishi Y, Lin R (2005) DYRK2 and GSK-3 phosphorylate and promote the timely degradation of OMA-1, a key regulator of the oocyte-to-embryo transition in C. elegans. Dev Biol 288(1):139–149

    Article  PubMed  CAS  Google Scholar 

  • Nishi Y, Rogers E, Robertson SM, Lin R (2008) Polo kinases regulate C. elegans embryonic polarity via binding to DYRK2-primed MEX-5 and MEX-6. Development 135(4):687–697

    Article  PubMed  CAS  Google Scholar 

  • Nousch M, Eckmann CR (2012) Translational control in the C. elegans germ line. Advances in Experimental Medicine and Biology 757:205–247. (Chap. 8, this volume) Springer, New York

    Google Scholar 

  • Ogura K, Kishimoto N, Mitani S, Gengyo-Ando K, Kohara Y (2003) Translational control of maternal glp-1 mRNA by POS-1 and its interacting protein SPN-4 in Caenorhabditis elegans. Development 130(11):2495–2503

    Article  PubMed  CAS  Google Scholar 

  • Oldenbroek M, Robertson SM, Guven-Ozkan T, Gore S, Nishi Y, Lin R (2012) Multiple RNA-binding proteins function combinatorially to control the soma-restricted expression pattern of the E3 ligase subunit ZIF-1. Dev Biol 363(2):388–398

    Google Scholar 

  • Pagano JM, Farley BM, McCoig LM, Ryder SP (2007) Molecular basis of RNA recognition by the embryonic polarity determinant MEX-5. J Biol Chem 282(12):8883–8894

    Article  PubMed  CAS  Google Scholar 

  • Pang KM, Ishidate T, Nakamura K, Shirayama M, Trzepacz C, Schubert CM, Priess JR, Mello CC (2004) The minibrain kinase homolog, mbk-2, is required for spindle positioning and asymmetric cell division in early C. elegans embryos. Dev Biol 265(1):127–139

    Article  PubMed  CAS  Google Scholar 

  • Parry JM, Singson A (2011) EGG molecules couple the oocyte-to-embryo transition with cell cycle progression. Results Probl Cell Differ 53:135–151

    Article  PubMed  CAS  Google Scholar 

  • Parry JM, Velarde NV, Lefkovith AJ, Zegarek MH, Hang JS, Ohm J, Klancer R, Maruyama R, Druzhinina MK, Grant BD, Piano F, Singson A (2009) EGG-4 and EGG-5 link events of the oocyte-to-embryo transition with meiotic progression in C. elegans. Curr Biol 19(20): 1752–1757

    Article  PubMed  CAS  Google Scholar 

  • Pellettieri J, Reinke V, Kim SK, Seydoux G (2003) Coordinate activation of maternal protein degradation during the egg-to-embryo transition in C. elegans. Dev Cell 5(3):451–462

    Article  PubMed  CAS  Google Scholar 

  • Pesin JA, Orr-Weaver TL (2008) Regulation of APC/C activators in mitosis and meiosis. Annu Rev Cell Dev Biol 24:475–499

    Article  PubMed  CAS  Google Scholar 

  • Peters JM (2002) The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol Cell 9(5):931–943

    Article  PubMed  CAS  Google Scholar 

  • Pintard L, Willis JH, Willems A, Johnson JL, Srayko M, Kurz T, Glaser S, Mains PE, Tyers M, Bowerman B, Peter M (2003) The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase. Nature 425(6955):311–316

    Article  PubMed  CAS  Google Scholar 

  • Powell-Coffman JA, Knight J, Wood WB (1996) Onset of C. elegans gastrulation is blocked by inhibition of embryonic transcription with an RNA polymerase antisense RNA. Dev Biol 178(2):472–483

    Article  PubMed  CAS  Google Scholar 

  • Quintin S, Mains PE, Zinke A, Hyman AA (2003) The mbk-2 kinase is required for inactivation of MEI-1/katanin in the one-cell Caenorhabditis elegans embryo. EMBO Rep 4(12):1175–1181

    Article  PubMed  CAS  Google Scholar 

  • Reese KJ, Dunn MA, Waddle JA, Seydoux G (2000) Asymmetric segregation of PIE-1 in C. elegans is mediated by two complementary mechanisms that act through separate PIE-1 protein domains. Mol Cell 6(2):445–455

    Article  PubMed  CAS  Google Scholar 

  • Schubert CM, Lin R, de Vries CJ, Plasterk RH, Priess JR (2000) MEX-5 and MEX-6 function to establish soma/germline asymmetry in early C. elegans embryos. Mol Cell 5(4):671–682

    Article  PubMed  CAS  Google Scholar 

  • Seydoux G (1996) Mechanisms of translational control in early development. Curr Opin Genet Dev 6(5):555–561

    Article  PubMed  CAS  Google Scholar 

  • Seydoux G, Mello CC, Pettitt J, Wood WB, Priess JR, Fire A (1996) Repression of gene expression in the embryonic germ lineage of C. elegans. Nature 382(6593):713–716

    Article  PubMed  CAS  Google Scholar 

  • Shimada M, Kawahara H, Doi H (2002) Novel family of CCCH-type zinc-finger proteins, MOE-1, -2 and −3, participates in C. elegans oocyte maturation. Genes Cells 7(9):933–947

    Article  PubMed  CAS  Google Scholar 

  • Shirayama M, Soto MC, Ishidate T, Kim S, Nakamura K, Bei Y, van den Heuvel S, Mello CC (2006) The conserved kinases CDK-1, GSK-3, KIN-19, and MBK-2 promote OMA-1 destruction to regulate the oocyte-to-embryo transition in C. elegans. Curr Biol 16(1):47–55

    Article  PubMed  CAS  Google Scholar 

  • Srayko M, Buster DW, Bazirgan OA, McNally FJ, Mains PE (2000) MEI-1/MEI-2 katanin-like microtubule severing activity is required for Caenorhabditis elegans meiosis. Genes Dev 14(9):1072–1084

    PubMed  CAS  Google Scholar 

  • Stitzel ML, Pellettieri J, Seydoux G (2006) The C. elegans DYRK kinase MBK-2 marks oocyte proteins for degradation in response to meiotic maturation. Curr Biol 16(1):56–62

    Article  PubMed  CAS  Google Scholar 

  • Stitzel ML, Cheng KC, Seydoux G (2007) Regulation of MBK-2/Dyrk kinase by dynamic cortical anchoring during the oocyte-to-zygote transition. Curr Biol 17(18):1545–1554

    Article  PubMed  CAS  Google Scholar 

  • Strome S (2005) Specification of the germ line. WormBook, ed. The C. elegans Research Community, WormBook. doi:/10.1895/wormbook.1.9.1, http://www.wormbook.org

  • Strome S, Lehmann R (2007) Germ versus soma decisions: lessons from flies and worms. Science 316(5823):392–393

    Article  PubMed  CAS  Google Scholar 

  • Tabara H, Hill RJ, Mello CC, Priess JR, Kohara Y (1999) pos-1 encodes a cytoplasmic zinc-finger protein essential for germline specification in C. elegans. Development 126(1):1–11

    PubMed  CAS  Google Scholar 

  • Verlhac MH, Terret ME, Pintard L (2010) Control of the oocyte-to-embryo transition by the ­ubiquitin-proteolytic system in mouse and C. elegans. Curr Opin Cell Biol 22(6):758–763

    Article  PubMed  CAS  Google Scholar 

  • Wang JT, Seydoux S (2012) Germ cell specification. Advances in Experimental Medicine and Biology 757:17–39. (Chap. 2, this volume) Springer, New York

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Wei Y, Reboul J, Vaglio P, Shin TH, Vidal M, Elledge SJ, Harper JW (2003) BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature 425(6955):316–321

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Barboric M, Blackwell TK, Peterlin BM (2003) A model of repression: CTD analogs and PIE-1 inhibit transcriptional elongation by P-TEFb. Genes Dev 17(6):748–758

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work conducted in the authors’ laboratory was supported by NIH grants HD37933 and GM84198.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Robertson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Robertson, S., Lin, R. (2013). The Oocyte-to-Embryo Transition. In: Schedl, T. (eds) Germ Cell Development in C. elegans. Advances in Experimental Medicine and Biology, vol 757. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4015-4_12

Download citation

Publish with us

Policies and ethics