Skip to main content

Motor Control and Biomechanics of Laryngeal and Pharyngeal Muscles

  • Chapter
  • First Online:
Craniofacial Muscles
  • 1851 Accesses

Abstract

This chapter reviews the laryngeal and pharyngeal muscles that are essential for voice, speech and swallowing in the human. The focus is on the individual and combined effects of muscle contraction and how these are controlled for both reflexive and volitional controlled functions in the human. Knowledge of the neural control systems is limited compared to limb control because of difficulties with the non-invasive study of laryngeal/pharyngeal mechanisms in the human. Human production of voice for speech is learned and cortically driven and and may be unique compared to other mammalian systems. Although functional neuroimaging has been fruitful questions about the accuracy of some cortical studies need further investigation. The integrative study of the complex neural control systems for laryngeal and pharyngeal muscle control for voice, speech and swallowing in the human are of high importance for improving patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andreatta RD, Mann EA, Poletto CJ, Ludlow CL (2002) Mucosal afferents mediate laryngeal adductor responses in the cat. J Appl Physiol 93:1622–1629

    PubMed  Google Scholar 

  • Atkins JP (1973) An electromyographic study of recurrent laryngeal nerve conduction and its clinical application. Laryngoscope 83:796–807

    Article  PubMed  Google Scholar 

  • Aviv JE, Martin JH, Sacco RL, Zagar D, Diamond B, Keen MS, Blitzer A (1996) Supraglottic and pharyngeal sensory abnormalities in stroke patients with dysphagia. Ann Otol Rhinol Laryngol 105:92–97

    PubMed  CAS  Google Scholar 

  • Aviv JE, Kim T, Sacco RL, Kaplan S, Goodhart K, Diamond B, Close LG (1998) FEESST: a new bedside endoscopic test of the motor and sensory components of swallowing. Ann Otol Rhinol Laryngol 107:378–387

    PubMed  CAS  Google Scholar 

  • Aydogdu I, Ertekin C, Tarlaci S, Turman B, Kiylioglu N, Secil Y (2001) Dysphagia in lateral medullary infarction (Wallenberg’s syndrome): an acute disconnection syndrome in premotor neurons related to swallowing activity? Stroke 32:2081–2087

    Article  PubMed  CAS  Google Scholar 

  • Barkmeier JM, Bielamowicz S, Takeda N, Ludlow CL (2000) Modulation of laryngeal responses to superior laryngeal nerve stimulation by volitional swallowing in awake humans. J Neurophysiol 83:1264–1272

    PubMed  CAS  Google Scholar 

  • Benecke R, Meyer BU, Schonle P, Conrad B (1988) Transcranial magnetic stimulation of the human brain: responses in muscles supplied by cranial nerves. Exp Brain Res 71:623–632

    Article  PubMed  CAS  Google Scholar 

  • Benson B, Sulica L, Guss J, Blitzer A (2010) Laryngeal neuropathy of Charcot-Marie-Tooth disease: further observations and novel mutations associated with vocal fold paresis. Laryngoscope 120:291–296

    PubMed  Google Scholar 

  • Berke GS, Blackwell KE, Gerratt BR, Verneil A, Jackson KS, Sercarz JA (1999) Selective laryngeal adductor denervation-reinnervation: a new surgical treatment for adductor spasmodic dysphonia. Ann Otol Rhinol Laryngol 108:227–231

    PubMed  CAS  Google Scholar 

  • Borden GJ, Harris KS (1984) Speech science primer: physiology, acoustics, and perception of speech, 2nd edn. Williams and Wilkins, Baltimore, MD

    Google Scholar 

  • Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  • Brennick MJ, Parisi RA, England SJ (2001) Genioglossal length and EMG responses to static upper airway pressures during hypercapnia in goats. Respir Physiol 127:227–239

    Article  PubMed  CAS  Google Scholar 

  • Brok HA, Copper MP, Stroeve RJ, Ongerboer de Visser BW, Venker-van Haagen AJ, Schouwenburg PF (1999) Evidence for recurrent laryngeal nerve contribution in motor innervation of the human cricopharyngeal muscle. Laryngoscope 109:705–708

    Article  PubMed  CAS  Google Scholar 

  • Casella C, Pata G, Nascimbeni R, Mittempergher F, Salerni B (2009) Does extralaryngeal branching have an impact on the rate of postoperative transient or permanent recurrent laryngeal nerve palsy? World J Surg 33:261–265

    Article  PubMed  Google Scholar 

  • Cernea CR, Hojaij FC, De Carlucci D Jr, Gotoda R, Plopper C, Vanderlei F, Brandao LG (2009) Recurrent laryngeal nerve: a plexus rather than a nerve? Arch Otolaryngol Head Neck Surg 135:1098–1102

    Article  PubMed  Google Scholar 

  • Chiang FY, Lu IC, Tsai CJ, Hsiao PJ, Lee KW, Wu CW (2012) Detecting and identifying nonrecurrent laryngeal nerve with the application of intraoperative neuromonitoring during thyroid and parathyroid operation. Am J Otolaryngol 33:1–5

    Article  PubMed  Google Scholar 

  • Coady MA, Adler F, Davila JJ, Gahtan V (2000) Nonrecurrent laryngeal nerve during carotid artery surgery: case report and literature review. J Vasc Surg 32:192–196

    Article  PubMed  CAS  Google Scholar 

  • Damrose EJ, Huang RY, Ye M, Berke GS, Sercarz JA (2003) Surgical anatomy of the recurrent laryngeal nerve: implications for laryngeal reinnervation. Ann Otol Rhinol Laryngol 112:434–438

    PubMed  Google Scholar 

  • Davis PJ, Nail BS (1984) On the location and size of laryngeal motoneurons in the cat and rabbit. J Comp Neurol 230:13–32

    Article  PubMed  CAS  Google Scholar 

  • Dickson JM, Grunewald RA (2004) Somatic symptom progression in idiopathic Parkinson’s disease. Parkinsonism Relat Disord 10:487–492

    Article  PubMed  Google Scholar 

  • Eisele DW, Smith PL, Alam DS, Schwartz AR (1997) Direct hypoglossal nerve stimulation in obstructive sleep apnea. Arch Otolaryngol Head Neck Surg 123:57–61

    Article  PubMed  CAS  Google Scholar 

  • Flaksman H, Ron Y, Ben-David N, Cinamon U, Levy D, Russo E, Sokolov M, Avni Y, Roth Y (2006) Modified endoscopic swallowing test for improved diagnosis and prevention of aspiration. Eur Arch Otorhinolaryngol 263:637–640

    Article  PubMed  Google Scholar 

  • Gallena S, Smith PJ, Zeffiro T, Ludlow CL (2001) Effects of levodopa on laryngeal muscle activity for voice onset and offset in Parkinson disease. J Speech Lang Hear Res 44:1284–1299

    Article  PubMed  CAS  Google Scholar 

  • Grohrock P, Hausler U, Jurgens U (1997) Dual-channel telemetry system for recording vocalization-correlated neuronal activity in freely moving squirrel monkeys. J Neurosci Methods 76:7–13

    Article  PubMed  CAS  Google Scholar 

  • Halum SL, Shemirani NL, Merati AL, Jaradeh S, Toohill RJ (2006) Electromyography findings of the cricopharyngeus in association with ipsilateral pharyngeal and laryngeal muscles. Ann Otol Rhinol Laryngol 115:312–316

    PubMed  Google Scholar 

  • Hamilton RH, Sanders L, Benson J, Faseyitan O, Norise C, Naeser M, Martin P, Coslett HB (2010) Stimulating conversation: enhancement of elicited propositional speech in a patient with chronic non-fluent aphasia following transcranial magnetic stimulation. Brain Lang 113:45–50

    Article  PubMed  Google Scholar 

  • Hanson DB, Gerratt BR, Ward PH (1984) Cinegraphic observations of laryngeal function in Parkinson’s disease. Laryngoscope 94:348–353

    Article  PubMed  CAS  Google Scholar 

  • Hardemark Cedborg AI, Sundman E, Boden K, Hedstrom HW, Kuylenstierna R, Ekberg O, Eriksson LI (2009) Co-ordination of spontaneous swallowing with respiratory airflow and diaphragmatic and abdominal muscle activity in healthy adult humans. Exp Physiol 94:459–468

    Article  PubMed  Google Scholar 

  • Henriquez VM, Schulz GM, Bielamowicz S, Ludlow CL (2007) Laryngeal reflex responses are not modulated during human voice and respiratory tasks. J Physiol 585:779–789

    Article  PubMed  CAS  Google Scholar 

  • Hickok G, Houde J, Rong F (2011) Sensorimotor integration in speech processing: computational basis and neural organization. Neuron 69:407–422

    Article  PubMed  CAS  Google Scholar 

  • Horner RL, Guz A (1991) Some factors affecting the maintenance of upper airway patency in man. Respir Med 85(suppl A):27–30

    Article  PubMed  Google Scholar 

  • Jafari S, Prince RA, Kim DY, Paydarfar D (2003) Sensory regulation of swallowing and airway protection: a role for the internal superior laryngeal nerve in humans. J Physiol 550:287–304

    Article  PubMed  CAS  Google Scholar 

  • Jayasekeran V, Singh S, Tyrrell P, Michou E, Jefferson S, Mistry S, Gamble E, Rothwell J, Thompson D, Hamdy S (2010) Adjunctive functional pharyngeal electrical stimulation reverses swallowing disability after brain lesions. Gastroenterology 138:1737–1746

    Article  PubMed  Google Scholar 

  • Jordan AS, White DP (2008) Pharyngeal motor control and the pathogenesis of obstructive sleep apnea. Respir Physiol Neurobiol 160:1–7

    Article  PubMed  Google Scholar 

  • Jurgens U (2000) Localization of a pontine vocalization-controlling area. J Acoust Soc Am 108:1393–1396

    Article  PubMed  CAS  Google Scholar 

  • Jurgens U (2002) Neural pathways underlying vocal control. Neurosci Biobehav Rev 26:235–258

    Article  PubMed  Google Scholar 

  • Jurgens U (2009) The neural control of vocalization in mammals: a review. J Voice 23:1–10

    Article  PubMed  CAS  Google Scholar 

  • Kahrilas PJ, Logemann JA, Lin S, Ergun GA (1992) Pharyngeal clearance during swallowing: a combined manometric and videofluoroscopic study. Gastroenterology 103:128–136

    PubMed  CAS  Google Scholar 

  • Kent RD (2000) Research on speech motor control and its disorders: a review and prospective. J Commun Disord 33:391–427; quiz 428

    Google Scholar 

  • Khedr EM, Aref EE (2002) Electrophysiological study of vocal-fold mobility disorders using a magnetic stimulator. Eur J Neurol 9:259–267

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Chung CS, Lee KH, Robbins J (2000) Aspiration subsequent to a pure medullary infarction: lesion sites, clinical variables, and outcome. Arch Neurol 57:478–483

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa J, Shingai T, Takahashi Y, Yamada Y (2002) Pharyngeal branch of the glossopharyngeal nerve plays a major role in reflex swallowing from the pharynx. Am J Physiol Regul Integr Comp Physiol 282:R1342–R1347

    PubMed  CAS  Google Scholar 

  • Kitagawa J, Nakagawa K, Hasegawa M, Iwakami T, Shingai T, Yamada Y, Iwata K (2009) Facilitation of reflex swallowing from the pharynx and larynx. J Oral Sci 51:167–171

    Article  PubMed  Google Scholar 

  • Komisaruk BR, Mosier KM, Liu WC, Criminale C, Zaborszky L, Whipple B, Kalnin A (2002) Functional localization of brainstem and cervical spinal cord nuclei in humans with fMRI. AJNR Am J Neuroradiol 23:609–617

    PubMed  Google Scholar 

  • Kwak PE, Friedman AD, Lamarre ED, Lorenz RR (2010) Selective reinnervation of the posterior cricoarytenoid and interarytenoid muscles: an anatomical study. Laryngoscope 120:463–467

    Article  PubMed  Google Scholar 

  • Landoure G, Zdebik AA, Martinez TL, Burnett BG, Stanescu HC, Inada H, Shi Y, Taye AA, Kong L, Munns CH, Choo SS, Phelps CB, Paudel R, Houlden H, Ludlow CL, Caterina MJ, Gaudet R, Kleta R, Fischbeck KH, Sumner CJ (2010) Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nat Genet 42:170–174

    Article  PubMed  CAS  Google Scholar 

  • Lowell SY, Poletto CJ, Knorr-Chung BR, Reynolds RC, Simonyan K, Ludlow CL (2008) Sensory stimulation activates both motor and sensory components of the swallowing system. Neuroimage 42:285–295

    Article  PubMed  Google Scholar 

  • Ludlow CL, VanPelt F, Koda J (1992) Characteristics of late responses to superior laryngeal nerve stimulation in humans. Ann Otol Rhinol Laryngol 101:127–134

    PubMed  CAS  Google Scholar 

  • Ludlow CL, Adler CH, Berke GS, Bielamowicz SA, Blitzer A, Bressman SB, Hallett M, Jinnah HA, Juergens U, Martin SB, Perlmutter JS, Sapienza C, Singleton A, Tanner CM, Woodson GE (2008) Research priorities in spasmodic dysphonia. Otolaryngol Head Neck Surg 139:495–505

    Article  PubMed  Google Scholar 

  • Mann EA, Burnett T, Cornell S, Ludlow CL (2002) The effect of neuromuscular stimulation of the genioglossus on the hypopharyngeal airway. Laryngoscope 112:351–356

    Article  PubMed  Google Scholar 

  • Maranillo E, Leon X, Orus C, Quer M, Sanudo JR (2005) Variability in nerve patterns of the adductor muscle group supplied by the recurrent laryngeal nerve. Laryngoscope 115:358–362

    Article  PubMed  Google Scholar 

  • Maranillo E, Vazquez T, Quer M, Niedenfuhr MR, Leon X, Viejo F, Parkin I, Sanudo JR (2008) Potential structures that could be confused with a nonrecurrent inferior laryngeal nerve: an anatomic study. Laryngoscope 118:56–60

    Article  PubMed  Google Scholar 

  • Martin RE, Goodyear BG, Gati JS, Menon RS (2001) Cerebral cortical representation of automatic and volitional swallowing in humans. J Neurophysiol 85:938–950

    PubMed  CAS  Google Scholar 

  • Martin R, Barr A, Macintosh B, Smith R, Stevens T, Taves D, Gati J, Menon R, Hachinski V (2007) Cerebral cortical processing of swallowing in older adults. Exp Brain Res 176:12–22

    Article  PubMed  Google Scholar 

  • Martin PI, Naeser MA, Ho M, Treglia E, Kaplan E, Baker EH, Pascual-Leone A (2009a) Research with transcranial magnetic stimulation in the treatment of aphasia. Curr Neurol Neurosci Rep 9:451–458

    Article  PubMed  Google Scholar 

  • Martin PI, Naeser MA, Ho M, Doron KW, Kurland J, Kaplan J, Wang Y, Nicholas M, Baker EH, Alonso M, Fregni F, Pascual-Leone A (2009b) Overt naming fMRI pre- and post-TMS: two nonfluent aphasia patients, with and without improved naming post-TMS. Brain Lang 111:20–35

    Article  PubMed  Google Scholar 

  • Mu L, Sanders I (1998) Neuromuscular organization of the human upper esophageal sphincter. Ann Otol Rhinol Laryngol 107:370–377

    PubMed  CAS  Google Scholar 

  • Mu L, Sanders I (2001) Neuromuscular compartments and fiber-type regionalization in the human inferior pharyngeal constrictor muscle. Anat Rec 264:367–377

    Article  PubMed  CAS  Google Scholar 

  • Mu L, Sanders I (2007) Neuromuscular specializations within human pharyngeal constrictor muscles. Ann Otol Rhinol Laryngol 116:604–617

    PubMed  Google Scholar 

  • Mu L, Sanders I (2008) Newly revealed cricothyropharyngeus muscle in the human laryngopharynx. Anat Rec (Hoboken) 291:927–938

    Article  Google Scholar 

  • Nicholas CL, Bei B, Worsnop C, Malhotra A, Jordan AS, Saboisky JP, Chan JK, Duckworth E, White DP, Trinder J (2010) Motor unit recruitment in human genioglossus muscle in response to hypercapnia. Sleep 33:1529–1538

    PubMed  Google Scholar 

  • Oliven A, O’Hearn DJ, Boudewyns A, Odeh M, De Backer W, van de Heyning P, Smith PL, Eisele DW, Allan L, Schneider H, Testerman R, Schwartz AR (2003) Upper airway response to electrical stimulation of the genioglossus in obstructive sleep apnea. J Appl Physiol 95:2023–2029

    PubMed  Google Scholar 

  • Perlman AL, Luschei ES, Du Mond CE (1989) Electrical activity from the superior pharyngeal constrictor during reflexive and nonreflexive tasks. J Speech Hear Res 32:749–754

    PubMed  CAS  Google Scholar 

  • Perlman AL, Palmer PM, McCulloch TM, Vandaele DJ (1999) Electromyographic activity from human laryngeal, pharyngeal, and submental muscles during swallowing. J Appl Physiol 86:1663–1669

    PubMed  CAS  Google Scholar 

  • Poletto CJ, Verdun LP, Strominger R, Ludlow CL (2004) Correspondence between laryngeal vocal fold movement and muscle activity during speech and nonspeech gestures. J Appl Physiol 97:858–866

    Article  PubMed  Google Scholar 

  • Raffaelli M, Iacobone M, Henry JF (2000) The “false” nonrecurrent inferior laryngeal nerve. Surgery 128:1082–1087

    Article  PubMed  CAS  Google Scholar 

  • Rodel RM, Olthoff A, Tergau F, Simonyan K, Kraemer D, Markus H, Kruse E (2004) Human cortical motor representation of the larynx as assessed by transcranial magnetic stimulation (TMS). Laryngoscope 114:918–922

    Article  PubMed  Google Scholar 

  • Sasaki CT, Suzuki M (1976) Laryngeal reflexes in cat, dog and man. Arch Otolaryngol 102:400–402

    Article  PubMed  CAS  Google Scholar 

  • Shaker R, Medda BK, Ren J, Jaradeh S, Xie P, Lang IM (1998) Pharyngoglottal closure reflex: identification and characterization in a feline model. Am J Physiol 275:G521–G525

    PubMed  CAS  Google Scholar 

  • Shaker R, Ren J, Bardan E, Easterling C, Dua K, Xie P, Kern M (2003) Pharyngoglottal closure reflex: characterization in healthy young, elderly and dysphagic patients with predeglutitive aspiration. Gerontology 49:12–20

    Article  PubMed  Google Scholar 

  • Shao T, Yang W, Zhang T, Wang Y, Jin X, Li Q, Kuang J, Qiu W, Chu PG, Yen Y (2010) A newly identified variation at the entry of the recurrent laryngeal nerve into the larynx. J Invest Surg 23:314–320

    Article  PubMed  Google Scholar 

  • Sims S, Yamashita T, Rhew K, Ludlow CL (1996) An evaluation of the use of magnetic stimulation to measure laryngeal muscle response latencies in normal subjects. Otolaryngol Head Neck Surg 114:761–767

    Article  PubMed  CAS  Google Scholar 

  • Smith A, Zelaznik HN (2004) Development of functional synergies for speech motor coordination in childhood and adolescence. Dev Psychobiol 45:22–33

    Article  PubMed  Google Scholar 

  • Smith PL, Eisele DW, Podszus T, Penzel T, Grote L, Peter JH, Schwartz AR (1996) Electrical stimulation of upper airway musculature. Sleep 19:S284–S287

    PubMed  CAS  Google Scholar 

  • Soros P, Lalone E, Smith R, Stevens T, Theurer J, Menon RS, Martin RE (2008) Functional MRI of oropharyngeal air-pulse stimulation. Neuroscience 153:1300–1308

    Article  PubMed  CAS  Google Scholar 

  • Strohl KP, Hensley MJ, Hallett M, Saunders NA, Ingram RHJ (1980) Activation of upper airway muscles before onset of inspiration in normal humans. J Appl Physiol 48:638–642

    Google Scholar 

  • Theurer JA, Bihari F, Barr AM, Martin RE (2005) Oropharyngeal stimulation with air-pulse trains increases swallowing frequency in healthy adults. Dysphagia 20:254–260

    Article  PubMed  Google Scholar 

  • Theurer JA, Czachorowski KA, Martin LP, Martin RE (2009) Effects of oropharyngeal air-pulse stimulation on swallowing in healthy older adults. Dysphagia 24:302–313

    Article  PubMed  Google Scholar 

  • Toniato A, Mazzarotto R, Piotto A, Bernante P, Pagetta C, Pelizzo MR (2004) Identification of the nonrecurrent laryngeal nerve during thyroid surgery: 20-year experience. World J Surg 28:659–661

    Article  PubMed  Google Scholar 

  • Widdicombe J, Addington R (2006) Modified endoscopic swallowing test for improved diagnosis and prevention of aspiration. Eur Arch Otorhinolaryngol 263:1057–1058; author reply 1059

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christy L. Ludlow Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ludlow, C.L. (2012). Motor Control and Biomechanics of Laryngeal and Pharyngeal Muscles. In: McLoon, L., Andrade, F. (eds) Craniofacial Muscles. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4466-4_10

Download citation

Publish with us

Policies and ethics