Skip to main content

Diabetes and Cardiac Mitochondria

  • Chapter
  • First Online:
Mitochondria and Their Role in Cardiovascular Disease
  • 1812 Accesses

Abstract

Heart failure is common in patients with diabetes, even in the absence of coronary artery disease or hypertension. Diabetic cardiomyopathy is one of the leading causes of heart failure among diabetic patients. Metabolism of myocardium is altered in diabetes, which likely contributes to decreased contractile activity and ventricular failure. The mitochondria play a major role in cellular metabolism, and there is evidence indicating that mitochondrial dysfunction is critical in the pathogenesis of diabetic cardiomyopathy.

Up to 1 % of patients with diabetes are affected by maternally inherited diabetes caused by genetic abnormalities in mitochondrial DNA. Several mitochondrial DNA mutations not only are associated with mitochondrial diabetes but also are a cause of the developing cardiomyopathy.

In this chapter we will focus on the effects of diabetes on cardiac myocardium with specific reference to the role of modulation of cardiac mitochondrial function in the disease process. Several potential mechanisms that lead to mitochondrial dysfunction in the diabetic heart will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avogaro A, Vigili de Kreutzenberg S, Negut C, Tiengo A, Scognamiglio R. Diabetic cardiomyopathy: a metabolic perspective. Am J Cardiol. 2004;93(8A):13A–6.

    Article  PubMed  CAS  Google Scholar 

  2. Boudina S, Abel ED. Diabetic cardiomyopathy revisited. Circulation. 2007;115(25):3213–23.

    Article  PubMed  Google Scholar 

  3. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.

    Article  PubMed  CAS  Google Scholar 

  4. Maassen JA, ‘T Hart LM, Van Essen E, et al. Mitochondrial diabetes: molecular mechanisms and clinical presentation. Diabetes. 2004;53 Suppl 1:S103–9.

    Article  PubMed  CAS  Google Scholar 

  5. Nishikai K, Shimada A, Iwanaga S, et al. Progression of cardiac dysfunction in a case of mitochondrial diabetes: a case report. Diabetes Care. 2001;24(5):960–1.

    Article  PubMed  CAS  Google Scholar 

  6. Bugger H, Boudina S, Hu XX, et al. Type 1 diabetic Akito mouse hearts are insulin sensitive but manifest structurally abnormal mitochondria that remain coupled despite increased uncoupling protein 3. Diabetes. 2008;57(11):2924–32.

    Article  PubMed  CAS  Google Scholar 

  7. Bugger H, Chen D, Riehle C, et al. Tissue-specific remodeling of the mitochondrial proteome in type 1 diabetic akita mice. Diabetes. 2009;58(9):1986–97.

    Article  PubMed  CAS  Google Scholar 

  8. Lashin OM, Szweda PA, Szweda LI, Romani AM. Decreased complex II respiration and HNE-modified SDH subunit in diabetic heart. Free Radic Biol Med. 2006;40(5):886–96.

    Article  PubMed  CAS  Google Scholar 

  9. Shen X, Zheng S, Thongboonkerd V, et al. Cardiac mitochondrial damage and biogenesis in a chronic model of type 1 diabetes. Am J Physiol Endocrinol Metab. 2004;287(5):E896–905.

    Article  PubMed  CAS  Google Scholar 

  10. Boudina S, Sena S, O’Neill BT, Tathireddy P, Young ME, Abel ED. Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation. 2005;112(17):2686–95.

    Article  PubMed  Google Scholar 

  11. Duncan JG, Fong JL, Medeiros DM, Finck BN, Kelly DP. Insulin-resistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator-activated receptor-alpha/PGC-1alpha gene regulatory pathway. Circulation. 2007;115(7):909–17.

    Article  PubMed  CAS  Google Scholar 

  12. Peterson LR, Herrero P, Schechtman KB, et al. Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation. 2004;109(18):2191–6.

    Article  PubMed  Google Scholar 

  13. Anderson EJ, Kypson AP, Rodriguez E, Anderson CA, Lehr EJ, Neufer PD. Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart. J Am Coll Cardiol. 2009;54(20):1891–8.

    Article  PubMed  CAS  Google Scholar 

  14. Glyn-Jones S, Song S, Black MA, Phillips AR, Choong SY, Cooper GJ. Transcriptomic analysis of the cardiac left ventricle in a rodent model of diabetic cardiomyopathy: molecular snapshot of a severe myocardial disease. Physiol Genomics. 2007;28(3): 284–93.

    PubMed  CAS  Google Scholar 

  15. Buchanan J, Mazumder PK, Hu P, et al. Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology. 2005;146(12):5341–9.

    Article  PubMed  CAS  Google Scholar 

  16. Mazumder PK, O’Neill BT, Roberts MW, et al. Impaired cardiac efficiency and increased fatty acid oxidation in insulin-resistant ob/ob mouse hearts. Diabetes. 2004;53(9):2366–74.

    Article  PubMed  CAS  Google Scholar 

  17. Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest. 2006;116(3):615–22.

    Article  PubMed  CAS  Google Scholar 

  18. Arany Z, He H, Lin J, et al. Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab. 2005;1(4):259–71.

    Article  PubMed  CAS  Google Scholar 

  19. Carley AN, Atkinson LL, Bonen A, et al. Mechanisms responsible for enhanced fatty acid utilization by perfused hearts from type 2 diabetic db/db mice. Arch Physiol Biochem. 2007;113(2):65–75.

    Article  PubMed  CAS  Google Scholar 

  20. Luiken JJ, Coort SL, Koonen DP, et al. Regulation of cardiac long-chain fatty acid and glucose uptake by translocation of substrate transporters. Pflugers Arch. 2004;448(1):1–15.

    Article  PubMed  CAS  Google Scholar 

  21. Coort SL, Hasselbaink DM, Koonen DP, et al. Enhanced sarcolemmal FAT/CD36 content and triacylglycerol storage in cardiac myocytes from obese zucker rats. Diabetes. 2004;53(7): 1655–63.

    Article  PubMed  CAS  Google Scholar 

  22. Yang J, Sambandam N, Han X, et al. CD36 deficiency rescues lipotoxic cardiomyopathy. Circ Res. 2007;100(8):1208–17.

    Article  PubMed  CAS  Google Scholar 

  23. Garland PB, Randle PJ, Newsholme EA. Citrate as an Intermediary in the Inhibition of Phosphofructokinase in Rat Heart Muscle by Fatty Acids, Ketone Bodies, Pyruvate, Diabetes, and Starvation. Nature. 1963;200:169–70.

    Article  PubMed  CAS  Google Scholar 

  24. Sharma S, Adrogue JV, Golfman L, et al. Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J. 2004;18(14):1692–700.

    Article  PubMed  CAS  Google Scholar 

  25. Murthy VK, Shipp JC. Accumulation of myocardial triglycerides ketotic diabetes; evidence for increased biosynthesis. Diabetes. 1977;26(3):222–9.

    Article  PubMed  CAS  Google Scholar 

  26. Szczepaniak LS, Victor RG, Orci L, Unger RH. Forgotten but not gone: the rediscovery of fatty heart, the most common unrecognized disease in America. Circ Res. 2007;101(8):759–67.

    Article  PubMed  CAS  Google Scholar 

  27. Wright JJ, Kim J, Buchanan J, et al. Mechanisms for increased myocardial fatty acid utilization following short-term high-fat feeding. Cardiovasc Res. 2009;82(2):351–60.

    Article  PubMed  CAS  Google Scholar 

  28. Turko IV, Murad F. Quantitative protein profiling in heart mitochondria from diabetic rats. J Biol Chem. 2003;278(37): 35844–9.

    Article  PubMed  CAS  Google Scholar 

  29. Tordjman K, Bernal-Mizrachi C, Zemany L, et al. PPARalpha deficiency reduces insulin resistance and atherosclerosis in apoE-null mice. J Clin Invest. 2001;107(8):1025–34.

    Article  PubMed  CAS  Google Scholar 

  30. Su X, Han X, Mancuso DJ, Abendschein DR, Gross RW. Accumulation of long-chain acylcarnitine and 3-hydroxy acylcarnitine molecular species in diabetic myocardium: identification of alterations in mitochondrial fatty acid processing in diabetic myocardium by shotgun lipidomics. Biochemistry. 2005;44(13): 5234–45.

    Article  PubMed  CAS  Google Scholar 

  31. Sugiura T, Yoshinaga N, Kondo S, Waku K, Ishima Y. Generation of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, in picrotoxinin-administered rat brain. Biochem Biophys Res Commun. 2000;271(3):654–8.

    Article  PubMed  CAS  Google Scholar 

  32. Yan W, Jenkins CM, Han X, et al. The highly selective production of 2-arachidonoyl lysophosphatidylcholine catalyzed by purified calcium-independent phospholipase A2gamma: identification of a novel enzymatic mediator for the generation of a key branch point intermediate in eicosanoid signaling. J Biol Chem. 2005;280(29):26669–79.

    Article  PubMed  CAS  Google Scholar 

  33. Song H, Wohltmann M, Bao S, Ladenson JH, Semenkovich CF, Turk J. Mice deficient in group VIB phospholipase A2 (iPLA2gamma) exhibit relative resistance to obesity and metabolic abnormalities induced by a Western diet. Am J Physiol Endocrinol Metab. 2010;298(6):E1097–114.

    Article  PubMed  CAS  Google Scholar 

  34. How OJ, Aasum E, Severson DL, Chan WY, Essop MF, Larsen TS. Increased myocardial oxygen consumption reduces cardiac efficiency in diabetic mice. Diabetes. 2006;55(2):466–73.

    Article  PubMed  CAS  Google Scholar 

  35. Peterson LR, Herrero P, McGill J, et al. Fatty acids and insulin modulate myocardial substrate metabolism in humans with type 1 diabetes. Diabetes. 2008;57(1):32–40.

    Article  PubMed  CAS  Google Scholar 

  36. Wang Y, Ebermann L, Sterner-Kock A, et al. Myocardial overexpression of adenine nucleotide translocase 1 ameliorates diabetic cardiomyopathy in mice. Exp Physiol. 2009;94(2):220–7.

    Article  PubMed  CAS  Google Scholar 

  37. Veksler VI, Murat I, Ventura-Clapier R. Creatine kinase and mechanical and mitochondrial functions in hereditary and diabetic cardiomyopathies. Can J Physiol Pharmacol. 1991;69(6):852–8.

    Article  PubMed  CAS  Google Scholar 

  38. Suarez J, Hu Y, Makino A, Fricovsky E, Wang H, Dillmann WH. Alterations in mitochondrial function and cytosolic calcium induced by hyperglycemia are restored by mitochondrial transcription factor A in cardiomyocytes. Am J Physiol Cell Physiol. 2008;295(6):C1561–8.

    Article  PubMed  CAS  Google Scholar 

  39. How OJ, Larsen TS, Hafstad AD, et al. Rosiglitazone treatment improves cardiac efficiency in hearts from diabetic mice. Arch Physiol Biochem. 2007;113(4–5):211–20.

    Article  PubMed  CAS  Google Scholar 

  40. Sidell RJ, Cole MA, Draper NJ, Desrois M, Buckingham RE, Clarke K. Thiazolidinedione treatment normalizes insulin resistance and ischemic injury in the zucker Fatty rat heart. Diabetes. 2002;51(4):1110–7.

    Article  PubMed  CAS  Google Scholar 

  41. Burkart EM, Sambandam N, Han X, et al. Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest. 2007;117(12):3930–9.

    PubMed  CAS  Google Scholar 

  42. Bonnefont-Rousselot D. Glucose and reactive oxygen species. Curr Opin Clin Nutr Metab Care. 2002;5(5):561–8.

    Article  PubMed  CAS  Google Scholar 

  43. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes. 2003;52(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  44. Coughlan MT, Thorburn DR, Penfold SA, et al. RAGE-induced cytosolic ROS promote mitochondrial superoxide generation in diabetes. J Am Soc Nephrol. 2009;20(4):742–52.

    Article  PubMed  CAS  Google Scholar 

  45. Willemsen S, Hartog JW, Hummel YM, et al. Tissue advanced glycation end products are associated with diastolic function and aerobic exercise capacity in diabetic heart failure patients. Eur J Heart Fail. 2011;13(1):76–82.

    Article  PubMed  CAS  Google Scholar 

  46. Kim JS, Jin Y, Lemasters JJ. Reactive oxygen species, but not Ca2+ overloading, trigger pH- and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion. Am J Physiol Heart Circ Physiol. 2006;290(5):H2024–34.

    Article  PubMed  CAS  Google Scholar 

  47. Shen E, Li Y, Shan L, et al. Rac1 is required for cardiomyocyte apoptosis during hyperglycemia. Diabetes. 2009;58(10): 2386–95.

    Article  PubMed  CAS  Google Scholar 

  48. Boudina S, Sena S, Theobald H, et al. Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes. 2007;56(10):2457–66.

    Article  PubMed  CAS  Google Scholar 

  49. Boudina S, Bugger H, Sena S, et al. Contribution of impaired myocardial insulin signaling to mitochondrial dysfunction and oxidative stress in the heart. Circulation. 2009;119(9):1272–83.

    Article  PubMed  CAS  Google Scholar 

  50. Malhotra A, Vashistha H, Yadav VS, et al. Inhibition of p66ShcA redox activity in cardiac muscle cells attenuates hyperglycemia-induced oxidative stress and apoptosis. Am J Physiol Heart Circ Physiol. 2009;296(2):H380–8.

    Article  PubMed  CAS  Google Scholar 

  51. Kristal BS, Jackson CT, Chung HY, Matsuda M, Nguyen HD, Yu BP. Defects at center P underlie diabetes-associated mitochondrial dysfunction. Free Radic Biol Med. 1997;22(5):823–33.

    Article  PubMed  CAS  Google Scholar 

  52. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404(6779):787–90.

    Article  PubMed  CAS  Google Scholar 

  53. Vincent AM, Brownlee M, Russell JW. Oxidative stress and programmed cell death in diabetic neuropathy. Ann N Y Acad Sci. 2002;959:368–83.

    Article  PubMed  CAS  Google Scholar 

  54. Piconi L, Quagliaro L, Ceriello A. Oxidative stress in diabetes. Clin Chem Lab Med. 2003;41(9):1144–9.

    Article  PubMed  CAS  Google Scholar 

  55. Sakai K, Matsumoto K, Nishikawa T, et al. Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic beta-cells. Biochem Biophys Res Commun. 2003;300(1):216–22.

    Article  PubMed  CAS  Google Scholar 

  56. Cai L, Wang J, Li Y, et al. Inhibition of superoxide generation and associated nitrosative damage is involved in metallothionein prevention of diabetic cardiomyopathy. Diabetes. 2005;54(6): 1829–37.

    Article  PubMed  CAS  Google Scholar 

  57. Ye G, Metreveli NS, Ren J, Epstein PN. Metallothionein prevents diabetes-induced deficits in cardiomyocytes by inhibiting reactive oxygen species production. Diabetes. 2003;52(3):777–83.

    Article  PubMed  CAS  Google Scholar 

  58. Ye G, Metreveli NS, Donthi RV, et al. Catalase protects cardiomyocyte function in models of type 1 and type 2 diabetes. Diabetes. 2004;53(5):1336–43.

    Article  PubMed  CAS  Google Scholar 

  59. Shen X, Zheng S, Metreveli NS, Epstein PN. Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes. 2006;55(3):798–805.

    Article  PubMed  CAS  Google Scholar 

  60. Turko IV, Li L, Aulak KS, Stuehr DJ, Chang JY, Murad F. Protein tyrosine nitration in the mitochondria from diabetic mouse heart. Implications to dysfunctional mitochondria in diabetes. J Biol Chem. 2003;278(36):33972–7.

    Article  PubMed  CAS  Google Scholar 

  61. Echtay KS, Esteves TC, Pakay JL, et al. A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J. 2003;22(16):4103–10.

    Article  PubMed  CAS  Google Scholar 

  62. Aragno M, Mastrocola R, Medana C, et al. Oxidative stress-dependent impairment of cardiac-specific transcription factors in experimental diabetes. Endocrinology. 2006;147(12):5967–74.

    Article  PubMed  CAS  Google Scholar 

  63. Dabkowski ER, Williamson CL, Bukowski VC, et al. Diabetic cardiomyopathy-associated dysfunction in spatially distinct mitochondrial subpopulations. Am J Physiol Heart Circ Physiol. 2009;296(2):H359–69.

    Article  PubMed  CAS  Google Scholar 

  64. Cai L, Li W, Wang G, Guo L, Jiang Y, Kang YJ. Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes. 2002;51(6):1938–48.

    Article  PubMed  CAS  Google Scholar 

  65. Li Z, Zhang T, Dai H, et al. Involvement of endoplasmic reticulum stress in myocardial apoptosis of streptozocin-induced diabetic rats. J Clin Biochem Nutr. 2007;41(1):58–67.

    Article  PubMed  CAS  Google Scholar 

  66. Cai L, Kang YJ. Oxidative stress and diabetic cardiomyopathy: a brief review. Cardiovasc Toxicol. 2001;1(3):181–93.

    Article  PubMed  CAS  Google Scholar 

  67. Song Y, Wang J, Li Y, et al. Cardiac metallothionein synthesis in streptozotocin-induced diabetic mice, and its protection against diabetes-induced cardiac injury. Am J Pathol. 2005;167(1): 17–26.

    Article  PubMed  CAS  Google Scholar 

  68. Li CJ, Zhang QM, Li MZ, Zhang JY, Yu P, Yu DM. Attenuation of myocardial apoptosis by alpha-lipoic acid through suppression of mitochondrial oxidative stress to reduce diabetic cardiomyopathy. Chin Med J (Engl). 2009;122(21):2580–6.

    CAS  Google Scholar 

  69. Yu T, Sheu SS, Robotham JL, Yoon Y. Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc Res. 2008;79(2):341–51.

    Article  PubMed  CAS  Google Scholar 

  70. Ostrander DB, Sparagna GC, Amoscato AA, McMillin JB, Dowhan W. Decreased cardiolipin synthesis corresponds with cytochrome c release in palmitate-induced cardiomyocyte apoptosis. J Biol Chem. 2001;276(41):38061–7.

    PubMed  CAS  Google Scholar 

  71. Dyntar D, Eppenberger-Eberhardt M, Maedler K, et al. Glucose and palmitic acid induce degeneration of myofibrils and modulate apoptosis in rat adult cardiomyocytes. Diabetes. 2001;50(9):2105–13.

    Article  PubMed  CAS  Google Scholar 

  72. Williamson CL, Dabkowski ER, Baseler WA, Croston TL, Alway SE, Hollander JM. Enhanced apoptotic propensity in diabetic cardiac mitochondria: influence of subcellular spatial location. Am J Physiol Heart Circ Physiol. 2010;298(2):H633–42.

    Article  PubMed  CAS  Google Scholar 

  73. Clark RJ, McDonough PM, Swanson E, et al. Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation. J Biol Chem. 2003;278(45):44230–7.

    Article  PubMed  CAS  Google Scholar 

  74. Robertson RP. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem. 2004;279(41):42351–4.

    Article  PubMed  CAS  Google Scholar 

  75. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25.

    Article  PubMed  CAS  Google Scholar 

  76. Du X, Matsumura T, Edelstein D, et al. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest. 2003;112(7):1049–57.

    PubMed  CAS  Google Scholar 

  77. Ramasamy R, Trueblood N, Schaefer S. Metabolic effects of aldose reductase inhibition during low-flow ischemia and reperfusion. Am J Physiol. 1998;275(1 Pt 2):H195–203.

    PubMed  CAS  Google Scholar 

  78. Lal S, Randall WC, Taylor AH, et al. Fructose-3-phosphate production and polyol pathway metabolism in diabetic rat hearts. Metabolism. 1997;46(11):1333–8.

    Article  PubMed  CAS  Google Scholar 

  79. Iwata K, Nishinaka T, Matsuno K, et al. The activity of aldose reductase is elevated in diabetic mouse heart. J Pharmacol Sci. 2007;103(4):408–16.

    Article  PubMed  CAS  Google Scholar 

  80. Cappiello M, Voltarelli M, Cecconi I, et al. Specifically targeted modification of human aldose reductase by physiological disulfides. J Biol Chem. 1996;271(52):33539–44.

    Article  PubMed  CAS  Google Scholar 

  81. Tan AL, Forbes JM, Cooper ME. AGE, RAGE, and ROS in diabetic nephropathy. Semin Nephrol. 2007;27(2):130–43.

    Article  PubMed  CAS  Google Scholar 

  82. Coughlan MT, Cooper ME, Forbes JM. Renal microvascular injury in diabetes: RAGE and redox signaling. Antioxid Redox Signal. 2007;9(3):331–42.

    Article  PubMed  CAS  Google Scholar 

  83. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation. 2006;114(6):597–605.

    Article  PubMed  CAS  Google Scholar 

  84. Hartog JW, Voors AA, Bakker SJ, Smit AJ, van Veldhuisen DJ. Advanced glycation end-products (AGEs) and heart failure: pathophysiology and clinical implications. Eur J Heart Fail. 2007;9(12):1146–55.

    Article  PubMed  CAS  Google Scholar 

  85. Koyama Y, Takeishi Y, Arimoto T, et al. High serum level of pentosidine, an advanced glycation end product (AGE), is a risk factor of patients with heart failure. J Card Fail. 2007;13(3):199–206.

    Article  PubMed  CAS  Google Scholar 

  86. Kaneko M, Bucciarelli L, Hwang YC, et al. Aldose reductase and AGE-RAGE pathways: key players in myocardial ischemic injury. Ann N Y Acad Sci. 2005;1043:702–9.

    Article  PubMed  CAS  Google Scholar 

  87. Bidasee KR, Nallani K, Yu Y, et al. Chronic diabetes increases advanced glycation end products on cardiac ryanodine receptors/calcium-release channels. Diabetes. 2003;52(7):1825–36.

    Article  PubMed  CAS  Google Scholar 

  88. Schafer S, Huber J, Wihler C, Rutten H, Busch AE, Linz W. Impaired left ventricular relaxation in type 2 diabetic rats is related to myocardial accumulation of N(epsilon)-(carboxymethyl) lysine. Eur J Heart Fail. 2006;8(1):2–6.

    Article  PubMed  CAS  Google Scholar 

  89. Choi YS, Kim S, Pak YK. Mitochondrial transcription factor A (mtTFA) and diabetes. Diabetes Res Clin Pract. 2001;54 Suppl 2:S3–9.

    Article  PubMed  CAS  Google Scholar 

  90. Kanazawa A, Nishio Y, Kashiwagi A, Inagaki H, Kikkawa R, Horiike K. Reduced activity of mtTFA decreases the transcription in mitochondria isolated from diabetic rat heart. Am J Physiol Endocrinol Metab. 2002;282(4):E778–85.

    PubMed  CAS  Google Scholar 

  91. Nishio Y, Kanazawa A, Nagai Y, Inagaki H, Kashiwagi A. Regulation and role of the mitochondrial transcription factor in the diabetic rat heart. Ann N Y Acad Sci. 2004;1011:78–85.

    Article  PubMed  CAS  Google Scholar 

  92. Palmeira CM, Rolo AP, Berthiaume J, Bjork JA, Wallace KB. Hyperglycemia decreases mitochondrial function: the regulatory role of mitochondrial biogenesis. Toxicol Appl Pharmacol. 2007;225(2):214–20.

    Article  PubMed  CAS  Google Scholar 

  93. Greer JJ, Ware DP, Lefer DJ. Myocardial infarction and heart failure in the db/db diabetic mouse. Am J Physiol Heart Circ Physiol. 2006;290(1):H146–53.

    Article  PubMed  CAS  Google Scholar 

  94. Litwin SE, Raya TE, Anderson PG, Daugherty S, Goldman S. Abnormal cardiac function in the streptozotocin-diabetic rat. Changes in active and passive properties of the left ventricle. J Clin Invest. 1990;86(2):481–8.

    Article  PubMed  CAS  Google Scholar 

  95. Flarsheim CE, Grupp IL, Matlib MA. Mitochondrial dysfunction accompanies diastolic dysfunction in diabetic rat heart. Am J Physiol. 1996;271(1 Pt 2):H192–202.

    PubMed  CAS  Google Scholar 

  96. Fauconnier J, Lanner JT, Zhang SJ, et al. Insulin and inositol 1,4,5-trisphosphate trigger abnormal cytosolic Ca2+ transients and reveal mitochondrial Ca2+ handling defects in cardiomyocytes of ob/ob mice. Diabetes. 2005;54(8):2375–81.

    Article  PubMed  CAS  Google Scholar 

  97. Belke DD, Swanson EA, Dillmann WH. Decreased sarcoplasmic reticulum activity and contractility in diabetic db/db mouse heart. Diabetes. 2004;53(12):3201–8.

    Article  PubMed  CAS  Google Scholar 

  98. Oliveira PJ, Seica R, Coxito PM, et al. Enhanced permeability transition explains the reduced calcium uptake in cardiac mitochondria from streptozotocin-induced diabetic rats. FEBS Lett. 2003;554(3):511–4.

    Article  PubMed  CAS  Google Scholar 

  99. Salles JE, Moises VA, Almeida DR, Chacra AR, Moises RS. Myocardial dysfunction in mitochondrial diabetes treated with Coenzyme Q10. Diabetes Res Clin Pract. 2006;72(1):100–3.

    Article  PubMed  CAS  Google Scholar 

  100. Momiyama Y, Atsumi Y, Ohsuzu F, et al. Rapid progression of cardiomyopathy in mitochondrial diabetes. Jpn Circ J. 1999;63(2): 130–2.

    Article  PubMed  CAS  Google Scholar 

  101. Shiotani H, Ueno H, Inoue S, Yokota Y, Yokoyama M. Diabetes mellitus and cardiomyopathy–association with mutation in the mitochondrial tRNA(Leu)(UUR) gene. Jpn Circ J. 1998;62(4): 309–10.

    Article  PubMed  CAS  Google Scholar 

  102. Yoshida R, Ishida Y, Abo K, et al. Hypertrophic cardiomyopathy in patients with diabetes mellitus associated with mitochondrial tRNA(Leu)(UUR) gene mutation. Intern Med. 1995;34(10): 953–8.

    Article  PubMed  CAS  Google Scholar 

  103. Nan DN, Fernandez-Ayala M, Infante J, Matorras P, Gonzalez-Macias J. Progressive cardiomyopathy as manifestation of mitochondrial disease. Postgrad Med J. 2002;78(919):298–9.

    Article  PubMed  CAS  Google Scholar 

  104. Ueno H, Shiotani H. Cardiac abnormalities in diabetic patients with mutation in the mitochondrial tRNA(Leu(UUR)) gene. Jpn Circ J. 1999;63(11):877–80.

    Article  PubMed  CAS  Google Scholar 

  105. Guillausseau PJ, Massin P, Dubois-LaForgue D, et al. Maternally inherited diabetes and deafness: a multicenter study. Ann Intern Med. 2001;134(9 Pt 1):721–8.

    PubMed  CAS  Google Scholar 

  106. Reardon W, Ross RJ, Sweeney MG, et al. Diabetes mellitus associated with a pathogenic point mutation in mitochondrial DNA. Lancet. 1992;340(8832):1376–9.

    Article  PubMed  CAS  Google Scholar 

  107. Momiyama Y, Suzuki Y, Ohsuzu F, Atsumi Y, Matsuoka K, Kimura M. Left ventricular hypertrophy and diastolic dysfunction in mitochondrial diabetes. Diabetes Care. 2001;24(3):604–5.

    Article  PubMed  CAS  Google Scholar 

  108. Ohkubo K, Yamano A, Nagashima M, et al. Mitochondrial gene mutations in the tRNA(Leu(UUR)) region and diabetes: prevalence and clinical phenotypes in Japan. Clin Chem. 2001;47(9):1641–8.

    PubMed  CAS  Google Scholar 

  109. Majamaa-Voltti K, Peuhkurinen K, Kortelainen ML, Hassinen IE, Majamaa K. Cardiac abnormalities in patients with mitochondrial DNA mutation 3243A>G. BMC Cardiovasc Disord. 2002;2:12.

    Article  PubMed  Google Scholar 

  110. Anan R, Nakagawa M, Miyata M, et al. Cardiac involvement in mitochondrial diseases. A study on 17 patients with documented mitochondrial DNA defects. Circulation. 1995;91(4):955–61.

    Article  PubMed  CAS  Google Scholar 

  111. Morten KJ, Cooper JM, Brown GK, Lake BD, Pike D, Poulton J. A new point mutation associated with mitochondrial encephalomyopathy. Hum Mol Genet. 1993;2(12):2081–7.

    Article  PubMed  CAS  Google Scholar 

  112. Kawarai T, Kawakami H, Kozuka K, et al. A new mitochondrial DNA mutation associated with mitochondrial myopathy: tRNA(Leu)(UUR) 3254C-to-G. Neurology. 1997;49(2):598–600.

    Article  PubMed  CAS  Google Scholar 

  113. Moraes CT, Ciacci F, Bonilla E, et al. Two novel pathogenic mitochondrial DNA mutations affecting organelle number and protein synthesis. Is the tRNA(Leu(UUR)) gene an etiologic hot spot? J Clin Invest. 1993;92(6):2906–15.

    Article  PubMed  CAS  Google Scholar 

  114. Zeviani M, Gellera C, Antozzi C, et al. Maternally inherited myopathy and cardiomyopathy: association with mutation in mitochondrial DNA tRNA(Leu)(UUR). Lancet. 1991;338(8760):143–7.

    Article  PubMed  CAS  Google Scholar 

  115. Suzuki Y, Suzuki S, Hinokio Y, et al. Diabetes associated with a novel 3264 mitochondrial tRNA(Leu)(UUR) mutation. Diabetes Care. 1997;20(7):1138–40.

    Article  PubMed  CAS  Google Scholar 

  116. Tarnopolsky MA, Maguire J, Myint T, Applegarth D, Robinson BH. Clinical, physiological, and histological features in a kindred with the T3271C melas mutation. Muscle Nerve. 1998;21(1):25–33.

    Article  PubMed  CAS  Google Scholar 

  117. Silvestri G, Santorelli FM, Shanske S, et al. A new mtDNA mutation in the tRNA(Leu(UUR)) gene associated with maternally inherited cardiomyopathy. Hum Mutat. 1994;3(1):37–43.

    Article  PubMed  CAS  Google Scholar 

  118. Kameoka K, Isotani H, Tanaka K, Kitaoka H, Ohsawa N. Impaired insulin secretion in Japanese diabetic subjects with an A-to-G mutation at nucleotide 8296 of the mitochondrial DNA in tRNA(Lys). Diabetes Care. 1998;21(11):2034–5.

    Article  PubMed  CAS  Google Scholar 

  119. Austin SA, Vriesendorp FJ, Thandroyen FT, Hecht JT, Jones OT, Johns DR. Expanding the phenotype of the 8344 transfer RNAlysine mitochondrial DNA mutation. Neurology. 1998;51(5): 1447–50.

    Article  PubMed  CAS  Google Scholar 

  120. Sano M, Ozawa M, Shiota S, Momose Y, Uchigata M, Goto Y. The T-C(8356) mitochondrial DNA mutation in a Japanese family. J Neurol. 1996;243(6):441–4.

    Article  PubMed  CAS  Google Scholar 

  121. Uusimaa J, Finnila S, Remes AM, et al. Molecular epidemiology of childhood mitochondrial encephalomyopathies in a Finnish population: sequence analysis of entire mtDNA of 17 children reveals heteroplasmic mutations in tRNAArg, tRNAGlu, and tRNALeu(UUR) genes. Pediatrics. 2004;114(2):443–50.

    Article  PubMed  Google Scholar 

  122. Lynn S, Wardell T, Johnson MA, et al. Mitochondrial diabetes: investigation and identification of a novel mutation. Diabetes. 1998;47(11):1800–2.

    Article  PubMed  CAS  Google Scholar 

  123. Tzen CY, Thajeb P, Wu TY, Chen SC. Melas with point mutations involving tRNALeu (A3243G) and tRNAGlu(A14693g). Muscle Nerve. 2003;28(5):575–81.

    Article  PubMed  CAS  Google Scholar 

  124. Damore ME, Speiser PW, Slonim AE, et al. Early onset of diabetes mellitus associated with the mitochondrial DNA T14709C point mutation: patient report and literature review. J Pediatr Endocrinol Metab. 1999;12(2):207–13.

    Article  PubMed  CAS  Google Scholar 

  125. Vialettes BH, Paquis-Flucklinger V, Pelissier JF, et al. Phenotypic expression of diabetes secondary to a T14709C mutation of mitochondrial DNA. Comparison with MIDD syndrome (A3243G mutation): a case report. Diabetes Care. 1997;20(11): 1731–7.

    Article  PubMed  CAS  Google Scholar 

  126. Corona P, Lamantea E, Greco M, et al. Novel heteroplasmic mtDNA mutation in a family with heterogeneous clinical presentations. Ann Neurol. 2002;51(1):118–22.

    Article  PubMed  CAS  Google Scholar 

  127. Casali C, Santorelli FM, D’Amati G, Bernucci P, DeBiase L, DiMauro S. A novel mtDNA point mutation in maternally inherited cardiomyopathy. Biochem Biophys Res Commun. 1995;213(2):588–93.

    Article  PubMed  CAS  Google Scholar 

  128. Taylor RW, Giordano C, Davidson MM, et al. A homoplasmic mitochondrial transfer ribonucleic acid mutation as a cause of maternally inherited hypertrophic cardiomyopathy. J Am Coll Cardiol. 2003;41(10):1786–96.

    Article  PubMed  CAS  Google Scholar 

  129. Odawara M, Sasaki K, Yamashita K. A G-to-A substitution at nucleotide position 3316 in mitochondrial DNA is associated with Japanese non-insulin-dependent diabetes mellitus. Biochem Biophys Res Commun. 1996;227(1):147–51.

    Article  PubMed  CAS  Google Scholar 

  130. Hirai M, Suzuki S, Onoda M, et al. Mitochondrial DNA 3394 mutation in the NADH dehydrogenase subunit 1 associated with non-insulin-dependent diabetes mellitus. Biochem Biophys Res Commun. 1996;219(3):951–5.

    Article  PubMed  CAS  Google Scholar 

  131. Chen Y, Liao WX, Roy AC, Loganath A, Ng SC. Mitochondrial gene mutations in gestational diabetes mellitus. Diabetes Res Clin Pract. 2000;48(1):29–35.

    Article  PubMed  CAS  Google Scholar 

  132. Tawata M, Hayashi JI, Isobe K, et al. A new mitochondrial DNA mutation at 14577 T/C is probably a major pathogenic mutation for maternally inherited type 2 diabetes. Diabetes. 2000;49(7): 1269–72.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marín-García, J. (2013). Diabetes and Cardiac Mitochondria. In: Mitochondria and Their Role in Cardiovascular Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4599-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4599-9_20

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-4598-2

  • Online ISBN: 978-1-4614-4599-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics