Skip to main content

Cardiac Sodium-Calcium Exchange and Efficient Excitation-Contraction Coupling: Implications for Heart Disease

  • Chapter
  • First Online:
Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 961))

Abstract

Cardiovascular disease is a leading cause of death worldwide, with ischemic heart disease alone accounting for >12% of all deaths, more than HIV/AIDS, tuberculosis, lung, and breast cancer combined. Heart disease has been the leading cause of death in the United States for the past 85 years and is a major cause of disability and health-care expenditures. The cardiac conditions most likely to result in death include heart failure and arrhythmias, both a consequence of ischemic coronary disease and myocardial infarction, though chronic hypertension and valvular diseases are also important causes of heart failure. Sodium-calcium exchange (NCX) is the dominant calcium (Ca2+) efflux mechanism in cardiac cells. Using ventricular-specific NCX knockout mice, we have found that NCX is also an essential regulator of cardiac contractility independent of sarcoplasmic reticulum Ca2+ load. During the upstroke of the action potential, sodium (Na+) ions enter the diadic cleft space between the sarcolemma and the sarcoplasmic reticulum. The rise in cleft Na+, in conjunction with depolarization, causes NCX to transiently reverse. Ca2+ entry by this mechanism then “primes” the diadic cleft so that subsequent Ca2+ entry through Ca2+ channels can more efficiently trigger Ca2+ release from the sarcoplasmic reticulum. In NCX knockout mice, this mechanism is inoperative (Na+ current has no effect on the Ca2+ transient), and excitation-contraction coupling relies upon the elevated diadic cleft Ca2+ that arises from the slow extrusion of cytoplasmic Ca2+ by the ATP-dependent sarcolemmal Ca2+ pump. Thus, our data support the conclusion that NCX is an important regulator of cardiac contractility. These findings suggest that manipulation of NCX may be beneficial in the treatment of heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • W.T. Abraham, K.F. Adams, G.C. Fonarow, M.R. Costanzo, R.L. Berkowitz, T.H. LeJemtel, M.L. Cheng, J. Wynne, In-hospital mortality in patients with acute decompensated heart failure requiring intravenous vasoactive medications: an analysis from the Acute Decompensated Heart Failure National Registry (ADHERE). J. Am. Coll. Cardiol. 46, 57–64 (2005)

    Article  PubMed  Google Scholar 

  • A.A. Armoundas, J. Rose, R. Aggarwal, B.D. Stuyvers, B. O’Rourke, D.A. Kass, E. Marban, S.R. Shorofsky, G.F. Tomaselli, C. William Balke, Cellular and molecular determinants of altered Ca2+ handling in the failing rabbit heart: primary defects in SR Ca2+ uptake and release mechanisms. Am. J. Physiol. Heart Circ. Physiol. 292, H1607–H1618 (2007)

    Article  PubMed  CAS  Google Scholar 

  • D.M. Bers, W.J. Lederer, J.R. Berlin, Intracellular Ca transients in rat cardiac myocytes: role of Na-Ca exchange in excitation-contraction coupling. Am. J. Physiol. 258, C944–C954 (1990)

    PubMed  CAS  Google Scholar 

  • F. Brette, C.H. Orchard, No apparent requirement for neuronal sodium channels in excitation-contraction coupling in rat ventricular myocytes. Circ. Res. 98, 667–674 (2006)

    Article  PubMed  CAS  Google Scholar 

  • W.A. Catterall, A.L. Goldin, S.G. Waxman, International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol. Rev. 57, 397–409 (2005)

    Article  PubMed  CAS  Google Scholar 

  • Center for Disease Control and Prevention, Heart failure fact sheet (2011), http://www.cdc.gov/DHDSP/data_statistics/fact_sheets/fs_heart_failure.htm. Accessed 3 Dec 2011

  • C. Chantawansri, N. Huynh, J. Yamanaka, A. Garfinkel, S.T. Lamp, M. Inoue, J.H. Bridge, J.I. Goldhaber, Effect of metabolic inhibition on couplon behavior in rabbit ventricular myocytes. Biophys. J. 94, 1656–1666 (2008)

    Article  PubMed  CAS  Google Scholar 

  • H. Cheng, W.J. Lederer, M.B. Cannell, Calcium sparks - elementary events underlying excitation-contraction coupling in heart muscle. Science 262, 740–744 (1993)

    Article  PubMed  CAS  Google Scholar 

  • J.A. Copello, S. Barg, H. Onoue, S. Fleischer, Heterogeneity of Ca2+ gating of skeletal muscle and cardiac ryanodine receptors. Biophys. J. 73, 141–156 (1997)

    Article  PubMed  CAS  Google Scholar 

  • U. Elkayam, G. Tasissa, C. Binanay, L. Stevenson, M. Gheorghiade, J. Warnica, J. Young, B. Rayburn, J. Rogers, T. Demarco, Use and impact of inotropes and vasodilator therapy in hospitalized patients with severe heart failure. Am. Heart J. 153, 98–104 (2007)

    Article  PubMed  Google Scholar 

  • A. Fabiato, Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am. J. Physiol. 245, C1–C14 (1983)

    PubMed  CAS  Google Scholar 

  • G.M. Felker, R.L. Benza, A.B. Chandler, J.D. Leimberger, M.S. Cuffe, R.M. Califf, M. Gheorghiade, C.M. O’Connor, Heart failure etiology and response to milrinone in decompensated heart failure: results from the OPTIME-CHF study. J. Am. Coll. Cardiol. 41, 997–1003 (2003)

    Article  PubMed  CAS  Google Scholar 

  • M. Flesch, R.H. Schwinger, F. Schiffer, K. Frank, M. Südkamp, F. Kuhn-Regnier, G. Arnold, M. Böhm, Evidence for functional relevance of an enhanced expression of the Na+-Ca2+ exchanger in failing human myocardium. Circulation 94, 992–1002 (1996)

    Article  PubMed  CAS  Google Scholar 

  • G.C. Fonarow, C.W. Yancy, A.F. Hernandez, E.D. Peterson, J.A. Spertus, P.A. Heidenreich, Potential impact of optimal implementation of evidence-based heart failure therapies on mortality. Am. Heart J. 161, 1024–1030 (2011). e1023

    Article  PubMed  Google Scholar 

  • C. Franzini-Armstrong, F. Protasi, V. Ramesh, Shape, size, and distribution of Ca2+ release units and couplons in skeletal and cardiac muscles. Biophys. J. 77, 1528–1539 (1999)

    Article  PubMed  CAS  Google Scholar 

  • C. Gershome, E. Lin, H. Kashihara, L. Hove-Madsen, G.F. Tibbits, Colocalization of voltage-gated Na+ channels with the Na+/Ca2+ exchanger in rabbit cardiomyocytes during development. Am. J. Physiol. Heart Circ. Physiol. 300, H300–H311 (2011)

    Article  PubMed  CAS  Google Scholar 

  • A.L. Goldin, Resurgence of sodium channel research. Annu. Rev. Physiol. 63, 871–894 (2001)

    Article  PubMed  CAS  Google Scholar 

  • A.M. Gomez, S. Guatimosim, K.W. Dilly, G. Vassort, W.J. Lederer, Heart failure after myocardial infarction - Altered excitation-contraction coupling. Circulation 104, 688–693 (2001)

    Article  PubMed  CAS  Google Scholar 

  • R.J. Hajjar, J.K. Gwathmey, Direct evidence of changes in myofilament responsiveness to Ca2+ during hypoxia and reoxygenation in myocardium. Am. J. Physiol. 259, H784–H795 (1990)

    PubMed  CAS  Google Scholar 

  • G. Hasenfuss, B. Pieske, Calcium cycling in congestive heart failure. J. Mol. Cell. Cardiol. 34, 951–969 (2002)

    Article  PubMed  CAS  Google Scholar 

  • R.A. Haworth, A.B. Goknur, Control of the Na-Ca exchanger in isolated heart cells. II. Beta-dependent activation in normal cells by intracellular calcium. Circ. Res. 69, 1514–1524 (1991)

    Article  PubMed  CAS  Google Scholar 

  • S.A. Henderson, J.I. Goldhaber, J.M. So, T. Han, C. Motter, A. Ngo, C. Chantawansri, M.R. Ritter, M. Friedlander, D.A. Nicoll, J.S. Frank, M.C. Jordan, K.P. Roos, R.S. Ross, K.D. Philipson, Functional adult myocardium in the absence of Na+-Ca2+ exchange: cardiac-specific knockout of NCX1. Circ. Res. 95, 604–611 (2004)

    Article  PubMed  CAS  Google Scholar 

  • I.A. Hobai, B. O’Rourke, Enhanced Ca2+-activated Na+-Ca2+ exchange activity in canine pacing-induced heart failure. Circ. Res. 87, 690–698 (2000)

    Article  PubMed  CAS  Google Scholar 

  • K. Imahashi, C. Pott, J.I. Goldhaber, C. Steenbergen, K.D. Philipson, E. Murphy, Cardiac-specific ablation of the Na+/Ca2+ exchanger confers protection against ischemia/reperfusion injury. Circ. Res. 97, 916–921 (2005)

    Article  PubMed  CAS  Google Scholar 

  • J.S. Ingwall, R.G. Weiss, Is the failing heart energy starved?: on using chemical energy to support cardiac function. Circ. Res. 95, 135–145 (2004)

    Article  PubMed  CAS  Google Scholar 

  • M. Inoue, J.H. Bridge, Ca2+ sparks in rabbit ventricular myocytes evoked by action potentials: involvement of clusters of L-type Ca2+ channels. Circ. Res. 92, 532–538 (2003)

    Article  PubMed  CAS  Google Scholar 

  • S.A. John, B. Ribalet, J.N. Weiss, K.D. Philipson, M. Ottolia, Ca2+-dependent structural rearrangements within Na+-Ca2+ exchanger dimers. Proc. Natl. Acad. Sci. U. S. A. 108, 1699–1704 (2011)

    Article  PubMed  CAS  Google Scholar 

  • W.J. Koch, R.J. Lefkowitz, H.A. Rockman, Functional consequences of altering myocardial adrenergic receptor signaling. Annu. Rev. Physiol. 62, 237–260 (2000)

    Article  PubMed  CAS  Google Scholar 

  • O. Kohmoto, A.J. Levi, J.H.B. Bridge, Relation between reverse sodium-calcium exchange and sarcoplasmic reticulum calcium release in guinea pig ventricular cells. Circ. Res. 74, 550–554 (1994)

    Article  CAS  Google Scholar 

  • R. Larbig, N. Torres, J.H. Bridge, J.I. Goldhaber, K.D. Philipson, Activation of reverse Na+-Ca2+ exchange by the Na+ current augments the cardiac Ca2+ transient: evidence from NCX knockout mice. J. Physiol. 588, 3267–3276 (2010)

    Article  PubMed  CAS  Google Scholar 

  • N. Leblanc, J.R. Hume, Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science 248, 372–376 (1990)

    Article  PubMed  CAS  Google Scholar 

  • G.T. Lines, J.B. Sande, W.E. Louch, H.K. Mørk, P. Grøttum, O.M. Sejersted, Contribution of the Na+/Ca2+ Exchanger to Rapid Ca2+ Release in Cardiomyocytes. Biophys. J. 91, 779–792 (2006)

    Article  PubMed  CAS  Google Scholar 

  • P. Lipp, E. Niggli, Sodium current-induced calcium ­signals in isolated guinea-pig ventricular myocytes. J. Physiol. 474, 439–446 (1994)

    PubMed  CAS  Google Scholar 

  • S.E. Litwin, D. Zhang, J.H. Bridge, Dyssynchronous Ca2+ sparks in myocytes from infarcted hearts. Circ. Res. 87, 1040–1047 (2000)

    Article  PubMed  CAS  Google Scholar 

  • B. London, J.W. Krueger, Contraction in voltage-clamped, internally perfused single heart cells. J. Gen. Physiol. 88, 475–505 (1986)

    Article  PubMed  CAS  Google Scholar 

  • J.R. Lopez-Lopez, P.S. Shacklock, C.W. Balke, W.G. Wier, Local calcium transients triggered by single L-type calcium channel currents in cardiac cells. Science 268, 1042–1045 (1995)

    Article  PubMed  CAS  Google Scholar 

  • S.K. Maier, R.E. Westenbroek, K.A. Schenkman, E.O. Feigl, T. Scheuer, W.A. Catterall, An unexpected role for brain-type sodium channels in coupling of cell surface depolarization to contraction in the heart. Proc. Natl. Acad. Sci. U. S. A. 99, 4073–4078 (2002)

    Article  PubMed  CAS  Google Scholar 

  • A.R. Marks, Cardiac intracellular calcium release channels: role in heart failure. Circ. Res. 87, 8–11 (2000)

    Article  PubMed  CAS  Google Scholar 

  • G. Meissner, Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu. Rev. Physiol. 56, 485–508 (1994)

    Article  PubMed  CAS  Google Scholar 

  • Z.A. Nagy, L. Virag, A. Toth, P. Biliczki, K. Acsai, T. Banyasz, P. Nanasi, J.G. Papp, A. Varro, Selective inhibition of sodium-calcium exchanger by SEA-0400 decreases early and delayed after depolarization in canine heart. Br. J. Pharmacol. 143, 827–831 (2004)

    Article  PubMed  CAS  Google Scholar 

  • P. Neco, B. Rose, N. Huynh, R. Zhang, J.H. Bridge, K.D. Philipson, J.I. Goldhaber, Sodium-calcium exchange is essential for effective triggering of calcium release in mouse heart. Biophys. J. 99, 755–764 (2010)

    Article  PubMed  CAS  Google Scholar 

  • H.B. Nuss, S.R. Houser, Sodium-calcium exchange-mediated contractions in feline ventricular myocytes. Am. J. Physiol. 263, H1161–H1169 (1992)

    PubMed  CAS  Google Scholar 

  • E. Polakova, A. Zahradnikova Jr., J. Pavelkova, I. Zahradnik, A. Zahradnikova, Local calcium release activation by DHPR calcium channel openings in rat cardiac myocytes. J. Physiol. (London) 586, 3839–3854 (2008)

    Article  CAS  Google Scholar 

  • C. Pott, K.D. Philipson, J.I. Goldhaber, Excitation-contraction coupling in Na+-Ca2+ exchanger knockout mice: reduced transsarcolemmal Ca2+ flux. Circ. Res. 97, 1288–1295 (2005)

    Article  PubMed  CAS  Google Scholar 

  • C. Pott, M. Yip, J.I. Goldhaber, K.D. Philipson, Regulation of cardiac L-type Ca2+ current in Na+-Ca2+ exchanger knockout mice: functional coupling of the Ca2+ channel and the Na+-Ca2+ exchanger. Biophys. J. 92, 1431–1437 (2007a)

    Article  PubMed  CAS  Google Scholar 

  • C. Pott, X. Ren, D.X. Tran, M.J. Yang, S. Henderson, M.C. Jordan, K.P. Roos, A. Garfinkel, K.D. Philipson, J.I. Goldhaber, Mechanism of shortened action potential duration in Na+-Ca2+ exchanger knockout mice. Am. J. Physiol. Cell Physiol. 292, C968–C973 (2007b)

    Article  PubMed  CAS  Google Scholar 

  • V.L. Roger, A.S. Go, D.M. Lloyd-Jones, R.J. Adams, J.D. Berry, T.M. Brown, M.R. Carnethon, S. Dai, G. de Simone, E.S. Ford, C.S. Fox, H.J. Fullerton, C. Gillespie, K.J. Greenlund, S.M. Hailpern, J.A. Heit, P.M. Ho, V.J. Howard, B.M. Kissela, S.J. Kittner, D.T. Lackland, J.H. Lichtman, L.D. Lisabeth, D.M. Makuc, G.M. Marcus, A. Marelli, D.B. Matchar, M.M. McDermott, J.B. Meigs, C.S. Moy, D. Mozaffarian, M.E. Mussolino, G. Nichol, N.P. Paynter, W.D. Rosamond, P.D. Sorlie, R.S. Stafford, T.N. Turan, M.B. Turner, N.D. Wong, J. Wylie-Rosett, Heart disease and stroke statistics–2011 update: a report from the American Heart Association. Circulation 124, e18–e209 (2011)

    Article  Google Scholar 

  • U. Schmidt, R.J. Hajjar, P.A. Helm, C.S. Kim, A.A. Doye, J.K. Gwathmey, Contribution of abnormal sarcoplasmic reticulum ATPase activity to systolic and diastolic dysfunction in human heart failure. J. Mol. Cell. Cardiol. 30, 1929–1937 (1998)

    Article  PubMed  CAS  Google Scholar 

  • J.S. Sham, L. Cleemann, M. Morad, Gating of the cardiac Ca2+ release channel: the role of Na+ current and Na+-Ca2+ exchange. Science 255, 850–853 (1992)

    Article  PubMed  CAS  Google Scholar 

  • K.R. Sipido, E. Carmeliet, A. Pappano, Na+ current and Ca2+ release from the sarcoplasmic reticulum during action potentials in guinea-pig ventricular myocytes. J. Physiol. (London) 489, 1–17 (1995)

    CAS  Google Scholar 

  • K.R. Sipido, M. Maes, F. Van de Werf, Low efficiency of Ca2+ entry through the Na+-Ca2+ exchanger as trigger for Ca2+ release from the sarcoplasmic reticulum. A comparison between L-type Ca2+ current and reverse-mode Na+-Ca2+ exchange. Circ. Res. 81, 1034–1044 (1997)

    Article  PubMed  CAS  Google Scholar 

  • M.D. Stern, Theory of excitation-contraction coupling in cardiac muscle. Biophys. J. 63, 497–517 (1992)

    Article  PubMed  CAS  Google Scholar 

  • M.D. Stern, G. Pizarro, E. Rios, Local control model of excitation-contraction coupling in skeletal muscle. J. Gen. Physiol. 110, 415–440 (1997)

    Article  PubMed  CAS  Google Scholar 

  • R. Studer, H. Reinecke, J. Bilger, T. Eschenhagen, M. Bohm, G. Hasenfuss, H. Just, J. Holtz, H. Drexler, Gene expression of the cardiac Na+-Ca2+ exchanger in end-stage human heart failure. Circ. Res. 75, 443–453 (1994)

    Article  PubMed  CAS  Google Scholar 

  • N.S. Torres, R. Larbig, A.N. Rock, J.I. Goldhaber, J.H. Bridge, Na+ currents are required for efficient excitation-contraction coupling in rabbit ventricular myocytes: a possible contribution of neuronal Na+ channel to triggering Ca2+ release from the sarcoplasmic reticulum. J. Physiol. 588, 4249–4260 (2010)

    Article  PubMed  CAS  Google Scholar 

  • J.A. Wasserstrom, A.M. Vites, The role of Na+-Ca2+ exchange in activation of excitation-contraction coupling in rat ventricular myocytes. J. Physiol. 493, 529–542 (1996)

    PubMed  CAS  Google Scholar 

  • World Health Organization, The top 10 causes of death (2011), http://www.who.int/mediacentre/factsheets/fs310/en/. Accessed 3 Dec 2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua I. Goldhaber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goldhaber, J.I., Philipson, K.D. (2013). Cardiac Sodium-Calcium Exchange and Efficient Excitation-Contraction Coupling: Implications for Heart Disease. In: Annunziato, L. (eds) Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications. Advances in Experimental Medicine and Biology, vol 961. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4756-6_30

Download citation

Publish with us

Policies and ethics