Skip to main content

Interplay of Ca2+ and Mg2+ in Sodium-Calcium Exchanger and in Other Ca2+-Binding Proteins: Magnesium, Watchdog That Blocks Each Turn if Able

  • Chapter
  • First Online:
Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 961))

Abstract

Sodium-calcium exchange across plasma membrane is regulated by intracellular calcium ions. The sodium-calcium exchanger (NCX1) is activated by successive saturation of numerous Ca2+-binding sites located in the intracellular loop of the protein. The progressive saturation of the binding domain CBD12 by Ca2+ results in a series of conformational changes of CBD12 as well as of entire NCX1 molecule. Like other soluble and membrane Ca2+-binding proteins, NCX1 can also be regulated by Mg2+ that antagonises Ca2+ at the level of divalent cation-binding sites. This chapter summarises data on Mg2+ impacts in the cells. Regulatory action of Mg2+ on intracellular Ca2+-dependent processes can be achieved due to changes of its cytoplasmic level, which take place in the range of [Mg2+]i from 0.5 to 3 mM. Under normal conditions, these changes are ensured by activation of plasmalemmal Mg2+ transport systems and by variations in ATP level in cytoplasm. In heart and in brain, some pathological conditions, such as hypoxia, ischemia and ischemia followed by reperfusion, are associated with an important increase in intracellular Ca2+. The tissue damage due to Ca2+ overload may be prevented by Mg2+. The protective actions of Mg2+ can be achieved due to its ability to compete with Ca2+ for the binding sites in a number of proteins responsible for the rise in intracellular free Ca2+, including NCX1, in case when the reverse mode of Na+/Ca2+ exchange becomes predominant. Saturation of CBD12 by Mg2+ results in important changes of NCX1 conformation. Modulating actions of Mg2+ on the conformation of NCX1 were detected at a narrow range of Mg2+ concentration, from 0.5 to 1 mM. These data support an idea that variations of intracellular Mg2+ could modify transmembrane Ca2+ movements ensured by NCX1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • D. Allouche, J. Parello, Y.H. Sanejouand, Ca2+/Mg2+ exchange in parvalbumin and other EF-hand proteins. A theoretical study. J. Mol. Biol. 285, 857–873 (1999)

    Article  PubMed  CAS  Google Scholar 

  • L. Bao, C. Kaldany, E.C. Holmstrand, D.H. Cox, Mapping the BKCa channel’s “Ca2+ bowl”: side-chains essential for Ca2+ sensing. J. Gen. Physiol. 123, 475–489 (2004)

    Article  PubMed  CAS  Google Scholar 

  • G.M. Besserer, M. Ottolia, D.A. Nicoll, V. Chaptal, D. Cascio, K.D. Philipson, J. Abramson, The second Ca2+-binding domain of the Na+ Ca2+ exchanger is essential for regulation: crystal structures and mutational analysis. Proc. Natl. Acad. Sci. U. S. A. 104, 18467–18472 (2007)

    Article  PubMed  CAS  Google Scholar 

  • I. Bezprozvanny, J. Watras, B.E. Ehrlich, Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351, 751–754 (1991)

    Article  PubMed  CAS  Google Scholar 

  • A.L. Blatz, K.L. Magleby, Calcium-activated potassium channels. Trends Neurosci. 10, 463–467 (1987)

    Article  CAS  Google Scholar 

  • M.P. Blaustein, W.J. Lederer, Sodium/calcium exchange: its physiological implications. Physiol. Rev. 79, 763–854 (1999)

    PubMed  CAS  Google Scholar 

  • L. Boyman, H. Mikhasenko, R. Hiller, D. Khananshvili, Kinetic and equilibrium properties of regulatory calcium sensors of NCX1 protein. J. Biol. Chem. 284, 6185–6193 (2009)

    Article  PubMed  CAS  Google Scholar 

  • S. Brunet, T. Scheuer, W.A. Catterall, Cooperative regulation of Ca(v)1.2 channels by intracellular Mg2+, the proximal C-terminal EF-hand, and the distal C-terminal domain. J. Gen. Physiol. 134, 81–94 (2009)

    Article  PubMed  CAS  Google Scholar 

  • C. Cefaratti, A. Romani, Modulation of Na+/Mg2+ exchanger stoichiometry ratio by Cl ions in basolateral rat liver plasma membrane vesicles. Mol. Cell. Biochem. 351, 133–142 (2011)

    Article  PubMed  CAS  Google Scholar 

  • M.M. Chien, K.E. Zahradka, M.K. Newell, J.H. Freed, Fas-induced B cell apoptosis requires an increase in free cytosolic magnesium as an early event. J. Biol. Chem. 274, 7059–7066 (1999)

    Article  PubMed  CAS  Google Scholar 

  • B.E. Corkey, J. Duszynski, T.L. Rich, B. Matschinsky, J.R. Williamson, Regulation of free and bound magnesium in rat hepatocytes and isolated mitochondria. J. Biol. Chem. 261, 2567–2574 (1986)

    PubMed  CAS  Google Scholar 

  • L.J. Dai, G. Ritchie, D. Kerstan, H.S. Kang, D.E. Cole, G.A. Quamme, Magnesium transport in the renal distal convoluted tubule. Physiol. Rev. 81, 51–84 (2001)

    PubMed  CAS  Google Scholar 

  • H. Ebel, R. Kreis, T. Gunther, Regulation of Na+/Mg2+ antiport in rat erythrocytes. Biochim. Biophys. Acta 1664, 150–160 (2004)

    Article  PubMed  CAS  Google Scholar 

  • L. Eichelberger, F.C. McLean, W.A. Catterall, The distribution of calcium and magnesium between the cells and the extracellular fluids of skeletal muscle and liver in dogs. J. Biol. Chem. 142, 467–476 (1942)

    CAS  Google Scholar 

  • S. Gasser, N. Bareza, E. Scheer, D. Pruthi, R. Gasser, U.E. Spichiger-Keller, E. Toferer, Free intracellular magnesium remains uninfluenced by changes of extracellular magnesium in cardiac guinea pig papillary muscle. J. Clin. Basic Cardiol. 8, 29–32 (2005)

    CAS  Google Scholar 

  • J. Golowasch, A. Kirkwood, C. Miller, Allosteric effects of Mg2+ on the gating of Ca2+-activated K+ channels from mammalian skeletal muscle. J. Exp. Biol. 124, 5–13 (1986)

    PubMed  CAS  Google Scholar 

  • R.D. Grubbs, S.D. Collins, M.E. Maguire, Differential compartmentation of magnesium and calcium in murine S49 lymphoma cells. J. Biol. Chem. 259, 12184–12192 (1984)

    PubMed  CAS  Google Scholar 

  • R.D. Grubbs, P.A. Beltz, K.L. Koss, Practical considerations for using mag-fura-2 to measure cytosolic free magnesium. Magnes. Trace Elem. 10, 142–150 (1991)

    PubMed  CAS  Google Scholar 

  • M.C. Haigney, S. Wei, S. Kaab, E. Griffiths, R. Berger, R. Tunin, D. Kass, W.G. Fisher, B. Silver, H. Silverman, Loss of cardiac magnesium in experimental heart failure prolongs and destabilizes repolarization in dogs. J. Am. Coll. Cardiol. 31, 701–706 (1998)

    Article  PubMed  CAS  Google Scholar 

  • J.P. Headrick, R.J. Willis, Cytosolic free magnesium in stimulated, hypoxic, and underperfused rat heart. J. Mol. Cell. Cardiol. 23, 991–999 (1991)

    Article  PubMed  CAS  Google Scholar 

  • M. Henrich, K.J. Buckler, Effects of anoxia, aglycemia, and acidosis on cytosolic Mg2+, ATP, and pH in rat sensory neurons. Am. J. Physiol. Cell Physiol. 294, C280–C294 (2008)

    Article  PubMed  CAS  Google Scholar 

  • M. Hilge, J. Aelen, G.W. Vuister, Ca2+ regulation in the Na+/Ca2+ exchanger involves two markedly different Ca2+ sensors. Mol. Cell 22, 15–25 (2006)

    Article  PubMed  CAS  Google Scholar 

  • J. Kimura, A. Noma, H. Irisawa, Na-Ca exchange current in mammalian heart cells. Nature 319, 596–597 (1986)

    Article  PubMed  CAS  Google Scholar 

  • C.O. Lee, P. Abete, M. Pecker, J.K. Sonn, M. Vassalle, Strophanthidin inotropy: role of intracellular sodium ion activity and sodium-calcium exchange. J. Mol. Cell. Cardiol. 17, 1043–1053 (1985)

    Article  PubMed  CAS  Google Scholar 

  • D.O. Levitsky, D.A. Nicoll, K.D. Philipson, Identification of the high affinity Ca2+-binding domain of the cardiac Na+-Ca2+ exchanger. J. Biol. Chem. 269, 22847–22852 (1994)

    PubMed  CAS  Google Scholar 

  • D.O. Levitsky, B. Fraysse, C. Leoty, D.A. Nicoll, K.D. Philipson, Cooperative interaction between Ca2+ binding sites in the hydrophilic loop of the Na+-Ca2+ exchanger. Mol. Cell. Biochem. 160–161, 27–32 (1996)

    Article  PubMed  Google Scholar 

  • S. Matsuoka, D.A. Nicoll, R.F. Reilly, D.W. Hilgemann, K.D. Philipson, Initial localization of regulatory regions of the cardiac sarcolemmal Na+-Ca2+ exchanger. Proc. Natl. Acad. Sci. U. S. A. 90, 3870–3874 (1993)

    Article  PubMed  CAS  Google Scholar 

  • G. Meissner, Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. J. Biol. Chem. 261, 6300–6306 (1986)

    PubMed  CAS  Google Scholar 

  • K.W. Muir, Magnesium in stroke treatment. Postgrad. Med. J. 78, 641–645 (2002)

    Article  PubMed  CAS  Google Scholar 

  • E. Murphy, C. Steenbergen, L.A. Levy, B. Raju, R.E. London, Cytosolic free magnesium levels in ischemic rat heart. J. Biol. Chem. 264, 5622–5627 (1989)

    PubMed  CAS  Google Scholar 

  • S. Nakayama, T. Tomita, Regulation of intracellular free magnesium concentration in the taenia of guinea-pig caecum. J. Physiol. 435, 559–572 (1991)

    PubMed  CAS  Google Scholar 

  • D.A. Nicoll, M.R. Sawaya, S. Kwon, D. Cascio, K.D. Philipson, J. Abramson, The crystal structure of the primary Ca2+ sensor of the Na+/Ca2+ exchanger reveals a novel Ca2+ binding motif. J. Biol. Chem. 281, 21577–21581 (2006)

    Article  PubMed  CAS  Google Scholar 

  • W. Paschen, Glutamate excitotoxicity in transient global cerebral ischemia. Acta Neurobiol. Exp. (Wars) 56, 313–322 (1996)

    CAS  Google Scholar 

  • S.M. Pogwizd, M. Qi, W. Yuan, A.M. Samarel, D.M. Bers, Upregulation of Na+/Ca2+ exchanger expression and function in an arrhythmogenic rabbit model of heart failure. Circ. Res. 85, 1009–1019 (1999)

    Article  PubMed  CAS  Google Scholar 

  • G.A. Quamme, Molecular identification of ancient and modern mammalian magnesium transporters. Am. J. Physiol. Cell Physiol. 298, C407–C429 (2010)

    Article  PubMed  CAS  Google Scholar 

  • H. Reinecke, R. Studer, R. Vetter, J. Holtz, H. Drexler, Cardiac Na+/Ca2+ exchange activity in patients with end-stage heart failure. Cardiovasc. Res. 31, 48–54 (1996)

    PubMed  CAS  Google Scholar 

  • A. Romani, C. Marfella, A. Scarpa, Regulation of magnesium uptake and release in the heart and in isolated ventricular myocytes. Circ. Res. 72, 1139–1148 (1993)

    Article  PubMed  CAS  Google Scholar 

  • M. Schreiber, A. Yuan, L. Salkoff, Transplantable sites confer calcium sensitivity to BK channels. Nat. Neurosci. 2, 416–421 (1999)

    Article  PubMed  CAS  Google Scholar 

  • M.D. Snavely, S.A. Gravina, T.T. Cheung, C.G. Miller, M.E. Maguire, Magnesium transport in Salmonella typhimurium. Regulation of mgtA and mgtB expression. J. Biol. Chem. 266, 824–829 (1991)

    PubMed  CAS  Google Scholar 

  • R.M. Touyz, E.L. Schiffrin, Angiotensin II and vasopressin modulate intracellular free magnesium in vascular smooth muscle cells through Na+-dependent protein kinase C pathways. J. Biol. Chem. 271, 24353–24358 (1996)

    Article  PubMed  CAS  Google Scholar 

  • M. Wang, M. Tashiro, J.R. Berlin, Regulation of L-type calcium current by intracellular magnesium in rat cardiac myocytes. J. Physiol. 555, 383–396 (2004)

    Article  PubMed  CAS  Google Scholar 

  • S.K. Wei, J.F. Quigley, S.U. Hanlon, B. O’Rourke, M.C. Haigney, Cytosolic free magnesium modulates Na/Ca exchange currents in pig myocytes. Cardiovasc. Res. 53, 334–340 (2002)

    Article  PubMed  CAS  Google Scholar 

  • R.E. White, H.C. Hartzell, Effects of intracellular free magnesium on calcium current in isolated cardiac myocytes. Science 239, 778–780 (1988)

    Article  PubMed  CAS  Google Scholar 

  • A. Zahradnikova, Z. Kubalova, J. Pavelkova, S. Gyorke, I. Zahradnik, Activation of calcium release assessed by calcium release-induced inactivation of calcium current in rat cardiac myocytes. Am. J. Physiol. Cell Physiol. 286, C330–C341 (2004)

    Article  PubMed  CAS  Google Scholar 

  • X. Zhang, C.R. Solaro, C.J. Lingle, Allosteric regulation of BK channel gating by Ca2+ and Mg2+ through a nonselective, low affinity divalent cation site. J. Gen. Physiol. 118, 607–636 (2001)

    Article  PubMed  CAS  Google Scholar 

  • J. Zhang, F. Zhao, Y. Zhao, J. Wang, L. Pei, N. Sun, J. Shi, Hypoxia induces an increase in intracellular magnesium via transient receptor potential melastatin 7 (TRPM7) channels in rat hippocampal neurons in vitro. J. Biol. Chem. 286, 20194–20207 (2011)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Hilge for providing NCX1 plasmids. We are thankful to our students E. Foucault, Ou. Louahdi, A. Menou, L. Diakite and M. Mekideche for their participation in a number of experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri O. Levitsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Levitsky, D.O., Takahashi, M. (2013). Interplay of Ca2+ and Mg2+ in Sodium-Calcium Exchanger and in Other Ca2+-Binding Proteins: Magnesium, Watchdog That Blocks Each Turn if Able. In: Annunziato, L. (eds) Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications. Advances in Experimental Medicine and Biology, vol 961. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4756-6_7

Download citation

Publish with us

Policies and ethics