Skip to main content

Ultrasound-Guided FNA and Molecular Markers for Optimization of Thyroid Nodule Management

  • Chapter
  • First Online:
Thyroid Ultrasound and Ultrasound-Guided FNA

Abstract

Thyroid nodules are a common clinical problem. The prevalence range by palpation is 3–7 %. Imaging with thyroid ultrasonography detects numerous additional nodules with prevalence rate ranging from 20 to 76 % of the general adult population. The prevalence risk for malignancy in a thyroid nodule is less than 5 %. A risk-based strategy has been developed to evaluate thyroid nodules and includes: clinical history and physical examination; serum TSH assay; and high-resolution, diagnostic ultrasonography. High-resolution ultrasonography enhances thyroid nodule selection and the need for fine needle aspiration selection by sonographically defining size, consistency, and features suggestive of malignancy. Thyroid nodule fine needle aspiration (FNA), especially with ultrasound guidance, enhances the yield of interpretable, nodular-aspirated material for cytologic interpretation by 3–5-fold over simple FNA without ultrasound guidance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gharib H, Papini E, Paschke R, Duick DS, Valcavi R, Hegedüs L, et al. AACE/AME/ETA task force on thyroid nodules. Endocr Pract. 2010;16 Suppl 1:1–43.

    Article  PubMed  Google Scholar 

  2. Hegedüs L. Clinical practice. The thyroid nodule. N Engl J Med. 2004;351(17):1764–71.

    Article  PubMed  Google Scholar 

  3. Cibas ES, Ali SZ. The Bethesda system for reporting thyroid cytopathology. Thyroid. 2009;19(11):1159–65.

    Article  PubMed  Google Scholar 

  4. Wang CC, Friedman L, Kennedy GC, Wang H, Kebebew E, Steward DL, et al. A large multicenter correlation study of thyroid nodule cytopathology and histopathology. Thyroid. 2011;21(3):243–51.

    Article  PubMed  Google Scholar 

  5. de Matos PS, Ferreira AP, de Oliveira Facuri F, Assumpção LV, Metze K, Ward LS. Usefulness of HBME-1, cytokeratin 19 and galectin-3 immunostaining in the diagnosis of thyroid malignancy. Histopathology. 2005;47(4):391–401.

    Article  PubMed  Google Scholar 

  6. Saggiorato E, De Pompa R, Volante M, Cappia S, Arecco F, Dei Tos AP, et al. Characterization of thyroid ‘follicular neoplasms’ in fine- needle aspiration cytological specimens using a panel of immunohistochemical markers: a proposal for clinical application. Endocr Relat Cancer. 2005;12(2):305–17.

    Article  PubMed  CAS  Google Scholar 

  7. Faggiano A, Caillou B, Lacroix L, Talbot M, Filetti S, Bidart JM, et al. Functional characterization of human thyroid tissue with immunohistochemistry. Thyroid. 2007;17(3):203–11.

    Article  PubMed  CAS  Google Scholar 

  8. Freitas BC, Cerutti JM. Genetic markers differentiating follicular thyroid carcinoma from benign lesions. Mol Cell Endocrinol. 2010;321(1):77–85.

    Article  PubMed  CAS  Google Scholar 

  9. Eszlinger M, Paschke R. Molecular fine-needle aspiration biopsy diagnosis of thyroid nodules by tumor specific mutations and gene expression patterns. Mol Cell Endocrinol. 2010;322(1–2):29–37.

    Article  PubMed  CAS  Google Scholar 

  10. Ferraz C, Eszlinger M, Paschke R. Current state and future perspective of molecular diagnosis of fine-needle aspiration biopsy of thyroid nodules. J Clin Endocrinol Metab. 2011;96(7):2016–26.

    Article  PubMed  CAS  Google Scholar 

  11. Nikiforov YE, Ohori NP, Hodak SP, Carty SE, LeBeau SO, Ferris RL, et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab. 2011;96(11):3390–7.

    Article  PubMed  CAS  Google Scholar 

  12. Ezzat S, Zheng L, Kolenda J, Safarian A, Freeman JL, Asa SL. Prevalence of activating ras mutations in morphologically characterized thyroid nodules. Thyroid. 1996;6(5):409–16.

    Article  PubMed  CAS  Google Scholar 

  13. Vasko VV, Gaudart J, Allasia C, Savchenko V, Di Cristofaro J, Saji M, et al. Thyroid follicular adenomas may display features of follicular carcinoma and follicular variant of papillary carcinoma. Eur J Endocrinol. 2004;151(6):779–86.

    Article  PubMed  CAS  Google Scholar 

  14. Chudova D, Wilde JI, Wang ET, Wang H, Rabbee N, Egidio CM, et al. Molecular classification of thyroid nodules using high-dimensionality genomic data. J Clin Endocrinol Metab. 2010;95(12):5296–304.

    Article  PubMed  CAS  Google Scholar 

  15. Li H, Robinson KA, Anton B, Saldanha IJ, Ladenson PW. Cost-effectiveness of a novel molecular test for cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab. 2011;96(11):E1719–26.

    Article  PubMed  CAS  Google Scholar 

  16. He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, et al. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA. 2005;102(52):19075–80.

    Article  PubMed  CAS  Google Scholar 

  17. Pallante P, Visone R, Ferracin M, Ferraro A, Berlingieri MT, Troncone G, et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer. 2006;13(2):497–508.

    Article  PubMed  CAS  Google Scholar 

  18. Visone R, Pallante P, Vecchione A, Cirombella R, Ferracin M, Ferraro A, et al. Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene. 2007;26(54):7590–5.

    Article  PubMed  CAS  Google Scholar 

  19. Weber F, Teresi RE, Broelsch CE, Frilling A, Eng C. A limited set of human MicroRNA is deregulated in follicular thyroid carcinoma. J Clin Endocrinol Metab. 2006;91(9):3584–91.

    Article  PubMed  CAS  Google Scholar 

  20. Sheu SY, Grabellus F, Schwertheim S, Worm K, Broecker-Preuss M, Schmid KW. Differential miRNA expression profiles in variants of papillary thyroid carcinoma and encapsulated follicular thyroid tumours. Br J Cancer. 2010;102(2):376–82.

    Article  PubMed  CAS  Google Scholar 

  21. Mazeh H, Mizrahi I, Halle D, Ilyayev N, Stojadinovic A, Trink B, et al. Development of a microRNA-based molecular assay for the detection of papillary thyroid carcinoma in aspiration biopsy samples. Thyroid. 2011;21(2):111–8.

    Article  PubMed  CAS  Google Scholar 

  22. de la Chapelle A, Jazdzewski K. MicroRNAs in thyroid cancer. J Clin Endocrinol Metab. 2011;96(11):3326–36.

    Article  PubMed  Google Scholar 

  23. Starega-Roslan J, Krol J, Koscianska E, Kozlowski P, Szlachcic WJ, Sobczak K, et al. Structural basis of microRNA length variety. Nucleic Acids Res. 2011;39:257–68.

    Article  PubMed  CAS  Google Scholar 

  24. Jazdzewski K, Liyanarachchi S, Swierniak M, Pachucki J, Ringel MD, Jarzab B, et al. Polymorphic mature microRNAs from passenger strand of pre- miR-146a contribute to thyroid cancer. Proc Natl Acad Sci USA. 2009;106(5):1502–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Duick, D.S. (2013). Ultrasound-Guided FNA and Molecular Markers for Optimization of Thyroid Nodule Management. In: Baskin, Sr., H., Duick, D., Levine, R. (eds) Thyroid Ultrasound and Ultrasound-Guided FNA. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4785-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4785-6_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4784-9

  • Online ISBN: 978-1-4614-4785-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics