Skip to main content

Analysis of Conventional Industrial Processes

  • Chapter
  • First Online:
Conventional Three-Phase Fixed-Bed Technologies

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES,volume 7))

  • 794 Accesses

Abstract

When multiphase catalysis in fixed-bed reactors is discussed among the people involved in research and development in chemical and petroleum industries, some misapprehensions stemming from the time of the first fixed-bed reactors always arise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Aydin, F. Larachi, Trickle bed hydrodynamics and flow regime transition at elevated temperature for a Newtonian and a non-Newtonian liquid. Chem. Eng. Sci. 60, 6687–6701 (2005)

    Article  CAS  Google Scholar 

  2. R.A. Holub, M.P. Duduković, P.A. Ramachandran, A phenomenological model for pressure drop, liquid holdup, and flow regime transition in gas-liquid trickle flow. Chem. Eng. Sci. 47(9–11), 2343–2348 (1992)

    CAS  Google Scholar 

  3. B.A. Shannak, Frictional pressure drop of gas liquid two-phase flow in pipes. Nucl. Eng. Des. 238, 3277–3284 (2008)

    Article  CAS  Google Scholar 

  4. L. Datsevich, Oscillations in pores of a catalyst particle in exothermic liquid (liquid/gas) reactions. analysis of heat processes and their influence on chemical conversion, mass and heat transfer. Appl. Catal. A. Gen. 250, 125–141 (2003)

    Article  CAS  Google Scholar 

  5. L. Datsevich, Alternating motion of liquid in the catalyst pores at a liquid/liquid-gas reaction with the heat and gas production. Catal. Today 79–80, 341–348 (2003)

    Article  Google Scholar 

  6. B. Blümich, L.B. Datsevich, A. Jess, T. Oehmichen, X. Ren, S. Stapf, Chaos in catalyst pores: can we use it for process development? Chem. Eng. J. 134, 35–44 (2007)

    Article  Google Scholar 

  7. L. Datsevich, Some theoretical aspects of catalyst behaviour in a catalyst particle at liquid (liquid-gas) reactions with gas production: oscillation motion in the catalyst pores. Appl. Catal. A. Gen. 247(1), 101–111 (2003)

    Article  CAS  Google Scholar 

  8. L.B. Datsevich, Oscillation theory: Part 4 some dynamic peculiarities of motion in catalyst pores. Appl. Catal. A. Gen. 294, 22–33 (2005)

    Article  CAS  Google Scholar 

  9. T. Oehmichen, L. Datsevich, A. Jess, Influence of bubble evolution on the effective kinetics of heterogeneously catalyzed gas/liquid reactions. Part 2: Exothermic gas/liquid reactions. Chem. Eng. Technol. 6, 921–931 (2010)

    Article  Google Scholar 

  10. Movie 1—Oscillatory behaviour in the reaction of hydrogen peroxide decomposition, MPCP GmbH, Illustrative material to the oscillation theory (http://mpcp.de/en/research_and_development/oscillation_model/illustrative_material/)

  11. Movie 6—Oscillatory behaviour in exothermic reactions, MPCP GmbH, Illustrative material to the oscillation theory (http://mpcp.de/en/research_and_development/oscillation_model/illustrative_material/)

  12. Movie 3—Destruction of a catalyst particle in the reaction of hydrogen peroxide decomposition, MPCP GmbH, Illustrative material to the oscillation theory (http://mpcp.de/en/research_and_development/oscillation_model/illustrative_material/)

  13. M.H. Al-Dahhan, F. Larachi, M.P. Dudukovic, A. Laurent, High-pressure trickle-bed reactors: a review. Ind. Eng. Chem. Res. 36, 3292–3314 (1997)

    Article  CAS  Google Scholar 

  14. G.F. Hewitt, Gas-Liquid Flow, in Thermopedia, Begell House eResourse, (2010) http://www.thermopedia.com/video/toc/images/figs_chaptg/annular 10.1615/AtoZ.g.gas-liquid_flow

  15. C.N. Satterfield, Mass Transfer in Heterogeneous Catalysis (MIT Press, Cambridge, 1970)

    Google Scholar 

  16. A.V. Sapre, D.H. Anderson, F.J. Krambeck, Heater probe technique to measure flow maldistribution in large scale trickle bed reactors. Chem. Eng. Sci. 45, 2263–2268 (1990)

    Article  CAS  Google Scholar 

  17. V.M. Ramm, Absorption of Gases (in Russian) (Khimia, Moscow, 1976)

    Google Scholar 

  18. M.H. Al-Dahhan, Y. Wu, M.P. Dudukovic, Reproducible technique for packing laboratory scale trickle-bed reactors with a mixture of catalyst and fines. I&EC Res. 34, 741–747 (1995)

    CAS  Google Scholar 

  19. M. Herskowitz, Trickle-bed reactors: a review. AIChE J. 29(1), 1–18 (1983)

    Article  CAS  Google Scholar 

  20. P.A. Ramachandran, R.V. Chaudhari, Three-Phase Catalytic Reactors (Gordon and Breach Science Publishers, New York, NY, 1983)

    Google Scholar 

  21. F. Turek, R. Lange, Mass transfer in trickle-bed reactors at low Reynolds number. Chem. Eng. Sci. 36, 569–579 (1981)

    Article  CAS  Google Scholar 

  22. M.I. Nagrodskii, P.N. Ovchinnikov, L.B. Datsevich, Mass Transfer in a Three-Phase Hydrogenation Reactor, in Intensification of Mass and Heat Transfer in Chemical Apparatuses (in Russian), ed. by Y.V. Sharikov, E.I. Leskhina (GIPKh, Leningrad, 1985), pp. 9–15

    Google Scholar 

  23. E. Goossens, R. Donker, F. van den Brink, Reactor Runaway in Pyrolysis Gasoline, in Hydrotreatment and Hydrocracking of Oil Fractions: Proceedings of the 1st International Symposium/6th European Workshop, Oostende, Belgium, February, ed. by G.F. Froment, B.G. Delmon, P. Grande (Elsevier, 1997), pp. 255–264

    Google Scholar 

  24. G. Eigenberger, U. Wegerle, Chapter 12: Runaway in an Industrial Hydrogenation Reactor, in Chemical Reaction Engineering—Boston, ACS Symposium Series, vol. 196 (ACS, Washington, 1982), pp. 133–143

    Google Scholar 

  25. F. Stoessel, Experimental study of thermal hazards during the hydrogenation of aromatic nitro compounds. J. Loss Prev. Process. Ind. 6(2), 79–85 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid B. Datsevich .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Datsevich, L.B. (2012). Analysis of Conventional Industrial Processes. In: Conventional Three-Phase Fixed-Bed Technologies. SpringerBriefs in Applied Sciences and Technology, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4836-5_5

Download citation

Publish with us

Policies and ethics