Skip to main content

Molecular Pathology of Endocrine Cancer

  • Chapter
  • First Online:
Molecular Surgical Pathology

Abstract

Many recent advances have been made in elucidating the molecular pathology of endocrine tumors. Multiple approaches such as fluorescence in situ hybridization, polymerase chain reaction, comparative genomic hybridization, and loss of heterozygosity analyses have led to many new discoveries and allowed correlation of traditional morphological and immunohistochemical findings with new molecular discoveries. New findings have included BRAF mutations and their prognostic significance in thyroid cancers, multiple mutations including MEN2A and MEN2B in medullary thyroid carcinomas and pheochromocytomas and succinic dehydrogenase mutations in pheochromocytomas and paragangliomas. Gene expression profiling and genomic analyses have provided a great deal of new information that is currently being analyzed to determine their significance in personalized medicine

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Suggested Readings

Thyroid Tumors

  • Asa SL. The role of immunohistochemical markers in the diagnosis of follicular-patterned lesions of the thyroid. Endocr Pathol. 2005;16:295–309.

    Article  PubMed  Google Scholar 

  • Basolo F, Pisaturo F, Pollina LE, et al. N-ras mutation in poorly differentiated thyroid carcinomas: correlation with bone metastases and inverse correlation to thyroglobulin expression. Thyroid. 2000;10:19–23.

    Article  CAS  PubMed  Google Scholar 

  • Boikos SA, Stratakis CA. Molecular mechanisms of medullary thyroid carcinoma: current approaches in diagnosis and treatment. Histol Histopathol. 2008;23:109–16.

    CAS  PubMed  Google Scholar 

  • Borrello MG, Smith DP, Pasini B, et al. RET activation by germline MEN2A and MEN2B mutations. Oncogene. 1995;11:2419–27.

    CAS  PubMed  Google Scholar 

  • Chem KT, Rosai J. Follicular variant of thyroid papillary carcinoma: a clinicopathologic study of six cases. Am J Surg Pathol. 1977;1:123–30.

    Article  CAS  PubMed  Google Scholar 

  • Ciampi R, Knauf JA, Kerler R, et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest. 2005;115:94–101.

    CAS  PubMed  Google Scholar 

  • DeLellis RA, Lloyd RV, Heitz PU, et al., editors. Pathology and genetics of tumours of endocrine organs. Lyon: IARC Press; 2004a.

    Google Scholar 

  • Dobashi Y, Sugimura H, Sakamoto A, et al. Stepwise participation of p53 gene mutation during dedifferentiation of human thyroid carcinomas. Diagn Mol Pathol. 1994;3:9–14.

    Article  CAS  PubMed  Google Scholar 

  • Dwight T, Thoppe SR, Foukakis T, et al. Involvement of the PAX8/peroxisome proliferator-activated receptor gamma rearrangement in follicular thyroid tumors. J Clin Endocrinol Metab. 2003;88:4440–5.

    Article  CAS  PubMed  Google Scholar 

  • Elisei R, Ugolini C, Viola D, et al. BRAF(V600E) mutation and outcome of patients with papillary thyroid carcinoma: a 15-year median follow-up study. J Clin Endocrinol Metab. 2008;93:3943–9.

    Article  CAS  PubMed  Google Scholar 

  • Eng C, Clayton D, Schuffenecker I, et al. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA. 1996;276:1575–9.

    Article  CAS  PubMed  Google Scholar 

  • Eng C, Smith DP, Mulligan LM, et al. Point mutation within the tyrosine kinase domain of the RET proto-oncogene in multiple endocrine neoplasia type 2B and related sporadic tumours. Hum Mol Genet. 1994;3:237–47.

    Article  CAS  PubMed  Google Scholar 

  • Erickson LA, Jalal SM, Goellner JR, et al. Analysis of Hurthle cell neoplasms of the thyroid by interphase fluorescence in situ hybridization. Am J Surg Pathol. 2001a;25:911–7.

    Article  CAS  PubMed  Google Scholar 

  • Fagin JA, Matsuo K, Karmakar A, et al. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest. 1993;91:179–84.

    Article  CAS  PubMed  Google Scholar 

  • Giordano TJ, Kuick R, Thomas DG, et al. Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene. 2005;24:6646–56.

    Article  CAS  PubMed  Google Scholar 

  • Greco A, Mariani C, Miranda C, et al. The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol Cell Biol. 1995;15:6118–27.

    CAS  PubMed  Google Scholar 

  • Greco A, Pierotti MA, Bongarzone I, et al. TRK-T1 is a novel oncogene formed by the fusion of TPR and TRK genes in human papillary thyroid carcinomas. Oncogene. 1992;7:237–42.

    CAS  PubMed  Google Scholar 

  • Hara H, Fulton N, Yashiro T, et al. N-ras mutation: an independent prognostic factor for aggressiveness of papillary thyroid carcinoma. Surgery. 1994;116:1010–6.

    CAS  PubMed  Google Scholar 

  • Hay ID. Papillary thyroid carcinoma. Endocrinol Metab Clin North Am. 1990;19:545–76.

    CAS  PubMed  Google Scholar 

  • Jin L, Sebo TJ, Nakamura N, et al. BRAF mutation analysis in fine needle aspiration (FNA) cytology of the thyroid. Diagn Mol Pathol. 2006;15:136–43.

    Article  CAS  PubMed  Google Scholar 

  • Khan A, Nose V. Pathology of thyroid gland. In: Lloyd RV, editor. Endocrine pathology: differential diagnosis and molecular advances. 2nd ed. New York, NY: Springer; 2010. p. 181–235.

    Google Scholar 

  • Kimura ET, Nikiforova MN, Zhu Z, et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003;63:1454–7.

    CAS  PubMed  Google Scholar 

  • King M. BRAF mutation in thyroid cancer. Endocr Relat Cancer. 2005;12:245–62.

    Article  Google Scholar 

  • Kraus C, Liehr T, Hulsken J, et al. Localization of the human beta-catenin gene (CTNNB1) to 3p21: a region implicated in tumor development. Genomics. 1994;23:272–4.

    Article  CAS  PubMed  Google Scholar 

  • Lam AK, Montone KT, Nolan KA, et al. Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype. J Clin Invest. 1992;29:565–8.

    Google Scholar 

  • Nakamura N, Carney JA, Jin L, et al. RASSF1A and NORE1A methylation and BRAFV600E mutations in thyroid tumors. Lab Invest. 2005;85:1065–75.

    Article  CAS  PubMed  Google Scholar 

  • Nakata T, Kitamura Y, Shimizu K, et al. Fusion of a novel gene, ELKS, to RET due to translocation t(10;12)(q11;p13) in a papillary thyroid carcinoma. Genes Chromosomes Cancer. 1999;25:97–103.

    Article  CAS  PubMed  Google Scholar 

  • Namba H, Gutman RA, Matsuo K, et al. H-ras protooncogene mutations in human thyroid neoplasms. J Clin Endocrinol Metab. 1990;71:223–9.

    Article  CAS  PubMed  Google Scholar 

  • Nikiforov YE. RET/PTC rearrangement in thyroid tumors. Endocr Pathol. 2002;13:3–16.

    Article  CAS  PubMed  Google Scholar 

  • Nikiforov YE. Genetic alterations involved in the transition from well-differentiated to poorly differentiated and anaplastic thyroid carcinomas. Endocr Pathol. 2004;15:319–27.

    Article  CAS  PubMed  Google Scholar 

  • Nikiforov YE. Recent developments in the molecular biology of the thyroid. In: Lloyd RV, editor. Endocrine pathology: differential diagnosis and molecular advances. 2nd ed. New York, NY: Springer; 2010. p. 237–60.

    Google Scholar 

  • Nikiforov YE, Bove KE, Rowland JM, et al. RET/PTC1 and RET/PTC3 rearrangements are associated with different biological behavior of papillary thyroid carcinoma (abstract). Mod Pathol. 2000;13:73A.

    Google Scholar 

  • Nikiforov YE, Rowland JM, Bove KE, et al. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res. 1997;57:1690–4.

    CAS  PubMed  Google Scholar 

  • Nikiforova MN, Biddinger PW, Caudill CM, et al. PAX8–PPAR gamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol. 2002;26:1016–23.

    Article  PubMed  Google Scholar 

  • Nikiforova MN, Kimura ET, Gandhi M, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab. 2003a;88:5399–404.

    Article  CAS  PubMed  Google Scholar 

  • Nikiforova MN, Lynch RA, Biddinger PW, et al. RAS point mutations and PAX8–PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab. 2003b;88:2318–26.

    Article  CAS  PubMed  Google Scholar 

  • Nikiforova MN, Nikiforov YE. Molecular genetics of thyroid cancer: implications for diagnosis, treatment and prognosis. Expert Rev Mol Diagn. 2008;8:83–95.

    Article  CAS  PubMed  Google Scholar 

  • Papotti M, Rodriguez J, De Pompa R, et al. Galectin-3 and HBME-1 expression in well-differentiated thyroid tumors with follicular architecture of uncertain malignant potential. Mod Pathol. 2005;18:541–6.

    Article  CAS  PubMed  Google Scholar 

  • Passler C, Prager G, Scheuba C, et al. Follicular variant of papillary thyroid carcinoma: a long-term follow-up. Arch Surg. 2003;138:1362–6.

    Article  PubMed  Google Scholar 

  • Raue F, Frank-Raue K. Multiple endocrine neoplasia type 2: 2007 update. Horm Res. 2007a;68:101–4.

    Article  PubMed  Google Scholar 

  • Rosai J, Carangui ML, DeLellis RA. Atlas of tumor pathology: tumors of the thyroid gland. Washington, DC: Armed Forces Institute of Pathology; 1992.

    Google Scholar 

  • Rosai J. Handling of thyroid follicular patterned lesions. Endocr Pathol. 2005;16:279–83.

    Article  PubMed  Google Scholar 

  • Saad AG, Kumar S, Ron E, et al. Proliferative activity of human thyroid cells in various age groups and its correlation with the risk of thyroid cancer after radiation exposure. J Clin Endocrinol Metab. 2006;91:2672–7.

    Article  CAS  PubMed  Google Scholar 

  • Santoro M, Dathan NA, Berlingieri MT, et al. Molecular characterization of RET/PTC3; a novel rearrangement version of the RET protooncogene in a human thyroid papillary carcinoma. Oncogene. 1994;9:509–16.

    CAS  PubMed  Google Scholar 

  • Soares P, Fonseca E, Wynford-Thomas D, et al. Sporadic ret-rearranged papillary carcinoma of the thyroid: a subset of slow growing, less aggressive thyroid neoplasms? J Pathol. 1998;185:71–8.

    Article  CAS  PubMed  Google Scholar 

  • Sobrinho-Simoes M, Nesland JM, et al. Columnar-cell carcinoma. Another variant of poorly differentiated carcinoma f the thyroid. Am J Clin Pathol. 1988;89:264–7.

    CAS  PubMed  Google Scholar 

  • Suchy B, Waldmann V, Klugbauer S, et al. Absence of RAS and p53 mutations in thyroid carcinomas of children after Chernobyl in contrast to adult thyroid tumours. Br J Cancer. 1998;77:952–5.

    Article  CAS  PubMed  Google Scholar 

  • Van Hengel J, Nollet F, Berx G, et al. Assignment of the human beta-catenin gene (CTNNB1) to 3p22–>p21.3 by fluorescence in situ hybridization. Cytogenet Cell Genet. 1995;70:68–70.

    Article  PubMed  Google Scholar 

  • Volante M, Collini P, Nikiforov YE, et al. Poorly differentiated thyroid carcinoma: the Turin proposal for the use of uniform diagnostic criteria and an algorithmic diagnostic approach. Am J Surg Pathol. 2007;31:1256–64.

    Article  PubMed  Google Scholar 

  • Wells Jr SA, Skinner MA. Prophylactic thyroidectomy, based on direct genetic testing, in patients at risk for the multiple endocrine neoplasia type 2 syndromes. Exp Clin Endocrinol Diabetes. 1998;106:29–34.

    Article  CAS  PubMed  Google Scholar 

  • Wenig BM, Thompson LD, Adair CF, et al. Thyroid papillary carcinoma of columnar cell type: a clinicopathologic study of 16 cases. Cancer. 1998;82:740–53.

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Ciampi R, Nikiforova MN, et al. Prevalence of Rct/Ptc rearrangements in thyroid papillary carcinomas: effects of the detection methods and genetic heterogeneity. J Clin Endocrinol Metab. 2006;91:3603–10.

    Article  CAS  PubMed  Google Scholar 

Parathyroid Tumors

  • Arnold A, Brown MF, Urena P, et al. Monoclonality of parathyroid tumors in chronic renal failure and in primary parathyroid hyperplasia. J Clin Invest. 1995;95:2047–53.

    Article  CAS  PubMed  Google Scholar 

  • Arnold A, Kim HG, Gaz RD, et al. Molecular cloning and chromosomal mapping of DNA rearranged with the parathyroid hormone gene in a parathyroid adenoma. J Clin Invest. 1989;83:2034–40.

    Article  CAS  PubMed  Google Scholar 

  • Arnold A, Shattuck TM, Mallya SM, et al. Molecular pathogenesis of primary hyperparathyroidism. J Bone Miner Res. 2002;17:N30–6.

    Article  CAS  PubMed  Google Scholar 

  • DeLellis RA, Lloyd RV, Heitz PU, et al. Tumours of endocrine organs. In: Kleihues P, Sobin LH, editors. World Health Organization classification of tumours. Lyon: IARC Press; 2004b.

    Google Scholar 

  • DeLellis RA. Parathyroid carcinoma: an overview. Adv Anat Pathol. 2005;12:53–61.

    Article  PubMed  Google Scholar 

  • Erickson LA, Jin L, Papotti M, et al. Oxyphil parathyroid carcinomas. A clinicopathologic and immunocytochemical study of 10 cases. Am J Surg Pathol. 2002;26:344–9.

    Article  PubMed  Google Scholar 

  • Harach HR. The parathyroid. In: Lloyd RV, editor. Endocrine pathology differential diagnosis and ­molecular advances. New York, NY: Springer; 2010. p. 131–56.

    Google Scholar 

  • Nose V, Fletcher JA. Fluorescence in situ hybridization (FISH) for Cyclin D1 in parathyroid hyperplasia, adenoma, and carcinoma. Personal communication; 2001.

    Google Scholar 

  • Nose V, Khan A. Recent development in the molecular biology of the parathyroid. In: Lloyd RV, editor. Endocrine pathology differential diagnosis and ­molecular advances. New York, NY: Springer; 2010. p. 131–56.

    Google Scholar 

  • Shane E. Parathyroid carcinoma. J Clin Endocrinol Metab. 2001;86:485–93.

    Article  CAS  PubMed  Google Scholar 

  • Shattuck TM, Valimaki S, Obara T, et al. Somatic and germ-line mutations of the HRPT2 gene in sporadic parathyroid carcinoma. N Engl J Med. 2003;349:1722–9.

    Article  CAS  PubMed  Google Scholar 

  • Thakker RV, Bouloux P, Wooding C, et al. Association of parathyroid tumors in multiple endocrine neoplasia type 1 with loss of alleles on chromosome 11. N Engl J Med. 1989;321:218–24.

    Article  CAS  PubMed  Google Scholar 

  • Wynne AG, van Heerden J, Carney JA, et al. Parathyroid carcinoma: clinical and pathologic features in 43 patients. Medicine. 1992;71:197–205.

    Article  CAS  PubMed  Google Scholar 

Adrenal Cortical Tumors

  • Barlaskar FM, Hammer GD. The molecular genetics of adrenocortical carcinoma. Rev Endocr Metab Disord. 2007;8:343–8.

    Article  PubMed  Google Scholar 

  • DeLellis RA, Lloyd RV, Heitz PU, et al. Tumours of endocrine organs. In: Kleihues P, Sobin LH, editors. World Health Organization classification of tumours. Lyon: IARC Press; 2004c.

    Google Scholar 

  • Goldblum J, Shannon R, Kaldjian EP, et al. Immunohistochemical assessment of proliferative activity in adrenal cortical neoplasms. Mod Pathol. 1993;6:663–8.

    CAS  PubMed  Google Scholar 

  • Haak HR, Cornelisse CJ, Hermans J, et al. Nuclear DNA content and morphological characteristics in the prognosis of adrenocortical carcinoma. Br J Cancer. 1993;68:151–5.

    Article  CAS  PubMed  Google Scholar 

  • Lack EE. Pathology of the adrenal glands. New York: Churchill Livingstone; 1990.

    Google Scholar 

  • Sasano H, Nakamura Y, Moriya T, et al. Adrenal cortex. In: Lloyd RV, editor. Endocrine pathology. Differential diagnosis and molecular advances. 2nd ed. New York, NY: Springer; 2010. p. 261–79.

    Google Scholar 

  • Sasano H, Suzuki T, Shizawa S, et al. Transforming growth factor alpha, epidermal growth factor, and epidermal growth factor receptor expression in normal and diseased human adrenal cortex by immunohistochemistry and in situ hybridization. Mod Pathol. 1994;7:741–6.

    CAS  PubMed  Google Scholar 

  • Slooten HV, Schaberg A, Smeenk D, et al. Morphologic characteristics of benign and malignant adrenocortical tumors. Cancer. 1985;55:766–73.

    Article  PubMed  Google Scholar 

  • Soon PS, McDonald KL, Robinson BG, et al. Molecular markers and the pathogenesis of adrenocortical cancer. Oncologist. 2008;13:548–61.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Sasano H, Nishikawa T, et al. Discerning malignancy in human adrenocortical neoplasms: utility of DNA flow cytometry and immunohistochemistry. Mod Pathol. 1992;5:224–31.

    CAS  PubMed  Google Scholar 

  • Weiss LM, Medeiros LJ, Vickery AL. Pathologic features of prognostic significance in adrenocortical carcinoma. Am J Surg Pathol. 1989;13:202–6.

    Article  CAS  PubMed  Google Scholar 

Adrenal Medullary Tumors and Paragangliomas

  • Baysal BE. Hereditary paraganglioma targets diverse paraganglia. J Med Genet. 2002;39:617–22.

    Article  CAS  PubMed  Google Scholar 

  • Baysal BE. Genomic imprinting and environment in hereditary paraganglioma. Am J Med Genet C Semin Med Genet. 2004;129C:85–90.

    Article  PubMed  Google Scholar 

  • Baysal BE, Ferrell RE, Willett-Brozick JE, et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science. 2000;287:848–51.

    Article  CAS  PubMed  Google Scholar 

  • Cascon A, Landa I, Lopez-Jimenez E, et al. Molecular characterization of a common SDHB deletion in paraganglioma patients. J Med Genet. 2008;45:233–8.

    Article  CAS  PubMed  Google Scholar 

  • DeLellis RA, Lloyd RV, Heitz PU, Eng C. Tumours of endocrine organs. In: Kleihues P, Sobin LH, editors. World Health Organization classification of tumours. Lyon: IARC Press; 2004d.

    Google Scholar 

  • Erickson D, Kudva YC, Ebersold MJ, et al. Benign paragangliomas: clinical presentation and treatment outcomes in 236 patients. J Clin Endocrinol Metab. 2001b;86:5210–6.

    Article  CAS  PubMed  Google Scholar 

  • Gimencz-Roqueplo AP, Favier J, Rustin P, et al. Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer Res. 2003;63:5615–21.

    Google Scholar 

  • Hao HX, Khalimonchuk O, Schraders M, et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science. 2009;28(325):1139–42.

    Article  Google Scholar 

  • Havekes B, Corssmit EP, Jansen JC, et al. Malignant paragangliomas associated with mutations in the succinate dehydrogenase D gene. J Clin Endocrinol Metab. 2007;92:1245–8.

    Article  CAS  PubMed  Google Scholar 

  • King EE, Dahia PLM. Molecular biology of pheochromocytoma and paragangliomas. In: Lloyd RV, editor. Endocrine pathology: differential diagnosis and molecular advances. 2nd ed. New York, NY: Springer; 2010. p. 297–305.

    Google Scholar 

  • Lack EE. Tumors of the adrenal gland and extra-adrenal paraganglia. In: Rosai J, editor. Atlas of tumor pathology. Washington, DC: Armed Forces Institute of Pathology; 1997.

    Google Scholar 

  • Latif F, Tory K, Gnarra J, et al. Identification of the von Hippel–Lindau disease tumor suppressor gene. Science. 1993;260:1317–20.

    Article  CAS  PubMed  Google Scholar 

  • Linnoila RI, Keiser HR, Steinberg SM, et al. Histopathology of benign versus malignant sympathoadrenal paragangliomas: clinicopathologic study of 120 cases, including unusual histologic features. Hum Pathol. 1990;21:1168–80.

    Article  CAS  PubMed  Google Scholar 

  • Lloyd RV, Blaivas M, Wilson BS. Distribution of chromogranin and S-100 protein in normal and abnormal adrenal medullary tissues. Arch Pathol Lab Med. 1985;109:633–45.

    CAS  PubMed  Google Scholar 

  • Maris JM, Weiss MJ, Mosse Y, et al. Evidence for a hereditary neuroblastoma predisposition locus at chromosome 16p12–13. Cancer Res. 2002;62:6651–8.

    CAS  PubMed  Google Scholar 

  • McNicol AM. Adrenal medulla. In: Lloyd RV, editor. Endocrine pathology: differential diagnosis and molecular advances. 2nd ed. New York, NY: Springer; 2010. p. 281–95.

    Google Scholar 

  • Melicow MM. One hundred cases of pheochromocytoma (107 tumors) at the Columbia–Presbyterian Medical Center, 1926–1976: a clinicopathological analysis. Cancer. 1977;40:1987–2004.

    Article  CAS  PubMed  Google Scholar 

  • Niemann S, Muller U. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet. 2000;26:268–70.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson O, Tisell LE, Jansson S, et al. Adrenal and extra-adrenal pheochromocytomas in a family with germline RET V804L mutation. JAMA. 1999;281:1587–8.

    Article  CAS  PubMed  Google Scholar 

  • Quayle FJ, Fialkowski EA, Benveniste R, et al. Pheochromocytoma penetrance varies by RET mutation in MEN 2A. Surgery. 2007;142:800–5, discussion 805.

    Google Scholar 

  • Raue F, Frank-Raue K. Multiple endocrine neoplasia type 2: 2007 update. Horm Res. 2007b;68:101–4.

    Article  PubMed  Google Scholar 

  • Tischler AS. Molecular and cellular biology of pheochromocytomas and extra-adrenal paragangliomas. Endocr Pathol. 2006;17:321–8.

    Article  CAS  PubMed  Google Scholar 

  • Tischler AS. Pheochromocytoma and extra-adrenal paraganglioma: updates. Arch Pathol Lab Med. 2008;132:1272–84.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lloyd, R.V., Jin, L., Buehler, D., Hardin, H., Shan, W. (2013). Molecular Pathology of Endocrine Cancer. In: Cheng, L., Eble, J. (eds) Molecular Surgical Pathology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4900-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4900-3_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4899-0

  • Online ISBN: 978-1-4614-4900-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics