Skip to main content

Advances and Challenges in Studying Cave Microbial Diversity

  • Chapter
  • First Online:
Cave Microbiomes: A Novel Resource for Drug Discovery

Part of the book series: SpringerBriefs in Microbiology ((volume 1))

Abstract

In the last decade, we have seen significant changes in how we study composition and diversity of microbial communities in various environmental samples. Advances in culture-independent molecular phylogenetic techniques have made studies on microbial communities in diverse environments more attractive and feasible (Muyzer et al. 1993; Pace 1997; Torsvik et al. 1998; Hill et al. 2000; Giraffa and Neviani 2001; Kirk et al. 2004; Barton et al. 2004; Leckie 2005; Barton et al. 2006; Malik et al. 2008; Maukonen and Saarela 2009; Hirsch et al. 2010; and Northup et al. 2011). However, using modern molecular techniques alone to study both known and unknown microbial populations in an environment has its own limitations. Several studies suggest that using a combination of both culture-independent and culture-dependent methods gives a more realistic representation of the indigenous microbial diversity (Hill et al. 2000; Gurtner et al. 2000). For example in a 2000 study Gurtner and colleagues reported using of both classical cultivation techniques and molecular approaches to compare bacterial diversity on two medieval biodeteriorated wall paintings from two churches in Austria and Germany. They obtained 70 microbial sequences of 16S rDNA sequence belonging to several genera of bacteria. The molecular approach evaluated the bacterial community by Denaturing gradient gel electrophoresis (DGGE, one of the genetic fingerprinting tools), construction of 16S rDNA clone libraries, and sequence analysis of those libraries. In the same study, isolation of heterotrophic bacteria from one of the samples using Tripticase Soy (TSB) agar and TSB agar supplemented with 10 % sodium chloride (with 3 weeks of incubation at 28 °C) was also done in parallel to the above-mentioned molecular approach (Heyrman et al. 1999). The isolated strains were then characterized using fatty acid methyl ester (FAME) analysis and major FAME clusters found to belong to the genus Bacillus. Results from these two approaches failed to cross-detect similar microbial flora. In the molecular approach, 70 members of Actinobacteria and Proteobacteria including Actinobiospora, Amycolata, Halomonas, Deleya, Rhizobiam, and Salmonella were identified, while it is important to note that there was no Bacillus detected by the molecular approach. Their findings demonstrate that the combined approach of molecular and culturing techniques may provide a better understanding of the community being evaluated. There are other review and original research works that supported using a combined approach to study microbial diversity and function in a community (Dunbar et al 1999; Torsvik and Øvreås 2002; Crecchio et al 2004). Since no individual approach is completely effective to evaluate the microbial biodiversity of a given environment, this integrated approach may provide a closer representation of the microbial community. In its own context each of these approaches should be used and evaluated accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  • Banks ED, Taylor NM, Gulley J et al (2010) Bacterial calcium carbonate precipitation in cave environments: a function of calcium homeostasis. Geomicrobiol J 27(5):444–454

    Article  CAS  Google Scholar 

  • Barton HA (2006) Introduction to cave microbiology: a review for the non-specialist. J Cave Karst Stud 68:43–54

    Google Scholar 

  • Barton HA, Jurado V (2007) What’s up down there? Microbial diversity in caves. Microbe 2:132–138

    Google Scholar 

  • Barton HA, Luiszer F (2005) Microbial metabolic structure in a sulfidic cave hot spring: potential mechanisms of biospeleogenesis. J Cave Karst Stud 67(1):28–38

    CAS  Google Scholar 

  • Barton HA, Northup DE (2007) Geomicrobiology in cave environments: past, current and future prospectives. J Cave Karst Stud 69:163–178

    Google Scholar 

  • Barton HA, Spear JR, Pace NR (2001) Microbial life in the underworld: biogenicity in secondary mineral formations. Geomicrobiol J 18(3):359–368

    Article  CAS  Google Scholar 

  • Barton HA, Taylor MR, Pace NR (2004) Molecular phylogenetic analysis of a bacterial community in an oligotrophic cave environment. Geomicrobiol J 21:11–20

    Article  CAS  Google Scholar 

  • Barton HA, Taylor NM, Lubbers BR et al (2006) DNA extraction from low-biomass carbonate rock: an improved method with reduced contamination and the low-biomass contaminant database. J Microbiol Methods 66:21–31

    Article  PubMed  CAS  Google Scholar 

  • Barton HA, Taylor NM, Kreate M et al (2007) The impact of host rock geochemistry on bacterial community structure in oligotrophic cave environments. Int J Speleol 36:93–104

    Google Scholar 

  • Bent SJ, Forney LJ (2008) The tragedy of the uncommon: understanding limitations in the analysis of microbial diversity. ISME J 2:689–695

    Article  PubMed  CAS  Google Scholar 

  • Bonacci O, Pipan T, Culver DC (2009) A framework for karst ecohydrology. Environ Geol 56:891–900

    Article  Google Scholar 

  • Borda C, Borda D (2006) Airborne microorganisms in show caves from Romania. Biospeleology and physical speleology. Trav Inst Spéol “Émile Racovitza” 43–44:65–74

    Google Scholar 

  • Borda D, Borda C, Tămaş T (2004) Bats, climate, and air microorganisms in a Romanian cave. Mammalia 68(4):337–343

    Article  Google Scholar 

  • Boston PJ, Spilde MN, Northup DE et al (2001) Cave biosignature suites: microbes, minerals and Mars. Astrobiol J 1(1):25–55

    Article  CAS  Google Scholar 

  • Brown PB, Wolfe GV (2006) Protist genetic diversity in the acidic hydrothermal environments of Lassen Volcanic National Park, USA. J Eukaryot Microbiol 53:420–431

    Article  PubMed  CAS  Google Scholar 

  • Cañaveras JC, Sanchez-Moral S, Soler V, Saiz-Jimenez C (2001) Microorganisms and microbially induced fabrics in cave walls. Geomicrobiol J 18:223–240

    Article  Google Scholar 

  • Cardoso P (2012) Diversity and community assembly patterns of epigean vs. troglobiont spiders in the Iberian Peninsula. Int J Speleol 41(1):83–94

    Article  Google Scholar 

  • Caumartin V (1963) Review of the microbiology of underground environments. Bull Natl Speleol Soc 25(1):1–14 (ISSN 0146-9517)

    Google Scholar 

  • Cheeptham N (2011) Drugs from the dark. BC caver: The newsletter of the British Columbia Speleological Federation. Winter 2010–2011, 25(1): 25–27

    Google Scholar 

  • Chen Y, Wu L, Boden R et al (2009) Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in movile cave. ISME J 3:1093–1104

    Article  PubMed  CAS  Google Scholar 

  • Contos AK, James JM, Heywood B et al (2001) Morphoanalysis of bacterially precipitated subaqueous calcium carbonate from weebubbie cave, Australia. Geomicrobiol J 18(3):331–343

    Article  CAS  Google Scholar 

  • Crecchio C, Gelsomino A, Ambrosoli R et al (2004) Functional and molecular responses of soil microbial communities under differing soil management practices. Soil Biol Biochem 36(11):1873–1883

    Article  CAS  Google Scholar 

  • Dahllöf I (2002) Molecular community analysis of microbial diversity. Curr Opin Biotechnol 13(3):213–217

    Article  PubMed  CAS  Google Scholar 

  • de los Ríos A, Bustillo MA, Ascaso C (2011) Bioconstructions in ochreous speleothems from lava tubes on Terceira Island (Azores). Sediment Geol 236(1–2):117–128

    Article  Google Scholar 

  • Dickson G (1979) The importance of cave mud sediments in food preferences, growth and mortality of the troglobitic invertebrates. Natl Speleol Soc Bulletin 37:89–93

    Google Scholar 

  • Dunbar J, Takala S, Barns SM et al (1999) Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl Environ Microbiol 65(4):1662–1669

    PubMed  CAS  Google Scholar 

  • Duran M, Haznedaroğlu BZ, Zitomer DH (2006) Microbial source tracking using host specific FAME profiles of fecal coliforms. Water Res 40(1):67–74

    Article  PubMed  CAS  Google Scholar 

  • Engel AS (2010) Microbial diversity of cave ecosystem. In: Barton LL et al (eds) Geomicrobiology: molecular and environmental perspective. Springer Science and Business Media B.V, The Netherlands, pp 219–238

    Chapter  Google Scholar 

  • Engel AS, Porter ML, Kinkle BK (2001) Ecological assessment and geological significance of microbial communities from cesspool cave, Virginia. Geomicrobiol J 18(3):259–274

    Article  CAS  Google Scholar 

  • Frostegård Å, Tunlid A, Bååth E (2011) Use and misuse of PLFA measurements in soils. Soil Biol Biochem 43(8):1621–1625

    Article  CAS  Google Scholar 

  • Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345(6270):60–63

    Article  PubMed  CAS  Google Scholar 

  • Giraffa G, Neviani E (2001) DNA-based, culture-independent strategies for evaluating microbial communities in food-associated ecosystems. Int J Food Micro 67(1–2):19–34

    Article  CAS  Google Scholar 

  • Gonzalez I, Laiz L, Hermosin B et al (1999) Bacteria isolated from rock art paintings: the case of Atlanterra shelter (south Spain). J Microbiol Methods 36(1–2):123–127

    Article  CAS  Google Scholar 

  • Gonzalez JM, Portillo MC, Saiz-Jimenez C (2006) Metabolically active crenarchaeota in altamira cave. Naturwissenschaften 93:42–45

    Article  PubMed  CAS  Google Scholar 

  • Groth I, Vettermann R, Schuetze B et al (1999) Actinomycetes in karstic caves of northern Spain (altamira and tito bustillo). J Microbiol Methods 36:115–122

    Article  PubMed  CAS  Google Scholar 

  • Groth I, Schumann P, Laiz L et al (2001) Geomicrobiological study of the grotta dei cervi, Porto Badisco, Italy. Geomicrobiol J 18(3):241–258

    Article  CAS  Google Scholar 

  • Gurtner C, Heyrman J, Piñar G et al (2000) Comparative analyses of the bacterial diversity on two different biodeteriorated wall paintings by DGGE and 16S rDNA sequence analysis. Int Biodeter Biodegr 46(3):229–239

    Article  CAS  Google Scholar 

  • Handelsman J (2004) Soils: metagenomics approach. In: Bull TA (ed) Microbial diversity and bioprospecting. ASM, Washington DC, pp 109–119

    Google Scholar 

  • Henneberger RM, Walter MR, Anitori RP (2006) Extraction of DNA from acidic, hydrothermally modified volcanic soils. Environ Chem 3:100–104

    Article  CAS  Google Scholar 

  • Herrera A, Cockell CS (2007) Exploring microbial diversity in volcanic environments: a review of methods in DNA extraction. J Microbiol Methods 70(1):1–12

    Article  PubMed  CAS  Google Scholar 

  • Heyrman J, Mergaert J, Denys R (1999) The use of fatty acid methyl ester analysis (FAME) for the identification of heterotrophic bacteria present on three mural paintings showing severe damage by microorganisms. FEMS Microbiol Lett 181(1):55–62

    Article  PubMed  CAS  Google Scholar 

  • Hill G, Mitkowski NA, Aldrich-Wolfe L et al (2000) Methods for assessing the composition and diversity of soil microbial communities. Appl Soil Ecol 15(1):25–36

    Article  Google Scholar 

  • Hirsch PR, Mauchline TH, Clark IM (2010) Culture-independent molecular techniques for soil microbial ecology. Soil Biology and Biochemistry 42(6):878–887

    Article  CAS  Google Scholar 

  • Höeg OA (1946) Cyanophyceae and bacteria in calcareous sediments in the interior of limestone caves in Nord-Rana. Norway Nytt Mag Naturvidensk 85:99–104

    Google Scholar 

  • Hose LD, Palmer AN, Palmer MV et al (2000) Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment. Chem Geol 169(3–4):399–423

    Article  CAS  Google Scholar 

  • Howarth FG (1983) Ecology of cave arthropods. Annu Rev Entomol 28(1):365–389

    Article  Google Scholar 

  • Howarth FG (2004) Hawaiian islands, biospeleology. In: Gunn J (ed) Encyclopedia of cave and karst science. Fitzroy Dearborn, New York, pp 417–419

    Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180(18):4765–4774

    PubMed  CAS  Google Scholar 

  • Jones B (2010) Microbes in caves: agents of calcite corrosion and precipitation. Tufas and speleothems: unravelling the microbial and physical controls. University of Alberta, p 9–10.

    Google Scholar 

  • Jurado V, Groth I, Gonzalez JM et al (2005) Agromyces subbeticus sp. nov., isolated from a cave in southern Spain. Int J Syst Evol Microbiol 55:1897–1901

    Article  PubMed  CAS  Google Scholar 

  • Jurado V, Gonzalez JM, Laiz L et al (2006) Aurantimonas altamirensis sp. nov., a member of the order Rhizobiales isolated from altamira cave. Int J Syst Evol Microbiol 56:2583–2585

    Article  PubMed  CAS  Google Scholar 

  • Kirk JL, Beaudette LA, Hart M et al (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58(2):169–188

    Article  PubMed  CAS  Google Scholar 

  • Koch AL (2001) Oligotrophs versus copiotrophs. Bioessays 23:657–661

    Article  PubMed  CAS  Google Scholar 

  • Kuhlman KR, Fusco WG, La Duc MT et al (2006) Diversity of microorganisms within rock varnish in the Whipple Mountains, California. Appl Environ Microbiol 72(2):1708–1715

    Article  PubMed  CAS  Google Scholar 

  • Kuhlman KR, Venkat P, La Duc MT et al (2008) Evidence of a microbial community associated with rock varnish at Yungay, Atacama Desert, Chile. J Geophy Res 113(G04022):14

    Google Scholar 

  • Laiz L, Groth I, Gonzalez I et al (1999) Microbiological study of the dripping waters in altamira cave (Santillana del mar, Spain). J Microbiol Methods 36:129–138

    Article  PubMed  CAS  Google Scholar 

  • Lavoie KH, Northup DE, Barton HA (2010) Microbe–mineral interactions. In: Sudhir KJ, Khan AA, Rai MA (eds) Cave microbiology. Science Publishers, Enfield, NH, pp 1–45

    Google Scholar 

  • Leckie SE (2005) Methods of microbial community profiling and their application to forest soils. For Ecol Manage 220(1–3):88–106

    Article  Google Scholar 

  • Lerch TZ, Dignac M-F, Nunan N et al (2009) Dynamics of soil microbial populations involved in 2,4-D biodegradation revealed by FAME-based stable isotope probing. Soil Biology and Biochemistry 41(1):77–85

    Article  CAS  Google Scholar 

  • Léveillé RJ, Datta S (2009) Lava tubes and basaltic caves as astrobiological targets on Earth and Mars: a review. Planet Space Sci. doi:10.1016/j.pss.2009.06.004

  • Léveillé RJ, Longstaffe FJ, Fyfe WP (2002) Kerolite in carbon-rich speleothems and microbial deposits from basaltic caves, Kuai, Hawaii. Clays Clay Miner 50(4):514–524

    Article  Google Scholar 

  • Lysnes K, Thorseth IH, Steinsbu BO, Øvreås L, Torsvik T, Pedersen RB (2004) Microbial community diversity in seafloor basalt from the Arctic spreading ridges. FEMS Microbiol Ecol 50(3):213–230

    Article  PubMed  CAS  Google Scholar 

  • Macalady J, Banfield JF (2003) Molecular geomicrobiology: genes and geochemical cycling. Earth Planet Sci Lett 212(1–2):1–17

    Article  CAS  Google Scholar 

  • Malik S, Beer M, Megharaj M et al (2008) The use of molecular techniques to characterize the microbial communities in contaminated soil and water. Environ Int 34(2):265–276

    Article  PubMed  CAS  Google Scholar 

  • Maukonen J, Saarela M (2009) Microbial communities in industrial environment. Curr Opin Microbiol 12(3):238–243

    Article  PubMed  CAS  Google Scholar 

  • Maukonen J, Simões C, Saarela M (2012) The currently used commercial DNA-extraction methods give different results of clostridial and actinobacterial populations derived from human fecal samples. FEMS Microbiol Ecol 79(3):697–708

    Article  PubMed  CAS  Google Scholar 

  • Melim LA, Shinglman KM, Boston PJ et al (2001) Evidence for microbial involvement in pool finger precipitation, hidden cave, New Mexico. Geomicrobiol J 18(3):311–329

    Article  CAS  Google Scholar 

  • Moser DP, Boston PJ, Martin HW (2003) Caves and mines microbiological sampling. Encyclopedia of Environmental Microbiology. Wiley, New York

    Google Scholar 

  • Murray AE, Hollibaugh JT, Orrego C (1996) Phylogenetic compositions of bacterioplankton from two California estuaries compared by denaturing gradient gel electrophoresis of 16S rDNA fragments. Appl Environ Microbiol 62(7):2676–2680

    PubMed  CAS  Google Scholar 

  • Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73(1):127–141

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700

    PubMed  CAS  Google Scholar 

  • Nakaew N, Pathom-aree W, Lumyong S (2009a) First record of the isolation. Identification and biological activity of a new strain of spirillospora albida from thai cave Soil. Actinomycetologica 23(1):1–7

    Article  Google Scholar 

  • Nakaew N, Pathom-aree W, Lumyong S (2009b) Generic diversity of rare actinomycetes from thai cave soils and their possible use as new bioactive compounds. Actinomycetologica 23(2):21–26

    Article  CAS  Google Scholar 

  • Northup DE, Lavoie KH (2001) Geomicrobiology of caves: a review. Geomicrobiol J 18(3):199–222

    Article  CAS  Google Scholar 

  • Northup DE, Welbourn WC (1997) Life in the twilight zone: lava tube ecology. New Mexico Bur Mines Miner Resour Bull 156:69–82

    Google Scholar 

  • Northup DE, Barnes SM, Yu LE et al (2003) Diverse microbial communities inhabiting ferromanganese deposits in lechuguilla and spider caves. Environ Microbiol 5:1071–1086

    Article  PubMed  Google Scholar 

  • Northup DE, Connolly CA, Trent A et al (2004) The Nature of bacterial communities in four windows cave, El Malpais National Monument, New Mexico, USA. AMCS Bull 19:119–125

    Google Scholar 

  • Northup DE, Melim LA, Spilde MN et al (2011) Lava cave microbial communities within mats and secondary mineral deposits: implications for life detection on other planets. Astrobiology 11(7):601–618

    Article  PubMed  CAS  Google Scholar 

  • Onac BP, Forti P (2011) Minerogenetic mechanisms occurring in the cave environment: an overview. Int J Speleol 40(2):79–98

    Article  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Article  PubMed  CAS  Google Scholar 

  • Palmer AN (2007) Cave geology and speleogenesis over the past 65 years: Roles of the national speleological society in advancing the science. J Cave Karst Stud 69(1):3–12

    Google Scholar 

  • Pankratov TA, Serkebaeva YM, Kulichevskaya IS et al (2008) Substrate-induced growth and isolation of Acidobacteria from acidic sphagnum peat. ISME J 2:551–560

    Article  PubMed  CAS  Google Scholar 

  • Pedersen K (2000) Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol Lett 185(1):9–16

    Article  PubMed  CAS  Google Scholar 

  • Priscu JC, Adams EE, Lyons WB et al (1999) Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286(5447):2141–2144

    Article  PubMed  CAS  Google Scholar 

  • Purdy KJ, Embley TM, Takii S et al (1996) Rapid extraction of DNA and rRNA from sediments by a novel hydroxyapatite spin-column method. Appl Environ Microbiol 62:3905–3907

    Google Scholar 

  • Rastogi G, Sani RK (2011) Molecular techniques to assess microbial community structure, function, and dynamics in the environment. In: Ahmad I et al (eds) Microbes and microbial technology; agricultural and environmental applications. Springer Science  +  Business Media, LLC., New York, pp 29–57, DOI 10.1007/978-1-4419-7391-5_2

    Chapter  Google Scholar 

  • Rheims H, Rainey FA, Stackebrandt E (1996) A molecular approach to search for diversity among bacteria in the environment. J Ind Microbiol 17:159–169

    Article  CAS  Google Scholar 

  • Robe P, Nalin R, Capellano C, Vogel T, Simonet P (2003) Extraction of DNA from soil. Euro J Soil Biol 39(4):183–190

    Article  CAS  Google Scholar 

  • Rohwerder T, Sand W, Lascu C (2003) Preliminary evidence for a sulphur cycle in movile cave, Romania. Acta Biotechnol 23(1):101–107

    Article  CAS  Google Scholar 

  • Rondon MR, Goodman RM, Handelsman J (1999) The Earth’s bounty: assessing and accessing soil microbial diversity. Trends Biotechnol 17(10):403–409

    Article  PubMed  CAS  Google Scholar 

  • Rule D, Sadoway T, Moote P et al (2011) Cures from caves: cave microbiomes and their potential for drug discovery. Oral presentation presented at the 111th American Society for microbiology general meeting, New Orleans, LA, 21–24 May 2011

    Google Scholar 

  • Rusu A, Hillebrand A, Persoiu A (2011) Biodiversity of microorganisms in perennial ice deposits from Scarisoara ice cave (Romania). First international planetary caves workshop: implications for astrobiology, climate, detection, and exploration, Carlsbad, New Mexico, 25–28 Oct 2011. LPI contribution no. 1640, p 37

    Google Scholar 

  • Sadoway T, Cheeptham N (2011) Susceptibility of three drug–resistant, gram–negative pathogens to antimicrobial compounds produced by cave actinomycetes. Poster presented at the 111th American Society for microbiology general meeting, New Orleans, LA, 21–24 May 2011

    Google Scholar 

  • Sărbu SM (1991) The unusual fauna of a cave with thermomineral waters containing hydrogen sulfide from southern Dobrogea Romania. Mémoir Biospéol 17:191–196

    Google Scholar 

  • Sărbu SM, Popa R (1992) A unique chemoautotrophically based cave ecosystem. In: Camacho AI (ed) The natural history of biospeleology, Museo Nacional de Ciencias Naturales. Consejo Superior de Investigaciones Científicas, Madrid, pp 637–666

    Google Scholar 

  • Sărbu SM, Kane TC, Kinkle BK (1996) A chemoautotrophically based cave ecosystem. Science 272(5270):1953–1955

    Article  PubMed  Google Scholar 

  • Schabereiter-Gurtner C, Lubitz W, Rölleke S (2003) Application of broad-range 16S rRNA PCR amplification and DGGE fingerprinting for detection of tick-infecting bacteria. J Microbiol Methods 52(2):251–260

    Article  PubMed  CAS  Google Scholar 

  • Simon KS, Benfield EF, Macko SA (2003) Food web structure and the role of epilithic biofilms in cave streams. Ecology 84:2395–2406

    Article  Google Scholar 

  • Slabbinck B, De Baets B, Dawyndt P et al (2009) Towards large-scale FAME-based bacterial species identification using machine learning techniques. Syst Appl Microbiol 32(3):163–176

    Article  PubMed  Google Scholar 

  • Smalla K (2004) Microorganisms culture-independent microbiology. In: Bull TA (ed) Microbial diversity and bioprospecting. ASM, Washington DC, pp 88–99

    Google Scholar 

  • Snider JR, Goin C, Miller R et al (2009) Ultraviolet radiation sensibility in cave bacteria: evidence of adaptation to the subsurface? Int J Speleol 38(1):13–22

    Google Scholar 

  • Spear JR, Barton HA, Robertson CE et al (2007) Microbial community biofabrics in a geothermal mine adit. Appl Environ Microbiol 73(19):6172–6180

    Article  PubMed  CAS  Google Scholar 

  • Storrie-Lombardi MC, Sattler B (2009) Laser-induced fluorescence emission (L.I.F.E.): in situ nondestructive detection of microbial life in the ice covers of Antarctica Lakes. Astrobiology 9(7):659–671

    Article  PubMed  Google Scholar 

  • Storrie-Lombardi MC, Muller JP, Fisk MR et al (2009) Laser-induced fluorescence emission (L.I.F.E.): searching for mars organics with a UV-enhanced PanCam. Astrobiology 9(7):953–964

    Article  PubMed  CAS  Google Scholar 

  • Sugita T, Kikuchi K, Makimura K et al (2005) Trichosporon species isolated from guano samples obtained from bat-inhabited caves in Japan. Appl Environ Microbiol 71(11):7626–7629

    Article  PubMed  CAS  Google Scholar 

  • Takada Hoshino Y, Matsumoto N (2005) Skim milk drastically improves the efficacy of DNA extraction from andisol, a vulcanic ash soil. Jpn Agri Res Quat 39:247–252

    Google Scholar 

  • Thorseth IH, Torsvik T, Torsvik V, Daae FL, Pedersen RB, Party K-S (2001) Diversity of life in ocean floor basalt. Earth Planet Sci Lett 194:31–37

    Article  CAS  Google Scholar 

  • Tiedje JM, Asuming-Brempong S, Nüsslein K (1999) Opening the black box of soil microbial diversity. Applied Soil Ecology 13(2):109–122

    Article  Google Scholar 

  • Torsvik V, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5(3):240–245

    Article  PubMed  CAS  Google Scholar 

  • Torsvik V, Goksøyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56(3):782–787

    PubMed  CAS  Google Scholar 

  • Torsvik V, Daae FL, Sandaa RA et al (1998) Novel techniques for analysing microbial diversity in natural and perturbed environments. J Biotechnol 64(1):53–62

    Article  PubMed  CAS  Google Scholar 

  • Vartoukian SR, Palmer RM, Wade WG (2010) Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol Lett 309(1):1–7

    PubMed  CAS  Google Scholar 

  • Volossiouk T, Robb EJ, Nazar RN (1995) Direct DNA extraction for PCR–mediated assays of soil organisms. Appl Environ Microbiol 61:3972–3976

    PubMed  CAS  Google Scholar 

  • Wade BD, Garcia-Pichel F (2003) Evaluation of DNA extraction methods for molecular analyses of microbial communities in Modern calcareous microbialites. Geomicrobiol J 20:549–561

    Article  CAS  Google Scholar 

  • Walker JJ, Pace NR (2007) Phylogenetic composition of rocky mountain endolithic microbial ecosystems. Appl Environ Microbiol 73(11):3497–3504

    Article  PubMed  CAS  Google Scholar 

  • Walker JJ, Spear JR, Pace NR (2005) Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 434:1011–1014

    Article  CAS  Google Scholar 

  • Ward DM, Weller R, Bateson MM (1990) 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345(6270):63–65

    Article  PubMed  CAS  Google Scholar 

  • Weidler GW, Dornmayr-Pfaffenhuemer M, Gerbl FW et al (2007) Communities of archaea and bacteria in a subsurface radioactive thermal spring in the Austrian Central Alps, and evidence of ammonia-oxidizing crenarchaeota. Appl Environ Microbiol 73(1):259–270

    Article  PubMed  CAS  Google Scholar 

  • Willerslev E, Hansen AJ, Poinar HN (2004) Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol Evol 19:141–147

    Article  PubMed  Google Scholar 

  • Yakimov MM, Giuliano L, Crisafi E et al (2002) Microbial community of a saline mud volcano at San Biagio–Belpasso, Mt. Etna (Italy). Environ Microbiol 4:256

    Article  CAS  Google Scholar 

  • Yücel S, Yamaç M (2010) Selection of streptomyces isolates from Turkish karstic caves against antibiotic resistant microorganisms. Pak J Pharm Sci 23(1):1–6

    PubMed  Google Scholar 

  • Zhou J, Gu Y, Zou C et al (2007) Phylogenetic diversity of bacteria in an earth-cave in Guizhou province, southwest of China. J Microbiol 45(2):105–112

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Thanks go to Dr. Douglas Stemke of University of Indianapolis for his invaluable and critical suggestions for the manuscript and to Karen Densky and Jerri-Lynne Cameron of Thompson Rivers University for taking time to proofread.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naowarat Cheeptham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Naowarat Cheeptham

About this chapter

Cite this chapter

Cheeptham, N. (2013). Advances and Challenges in Studying Cave Microbial Diversity. In: Cheeptham, N. (eds) Cave Microbiomes: A Novel Resource for Drug Discovery. SpringerBriefs in Microbiology, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5206-5_1

Download citation

Publish with us

Policies and ethics