Skip to main content

Modeling the Cell Biology of Prions

  • Chapter
  • First Online:
Prions and Diseases

Abstract

Cell models have been useful for elucidating the function of proteins and/or their role in pathogenesis. Even before the discovery that the prion protein was a normal cellular protein (Oesch et al. Cell 40 (4):735–746, 1985), cell models were developed to investigate prion infection (Rubenstein et al. J Gen Virol 65 (Pt 12):2191–2198, 1984). Subsequently, with the discovery of familial forms of human prion diseases (Hsiao et al. Nature 338 (6213):342–345, 1989), cell models were developed to investigate the effect of mutations on the metabolism of the prion protein and, in parallel, the normal synthesis and processing of the cellular prion protein. In this chapter, we review the progress made in these two areas to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barret A, Tagliavini F, Forloni G, Bate C, Salmona M, Colombo L, De Luigi A, Limido L, Suardi S, Rossi G, Auvre F, Adjou KT, Sales N, Williams A, Lasmezas C, Deslys JP (2003) Evaluation of quinacrine treatment for prion diseases. J Virol 77(15):8462–8469

    Article  PubMed  CAS  Google Scholar 

  • Bate C, Williams A (2012) Neurodegeneration induced by clustering of sialylated glycosylphosphatidylinositols of prion proteins. J Biol Chem 287(11):7935–7944. doi:10.1074/jbc.M111.275743

    Article  PubMed  CAS  Google Scholar 

  • Beringue V, Vilette D, Mallinson G, Archer F, Kaisar M, Tayebi M, Jackson GS, Clarke AR, Laude H, Collinge J, Hawke S (2004) PrPSc binding antibodies are potent inhibitors of prion replication in cell lines. J Biol Chem 279(38):39671–39676. doi:10.1074/jbc.M402270200

    Article  PubMed  CAS  Google Scholar 

  • Birkett CR, Hennion RM, Bembridge DA, Clarke MC, Chree A, Bruce ME, Bostock CJ (2001) Scrapie strains maintain biological phenotypes on propagation in a cell line in culture. EMBO J 20(13):3351–3358. doi:10.1093/emboj/20.13.3351

    Article  PubMed  CAS  Google Scholar 

  • Borchelt DR, Scott M, Taraboulos A, Stahl N, Prusiner SB (1990) Scrapie and cellular prion proteins differ in their kinetics of synthesis and topology in cultured cells. J Cell Biol 110(3):743–752

    Article  PubMed  CAS  Google Scholar 

  • Bosque PJ, Prusiner SB (2000) Cultured cell sublines highly susceptible to prion infection. J Virol 74(9):4377–4386

    Article  PubMed  CAS  Google Scholar 

  • Browning S, Baker CA, Smith E, Mahal SP, Herva ME, Demczyk CA, Li J, Weissmann C (2011) Abrogation of complex glycosylation by swainsonine results in strain- and cell-specific inhibition of prion replication. J Biol Chem 286(47):40962–40973. doi:10.1074/jbc.M111.283978

    Article  PubMed  CAS  Google Scholar 

  • Butler DA, Scott MR, Bockman JM, Borchelt DR, Taraboulos A, Hsiao KK, Kingsbury DT, Prusiner SB (1988) Scrapie-infected murine neuroblastoma cells produce protease-resistant prion proteins. J Virol 62(5):1558–1564

    PubMed  CAS  Google Scholar 

  • Capellari S, Parchi P, Russo CM, Sanford J, Sy MS, Gambetti P, Petersen RB (2000a) Effect of the E200K mutation on prion protein metabolism. Comparative study of a cell model and human brain. Am J Pathol 157(2):613–622

    Article  PubMed  CAS  Google Scholar 

  • Capellari S, Zaidi SI, Long AC, Kwon EE, Petersen RB (2000b) The Thr183Ala mutation, not the loss of the first glycosylation site, alters the physical properties of the prion protein. J Alzheimers Dis 2(1):27–35

    PubMed  CAS  Google Scholar 

  • Caughey B, Raymond GJ (1993) Sulfated polyanion inhibition of scrapie-associated PrP accumulation in cultured cells. J Virol 67(2):643–650

    PubMed  CAS  Google Scholar 

  • Caughey B, Race RE, Ernst D, Buchmeier MJ, Chesebro B (1989) Prion protein biosynthesis in scrapie-infected and uninfected neuroblastoma cells. J Virol 63(1):175–181

    PubMed  CAS  Google Scholar 

  • Caughey B, Neary K, Buller R, Ernst D, Perry LL, Chesebro B, Race RE (1990) Normal and scrapie-associated forms of prion protein differ in their sensitivities to phospholipase and proteases in intact neuroblastoma cells. J Virol 64(3):1093–1101

    PubMed  CAS  Google Scholar 

  • Caughey B, Raymond GJ, Ernst D, Race RE (1991) N-terminal truncation of the scrapie-associated form of PrP by lysosomal protease(s): implications regarding the site of conversion of PrP to the protease-resistant state. J Virol 65(12):6597–6603

    PubMed  CAS  Google Scholar 

  • Clarke MC, Haig DA (1970a) Evidence for the multiplication of scrapie agent in cell culture. Nature 225(5227):100–101

    Article  PubMed  CAS  Google Scholar 

  • Clarke MC, Haig DA (1970b) Multiplication of scrapie agent in cell culture. Res Vet Sci 11(5):500–501

    PubMed  CAS  Google Scholar 

  • Cohen E, Taraboulos A (2003) Scrapie-like prion protein accumulates in aggresomes of cyclosporin A-treated cells. EMBO J 22(3):404–417. doi:10.1093/emboj/cdg045

    Article  PubMed  CAS  Google Scholar 

  • Cronier S, Laude H, Peyrin JM (2004) Prions can infect primary cultured neurons and astrocytes and promote neuronal cell death. Proc Natl Acad Sci USA 101(33):12271–12276. doi:10.1073/pnas.0402725101

    Article  PubMed  CAS  Google Scholar 

  • Dlakic WM, Grigg E, Bessen RA (2007) Prion infection of muscle cells in vitro. J Virol 81(9):4615–4624. doi:10.1128/JVI.02628-06

    Article  PubMed  CAS  Google Scholar 

  • Enari M, Flechsig E, Weissmann C (2001) Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proc Natl Acad Sci USA 98(16):9295–9299. doi:10.1073/pnas.151242598

    Article  PubMed  CAS  Google Scholar 

  • Feraudet C, Morel N, Simon S, Volland H, Frobert Y, Creminon C, Vilette D, Lehmann S, Grassi J (2005) Screening of 145 anti-PrP monoclonal antibodies for their capacity to inhibit PrPSc replication in infected cells. J Biol Chem 280(12):11247–11258. doi:10.1074/jbc.M407006200

    Article  PubMed  CAS  Google Scholar 

  • Follet J, Lemaire-Vieille C, Blanquet-Grossard F, Podevin-Dimster V, Lehmann S, Chauvin JP, Decavel JP, Varea R, Grassi J, Fontes M, Cesbron JY (2002) PrP expression and replication by Schwann cells: implications in prion spreading. J Virol 76(5):2434–2439

    Article  PubMed  CAS  Google Scholar 

  • Gabizon R, Meiner Z, Halimi M, Ben-Sasson SA (1993) Heparin-like molecules bind differentially to prion-proteins and change their intracellular metabolic fate. J Cell Physiol 157(2):319–325. doi:10.1002/jcp.1041570215

    Article  PubMed  CAS  Google Scholar 

  • Gilch S, Wopfner F, Renner-Muller I, Kremmer E, Bauer C, Wolf E, Brem G, Groschup MH, Schatzl HM (2003) Polyclonal anti-PrP auto-antibodies induced with dimeric PrP interfere efficiently with PrPSc propagation in prion-infected cells. J Biol Chem 278(20):18524–18531. doi:10.1074/jbc.M210723200

    Article  PubMed  CAS  Google Scholar 

  • Giri RK, Young R, Pitstick R, DeArmond SJ, Prusiner SB, Carlson GA (2006) Prion infection of mouse neurospheres. Proc Natl Acad Sci USA 103(10):3875–3880. doi:10.1073/pnas.0510902103

    Article  PubMed  CAS  Google Scholar 

  • Hsiao K, Baker HF, Crow TJ, Poulter M, Owen F, Terwilliger JD, Westaway D, Ott J, Prusiner SB (1989) Linkage of a prion protein missense variant to Gerstmann-Straussler syndrome. Nature 338(6213):342–345. doi:10.1038/338342a0

    Article  PubMed  CAS  Google Scholar 

  • Iwamaru Y, Takenouchi T, Ogihara K, Hoshino M, Takata M, Imamura M, Tagawa Y, Hayashi-Kato H, Ushiki-Kaku Y, Shimizu Y, Okada H, Shinagawa M, Kitani H, Yokoyama T (2007) Microglial cell line established from prion protein-overexpressing mice is susceptible to various murine prion strains. J Virol 81(3):1524–1527. doi:10.1128/JVI.01379-06

    Article  PubMed  CAS  Google Scholar 

  • Klohn PC, Stoltze L, Flechsig E, Enari M, Weissmann C (2003) A quantitative, highly sensitive cell-based infectivity assay for mouse scrapie prions. Proc Natl Acad Sci USA 100(20):11666–11671. doi:10.1073/pnas.1834432100

    Article  PubMed  Google Scholar 

  • Kocisko DA, Baron GS, Rubenstein R, Chen J, Kuizon S, Caughey B (2003) New inhibitors of scrapie-associated prion protein formation in a library of 2000 drugs and natural products. J Virol 77(19):10288–10294

    Article  PubMed  CAS  Google Scholar 

  • Lehmann S, Harris DA (1995) A mutant prion protein displays an aberrant membrane association when expressed in cultured cells. J Biol Chem 270(41):24589–24597

    Article  PubMed  CAS  Google Scholar 

  • Lehmann S, Harris DA (1996) Mutant and infectious prion proteins display common biochemical properties in cultured cells. J Biol Chem 271(3):1633–1637

    Article  PubMed  CAS  Google Scholar 

  • Lehmann S, Harris DA (1997) Blockade of glycosylation promotes acquisition of scrapie-like properties by the prion protein in cultured cells. J Biol Chem 272(34):21479–21487

    Article  PubMed  CAS  Google Scholar 

  • Liemann S, Glockshuber R (1999) Influence of amino acid substitutions related to inherited human prion diseases on the thermodynamic stability of the cellular prion protein. Biochemistry (Mosc) 38(11):3258–3267

    Article  CAS  Google Scholar 

  • Locht C, Chesebro B, Race R, Keith JM (1986) Molecular cloning and complete sequence of prion protein cDNA from mouse brain infected with the scrapie agent. Proc Natl Acad Sci USA 83(17):6372–6376

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Lindquist S (2001) Wild-type PrP and a mutant associated with prion disease are subject to retrograde transport and proteasome degradation. Proc Natl Acad Sci USA 98(26):14955–14960. doi:10.1073/pnas.011578098

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Wollmann R, Lindquist S (2002) Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science 298(5599):1781–1785. doi:10.1126/science.1073725

    Article  PubMed  CAS  Google Scholar 

  • Maas E, Geissen M, Groschup MH, Rost R, Onodera T, Schatzl H, Vorberg IM (2007) Scrapie infection of prion protein-deficient cell line upon ectopic expression of mutant prion proteins. J Biol Chem 282(26):18702–18710. doi:10.1074/jbc.M701309200

    Article  PubMed  CAS  Google Scholar 

  • Markovits P, Dautheville C, Dormont D, Dianoux L, Latarjet R (1983) In vitro propagation of the scrapie agent. I. Transformation of mouse glia and neuroblastoma cells after infection with the mouse-adapted scrapie strain c-506. Acta Neuropathol 60(1–2):75–80

    Article  PubMed  CAS  Google Scholar 

  • McKinley MP, Taraboulos A, Kenaga L, Serban D, Stieber A, DeArmond SJ, Prusiner SB, Gonatas N (1991) Ultrastructural localization of scrapie prion proteins in cytoplasmic vesicles of infected cultured cells. Lab Invest 65(6):622–630

    PubMed  CAS  Google Scholar 

  • Milhavet O, McMahon HE, Rachidi W, Nishida N, Katamine S, Mange A, Arlotto M, Casanova D, Riondel J, Favier A, Lehmann S (2000) Prion infection impairs the cellular response to oxidative stress. Proc Natl Acad Sci USA 97(25):13937–13942. doi:10.1073/pnas.250289197

    Article  PubMed  CAS  Google Scholar 

  • Milhavet O, Casanova D, Chevallier N, McKay RD, Lehmann S (2006) Neural stem cell model for prion propagation. Stem Cells 24(10):2284–2291. doi:10.1634/stemcells.2006-0088

    Article  PubMed  CAS  Google Scholar 

  • Mishra RS, Gu Y, Bose S, Verghese S, Kalepu S, Singh N (2002) Cell surface accumulation of a truncated transmembrane prion protein in Gerstmann-Straussler-Scheinker disease P102L. J Biol Chem 277(27):24554–24561

    Article  PubMed  CAS  Google Scholar 

  • Nishida N, Harris DA, Vilette D, Laude H, Frobert Y, Grassi J, Casanova D, Milhavet O, Lehmann S (2000) Successful transmission of three mouse-adapted scrapie strains to murine neuroblastoma cell lines overexpressing wild-type mouse prion protein. J Virol 74(1):320–325

    Article  PubMed  CAS  Google Scholar 

  • Nunziante M, Gilch S, Schatzl HM (2003) Essential role of the prion protein N terminus in subcellular trafficking and half-life of cellular prion protein. J Biol Chem 278(6):3726–3734. doi:10.1074/jbc.M206313200

    Article  PubMed  CAS  Google Scholar 

  • Oesch B, Westaway D, Walchli M, McKinley MP, Kent SB, Aebersold R, Barry RA, Tempst P, Teplow DB, Hood LE et al (1985) A cellular gene encodes scrapie PrP 27-30 protein. Cell 40(4):735–746

    Article  PubMed  CAS  Google Scholar 

  • Ostlund P, Lindegren H, Pettersson C, Bedecs K (2001) Altered insulin receptor processing and function in scrapie-infected neuroblastoma cell lines. Brain Res Mol Brain Res 97(2):161–170

    Article  PubMed  CAS  Google Scholar 

  • Parchi P, Capellari S, Chin S, Schwarz HB, Schecter NP, Butts JD, Hudkins P, Burns DK, Powers JM, Gambetti P (1999) A subtype of sporadic prion disease mimicking fatal familial insomnia. Neurology 52(9):1757–1763

    Article  PubMed  CAS  Google Scholar 

  • Peretz D, Williamson RA, Kaneko K, Vergara J, Leclerc E, Schmitt-Ulms G, Mehlhorn IR, Legname G, Wormald MR, Rudd PM, Dwek RA, Burton DR, Prusiner SB (2001) Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 412(6848):739–743. doi:10.1038/35089090

    Article  PubMed  CAS  Google Scholar 

  • Perrier V, Solassol J, Crozet C, Frobert Y, Mourton-Gilles C, Grassi J, Lehmann S (2004) Anti-PrP antibodies block PrPSc replication in prion-infected cell cultures by accelerating PrPC degradation. J Neurochem 89(2):454–463. doi:10.1111/j.1471-4159.2004.02356.x

    Article  PubMed  CAS  Google Scholar 

  • Petersen RB, Parchi P, Richardson SL, Urig CB, Gambetti P (1996) Effect of the D178N mutation and the codon 129 polymorphism on the metabolism of the prion protein. J Biol Chem 271(21):12661–12668

    Article  PubMed  CAS  Google Scholar 

  • Pimpinelli F, Lehmann S, Maridonneau-Parini I (2005) The scrapie prion protein is present in flotillin-1-positive vesicles in central- but not peripheral-derived neuronal cell lines. Eur J Neurosci 21(8):2063–2072. doi:10.1111/j.1460-9568.2005.04049.x

    Article  PubMed  Google Scholar 

  • Race R (1991) The scrapie agent in vitro. Curr Top Microbiol Immunol 172:181–193

    Article  PubMed  CAS  Google Scholar 

  • Race RE, Fadness LH, Chesebro B (1987) Characterization of scrapie infection in mouse neuroblastoma cells. J Gen Virol 68(Pt 5):1391–1399

    Article  PubMed  Google Scholar 

  • Robakis NK, Devine-Gage EA, Jenkins EC, Kascsak RJ, Brown WT, Krawczun MS, Silverman WP (1986) Localization of a human gene homologous to the PrP gene on the p arm of chromosome 20 and detection of PrP-related antigens in normal human brain. Biochem Biophys Res Commun 140(2):758–765

    Article  PubMed  CAS  Google Scholar 

  • Rubenstein R, Carp RI, Callahan SM (1984) In vitro replication of scrapie agent in a neuronal model: infection of PC12 cells. J Gen Virol 65(Pt 12):2191–2198

    Article  PubMed  Google Scholar 

  • Rubenstein R, Deng H, Scalici CL, Papini MC (1991) Alterations in neurotransmitter-related enzyme activity in scrapie-infected PC12 cells. J Gen Virol 72(Pt 6):1279–1285

    Article  PubMed  CAS  Google Scholar 

  • Rudd PM, Endo T, Colominas C, Groth D, Wheeler SF, Harvey DJ, Wormald MR, Serban H, Prusiner SB, Kobata A, Dwek RA (1999) Glycosylation differences between the normal and pathogenic prion protein isoforms. Proc Natl Acad Sci USA 96(23):13044–13049

    Article  PubMed  CAS  Google Scholar 

  • Rudd PM, Wormald MR, Wing DR, Prusiner SB, Dwek RA (2001) Prion glycoprotein: structure, dynamics, and roles for the sugars. Biochemistry (Mosc) 40(13):3759–3766

    Article  CAS  Google Scholar 

  • Schatzl HM, Laszlo L, Holtzman DM, Tatzelt J, DeArmond SJ, Weiner RI, Mobley WC, Prusiner SB (1997) A hypothalamic neuronal cell line persistently infected with scrapie prions exhibits apoptosis. J Virol 71(11):8821–8831

    PubMed  CAS  Google Scholar 

  • Sigurdsson EM, Sy MS, Li R, Scholtzova H, Kascsak RJ, Kascsak R, Carp R, Meeker HC, Frangione B, Wisniewski T (2003) Anti-prion antibodies for prophylaxis following prion exposure in mice. Neurosci Lett 336(3):185–187

    Article  PubMed  CAS  Google Scholar 

  • Singh N, Zanusso G, Chen SG, Fujioka H, Richardson S, Gambetti P, Petersen RB (1997) Prion protein aggregation reverted by low temperature in transfected cells carrying a prion protein gene mutation. J Biol Chem 272(45):28461–28470

    Article  PubMed  CAS  Google Scholar 

  • Solomon IH, Schepker JA, Harris DA (2010) Prion neurotoxicity: insights from prion protein mutants. Curr Issues Mol Biol 12(2):51–61

    PubMed  CAS  Google Scholar 

  • Taraboulos A, Serban D, Prusiner SB (1990) Scrapie prion proteins accumulate in the cytoplasm of persistently infected cultured cells. J Cell Biol 110(6):2117–2132

    Article  PubMed  CAS  Google Scholar 

  • Trevitt CR, Collinge J (2006) A systematic review of prion therapeutics in experimental models. Brain 129(Pt 9):2241–2265. doi:10.1093/brain/awl150

    Article  PubMed  Google Scholar 

  • Turnbull J, Powell A, Guimond S (2001) Heparan sulfate: decoding a dynamic multifunctional cell regulator. Trends Cell Biol 11(2):75–82

    Article  PubMed  CAS  Google Scholar 

  • Vilette D, Andreoletti O, Archer F, Madelaine MF, Vilotte JL, Lehmann S, Laude H (2001) Ex vivo propagation of infectious sheep scrapie agent in heterologous epithelial cells expressing ovine prion protein. Proc Natl Acad Sci USA 98(7):4055–4059. doi:10.1073/pnas.061337998

    Article  PubMed  CAS  Google Scholar 

  • Vorberg I, Raines A, Story B, Priola SA (2004) Susceptibility of common fibroblast cell lines to transmissible spongiform encephalopathy agents. J Infect Dis 189(3):431–439. doi:10.1086/381166

    Article  PubMed  CAS  Google Scholar 

  • White AR, Enever P, Tayebi M, Mushens R, Linehan J, Brandner S, Anstee D, Collinge J, Hawke S (2003) Monoclonal antibodies inhibit prion replication and delay the development of prion disease. Nature 422(6927):80–83. doi:10.1038/nature01457

    Article  PubMed  CAS  Google Scholar 

  • Winklhofer KF, Hartl FU, Tatzelt J (2001) A sensitive filter retention assay for the detection of PrP(Sc) and the screening of anti-prion compounds. FEBS Lett 503(1):41–45

    Article  PubMed  CAS  Google Scholar 

  • Zaidi SI, Richardson SL, Capellari S, Song L, Smith MA, Ghetti B, Sy MS, Gambetti P, Petersen RB (2005) Characterization of the F198S prion protein mutation: enhanced glycosylation and defective refolding. J Alzheimers Dis 7(2):159–171, discussion 173–180

    PubMed  CAS  Google Scholar 

  • Zanusso G, Petersen RB, Jin T, Jing Y, Kanoush R, Ferrari S, Gambetti P, Singh N (1999) Proteasomal degradation and N-terminal protease resistance of the codon 145 mutant prion protein. J Biol Chem 274(33):23396–23404

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Petersen Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rubenstein, R., Petersen, R.B. (2013). Modeling the Cell Biology of Prions. In: Zou, WQ., Gambetti, P. (eds) Prions and Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5305-5_13

Download citation

Publish with us

Policies and ethics