Skip to main content

Molecular Pathogenesis of Bladder Cancer

  • Chapter
  • First Online:
The Urinary Tract

Abstract

The most common variant of bladder cancer in Western countries is urothelial carcinoma (UCC), formerly known as “transitional cell carcinoma,” which has significant health costs and morbidity [1,2]. This neoplasm has two distinct clinical presentations: approximately 30 % of UCs are muscle invasive (MIUC), while the remainder present with nonmuscle-invasive disease (NMIUC). These are not mere pathological distinctions, but rather two distinct clinical entities, which show different outcomes and are therefore treated differently. For instance, NMIUC (corresponding to stages Ta, Tis, and T1) is generally treated by endoscopic transurethral tumor resection, which may be followed by intravesical immunotherapy or chemotherapy. This approach generally results in good outcomes, with 85 % 10-year disease-specific survival for Ta, and 70 % for T1 stage disease [3]. On the contrary, patients with MIUC are generally treated with radical cystectomy and bilateral pelvic iliac lymphadenectomy, which can be preceded or followed by chemotherapy [4]. In spite of this more aggressive treatment, however, approximately half of the patients in this group will experience treatment failure within 2 years [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Botteman MF, Pashos CL, Redaelli A, Laskin B, Hauser R. The health economics of bladder cancer: a comprehensive review of the published literature. Pharmacoeconomics. 2003;21(18):1315–30.

    Article  PubMed  Google Scholar 

  2. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer Statistics, 2009. CA Cancer J Clin. 2009;59(4):225–49.

    Article  PubMed  Google Scholar 

  3. Dalbagni G. The management of superficial bladder cancer. Nat Clin Pract Urol. 2007;4(5):254–60.

    Article  PubMed  Google Scholar 

  4. Ghoneim MA, Abol-Enein H. Management of muscle-invasive bladder cancer: an update. Nat Clin Pract Urol. 2008;5(9):501–8.

    Article  PubMed  Google Scholar 

  5. Wu XR. Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev. 2005;5(9):713–25.

    Article  CAS  Google Scholar 

  6. Lopez-Beltran A, Cheng L, Mazzucchelli R, et al. Morphological and molecular profiles and pathways in bladder neoplasms. Anticancer Res. 2008;28(5B):2893–900.

    PubMed  Google Scholar 

  7. Downward J, Targeting RAS. signalling pathways in cancer therapy. Nat Rev Cancer. 2003;3(1):11–22.

    Article  PubMed  CAS  Google Scholar 

  8. Jiang B, Liu L, George FVW, George K. Chapter 2 PI3K/PTEN signaling in angiogenesis and tumorigenesis. Advances in cancer research. New York: Academic; 2009. p. 19–65.

    Google Scholar 

  9. Rusanescu G, Gotoh T, Tian X, Feig LA. Regulation of Ras signaling specificity by protein kinase C. Mol Cell Biol. 2001;21(8):2650–8.

    Article  PubMed  CAS  Google Scholar 

  10. Herrera R, Sebolt-Leopold JS. Unraveling the ­complexities of the Raf/MAP kinase pathway for pharmacological intervention. Trends Mol Med. 2002;8(4):S27–31.

    Article  PubMed  CAS  Google Scholar 

  11. Santos E, Tronick SR, Aaronson SA, Pulciani S, Barbacid M. T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of BALB- and Harvey-MSV transforming genes. Nature. 1982;298(5872):343–7.

    Article  PubMed  CAS  Google Scholar 

  12. Reddy EP, Reynolds RK, Santos E, Barbacid M. A point mutation is responsible for the acquisition of transforming properties by the T24 human ­bladder carcinoma oncogene. Nature. 1982;300(5888):149–52.

    Article  PubMed  CAS  Google Scholar 

  13. McBride OW, Swan DC, Santos E, Barbacid M, Tronick SR, Aaronson SA. Localization of the normal allele of T24 human bladder carcinoma oncogene to chromosome 11. Nature. 1982;300(5894):773–4.

    Article  PubMed  CAS  Google Scholar 

  14. Feinberg AP, Vogelstein B, Droller MJ, Baylin SB, Nelkin BD. Mutation affecting the 12th amino acid of the c-Ha-ras oncogene product occurs infrequently in human cancer. Science. 1983;220(4602):1175–7.

    Article  PubMed  CAS  Google Scholar 

  15. Fujita J, Srivastava SK, Kraus MH, Rhim JS, Tronick SR, Aaronson SA. Frequency of molecular alterations affecting ras protooncogenes in human urinary tract tumors. Proc Natl Acad Sci USA. 1985;82(11):3849–53.

    Article  PubMed  CAS  Google Scholar 

  16. Fujita J, Yoshida O, Yuasa Y, Rhim JS, Hatanaka M, Aaronson SA. Ha-ras oncogenes are activated by somatic alterations in human urinary tract tumours. Nature. 1984;309(5967):464–6.

    Article  PubMed  CAS  Google Scholar 

  17. Boulalas I, Zaravinos A, Karyotis I, Delakas D, Spandidos DA. Activation of RAS family genes in urothelial carcinoma. J Urol. 2009;181(5):2312–9.

    Article  PubMed  CAS  Google Scholar 

  18. Joyce AD, D’Emilia JC, Steele Jr G, Libertino JA, Silverman ML, Summerhayes IC. Detection of altered H-ras proteins in human tumors using western blot analysis. Lab Invest. 1989;61(2):212–8.

    PubMed  CAS  Google Scholar 

  19. Saito S, Hata M, Fukuyama R, et al. Screening of H-ras gene point mutations in 50 cases of bladder carcinoma. Int J Urol. 1997;4(2):178–85.

    Article  PubMed  CAS  Google Scholar 

  20. Visvanathan KV, Pocock RD, Summerhayes IC. Preferential and novel activation of H-ras in human bladder carcinomas. Oncogene Res. 1988;3(1):77–86.

    PubMed  CAS  Google Scholar 

  21. Tabin CJ, Bradley SM, Bargmann CI, et al. Mechanism of activation of a human oncogene. Nature. 1982;300(5888):143–9.

    Article  PubMed  CAS  Google Scholar 

  22. Oxford G, Theodorescu D. The role of Ras superfamily proteins in bladder cancer progression. J Urol. 2003;170(5):1987–93.

    Article  PubMed  CAS  Google Scholar 

  23. Czerniak B, Cohen GL, Etkind P, et al. Concurrent mutations of coding and regulatory sequences of the Ha-ras gene in urinary bladder carcinomas. Hum Pathol. 1992;23(11):1199–204.

    Article  PubMed  CAS  Google Scholar 

  24. Jebar AH, Hurst CD, Tomlinson DC, Johnston C, Taylor CF, Knowles MA. FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene. 2005;24(33):5218–25.

    Article  PubMed  CAS  Google Scholar 

  25. Theodorescu D, Cornil I, Fernandez BJ, Kerbel RS. Overexpression of normal and mutated forms of HRAS induces orthotopic bladder invasion in a human transitional cell carcinoma. Proc Natl Acad Sci USA. 1990;87(22):9047–51.

    Article  PubMed  CAS  Google Scholar 

  26. John JG, Wendy LG, Michael AH, Dan T. Genetic and phenotypic changes associated with the acquisition of tumorigenicity in human bladder cancer. Genes Chromosomes Cancer. 2000;27(3):252–63.

    Article  Google Scholar 

  27. Knowles MA, Williamson M. Mutation of H-ras is infrequent in bladder cancer: confirmation by single-strand conformation polymorphism analysis, designed restriction fragment length polymorphisms, and direct sequencing. Cancer Res. 1993;53(1):133–9.

    PubMed  CAS  Google Scholar 

  28. Fitzgerald JM, Ramchurren N, Rieger K, et al. Identification of H-ras mutations in urine sediments complements cytology in the detection of bladder tumors. J Natl Cancer Inst. 1995;87(2):129–33.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang ZT, Pak J, Huang HY, et al. Role of Ha-ras activation in superficial papillary pathway of ­urothelial tumor formation. Oncogene. 2001;20(16):1973–80.

    Article  PubMed  CAS  Google Scholar 

  30. Gao J, Huang H-Y, Pak J, et al. p53 deficiency provokes urothelial proliferation and synergizes with activated Ha-ras in promoting urothelial tumorigenesis. Oncogene. 2004;23(3):687–96.

    Article  PubMed  CAS  Google Scholar 

  31. Mo L, Zheng X, Huang H-Y, et al. Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder tumorigenesis. J Clin Invest. 2007;117(2):314–25.

    Article  PubMed  CAS  Google Scholar 

  32. Pasin E, Josephson DY, Mitra AP, Cote RJ, Stein JP. Superficial bladder cancer: an update on etiology, molecular development, classification, and natural history. Rev Urol. 2008;10(1):31–43.

    PubMed  Google Scholar 

  33. Murgue B, Tsunekawa S, Rosenberg I, de Beaumont M, Podolsky DK. Identification of a novel variant form of fibroblast growth factor receptor 3 (FGFR3 IIIb) in human colonic epithelium. Cancer Res. 1994;54(19):5206–11.

    PubMed  CAS  Google Scholar 

  34. Rousseau F, Bonaventure J, Legeai-Mallet L, et al. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature. 1994;371(6494):252–4.

    Article  PubMed  CAS  Google Scholar 

  35. Shiang R, Thompson LM, Zhu YZ, et al. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell. 1994;78(2):335–42.

    Article  PubMed  CAS  Google Scholar 

  36. Bonaventure J, Rousseau F, Legeai-Mallet L, Le Merrer M, Munnich A, Maroteaux P. Common mutations in the gene encoding fibroblast growth factor receptor 3 account for achondroplasia, hypochondroplasia and thanatophoric dysplasia. Acta Paediatr Suppl. 1996;417:33–8.

    Article  PubMed  CAS  Google Scholar 

  37. Bonaventure J, Rousseau F, Legeai-Mallet L, Le Merrer M, Munnich A, Maroteaux P. Common mutations in the fibroblast growth factor receptor 3 (FGFR 3) gene account for achondroplasia, hypochondroplasia, and thanatophoric dwarfism. Am J Med Genet. 1996;63(1):148–54.

    Article  PubMed  CAS  Google Scholar 

  38. Tavormina PL, Shiang R, Thompson LM, et al. Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nat Genet. 1995;9(3):321–8.

    Article  PubMed  CAS  Google Scholar 

  39. Bellus GA, McIntosh I, Smith EA, et al. A recurrent mutation in the tyrosine kinase domain of fibroblast growth factor receptor 3 causes hypochondroplasia. Nat Genet. 1995;10(3):357–9.

    Article  PubMed  CAS  Google Scholar 

  40. Tavormina PL, Rimoin DL, Cohn DH, Zhu YZ, Shiang R, Wasmuth JJ. Another mutation that results in the substitution of an unpaired cysteine residue in the extracellular domain of FGFR3 in thanatophoric dysplasia type I. Hum Mol Genet. 1995;4(11):2175–7.

    Article  PubMed  CAS  Google Scholar 

  41. Cappellen D, De Oliveira C, Ricol D, et al. Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat Genet. 1999;23(1):18–20.

    Article  PubMed  CAS  Google Scholar 

  42. Karoui M, Hofmann-Radvanyi H, Zimmermann U, et al. No evidence of somatic FGFR3 mutation in various types of carcinoma. Oncogene. 2001;20(36):5059–61.

    Article  PubMed  CAS  Google Scholar 

  43. Sibley K, Stern P, Knowles MA. Frequency of fibroblast growth factor receptor 3 mutations in sporadic tumours. Oncogene. 2001;20(32):4416–8.

    Article  PubMed  CAS  Google Scholar 

  44. Naski MC, Wang Q, Xu J, Ornitz DM. Graded activation of fibroblast growth factor receptor 3 by mutations causing achondroplasia and thanatophoric dysplasia. Nat Genet. 1996;13(2):233–7.

    Article  PubMed  CAS  Google Scholar 

  45. Webster MK, Donoghue DJ. FGFR activation in skeletal disorders: too much of a good thing. Trends Genet. 1997;13(5):178–82.

    Article  PubMed  CAS  Google Scholar 

  46. Kanai M, Göke M, Tsunekawa S, Podolsky DK. Signal transduction pathway of human fibroblast growth factor receptor 3. J Biol Chem. 1997;272(10):6621–8.

    Article  PubMed  CAS  Google Scholar 

  47. Agazie YM, Movilla N, Ischenko I, Hayman MJ. The phosphotyrosine phosphatase SHP2 is a critical mediator of transformation induced by the oncogenic fibroblast growth factor receptor 3. Oncogene. 2003;22(44):6909–18.

    Article  PubMed  CAS  Google Scholar 

  48. Billerey C, Chopin D, Aubriot-Lorton M-H, et al. Frequent FGFR3 mutations in papillary non-invasive bladder (pTa) tumors. Am J Pathol. 2001;158(6):1955–9.

    Article  PubMed  CAS  Google Scholar 

  49. van Rhijn BWG, Lurkin I, Radvanyi F, Kirkels WJ, van der Kwast TH, Zwarthoff EC. The fibroblast growth factor receptor 3 (FGFR3) mutation is a strong indicator of superficial bladder cancer with low recurrence rate. Cancer Res. 2001;61(4):1265–8.

    PubMed  Google Scholar 

  50. Takahiro K, Hideaki S, Toya O, Kouji A, Hiroshi K, Yoshikatsu E. The incidence of thanatophoric dysplasia mutations in FGFR3 gene is higher in low-grade or superficial bladder carcinomas. Cancer. 2001;92(10):2555–61.

    Article  Google Scholar 

  51. van Rhijn BW, Montironi R, Zwarthoff EC, Jöbsis AC, van der Kwast TH. Frequent FGFR3 mutations in urothelial papilloma. J Pathol. 2002;198(2):245–51.

    Article  PubMed  CAS  Google Scholar 

  52. van Rhijn BWG, Vis AN, van der Kwast TH, et al. Molecular grading of urothelial cell carcinoma with fibroblast growth factor receptor 3 and MIB-1 is superior to pathologic grade for the prediction of clinical outcome. J Clin Oncol. 2003;21(10):1912–21.

    Article  PubMed  CAS  Google Scholar 

  53. Hernandez S, Lopez-Knowles E, Lloreta J, et al. Prospective study of FGFR3 mutations as a prognostic factor in nonmuscle invasive urothelial bladder carcinomas. J Clin Oncol. 2006;24(22):3664–71.

    Article  PubMed  CAS  Google Scholar 

  54. Burger M, van der Aa MNM, van Oers JMM, et al. Prediction of progression of non-muscle-invasive bladder cancer by WHO 1973 and 2004 grading and by FGFR3 mutation status: a prospective study. Eur Urol. 2008;54(4):835–44.

    Article  PubMed  Google Scholar 

  55. Hernandez S, Lopez-Knowles E, Lloreta J, et al. FGFR3 and Tp53 mutations in T1G3 transitional bladder carcinomas: independent distribution and lack of association with prognosis. Clin Cancer Res. 2005;11(15):5444–50.

    Article  PubMed  CAS  Google Scholar 

  56. Francesca B, Alfredo S, Roberta M, et al. Strong immunohistochemical expression of fibroblast growth factor receptor 3, superficial staining pattern of cytokeratin 20, and low proliferative activity define those papillary urothelial neoplasms of low malignant potential that do not recur. Cancer. 2008;112(3):636–44.

    Article  Google Scholar 

  57. Olumi AF, Tsai YC, Nichols PW, et al. Allelic loss of chromosome 17p distinguishes high grade from low grade transitional cell carcinomas of the bladder. Cancer Res. 1990;50(21):7081–3.

    PubMed  CAS  Google Scholar 

  58. Tsai YC, Nichols PW, Hiti AL, Williams Z, Skinner DG, Jones PA. Allelic losses of chromosomes 9, 11, and 17 in human bladder cancer. Cancer Res. 1990;50(1):44–7.

    PubMed  CAS  Google Scholar 

  59. Cairns P, Shaw ME, Knowles MA. Initiation of bladder cancer may involve deletion of a tumour-suppressor gene on chromosome 9. Oncogene. 1993;8(4):1083–5.

    PubMed  CAS  Google Scholar 

  60. Habuchi T, Devlin J, Elder PA, Knowles MA. Detailed deletion mapping of chromosome 9q in bladder cancer: evidence for two tumour suppressor loci. Oncogene. 1995;11(8):1671–4.

    PubMed  CAS  Google Scholar 

  61. Keen AJ, Knowles MA. Definition of two regions of deletion on chromosome 9 in carcinoma of the bladder. Oncogene. 1994;9(7):2083–8.

    PubMed  CAS  Google Scholar 

  62. Linnenbach AJ, Pressler LB, Seng BA, Kimmel BS, Tomaszewski JE, Malkowicz SB. Characterization of chromosome 9 deletions in transitional cell carcinoma by microsatellite assay. Hum Mol Genet. 1993;2(9):1407–11.

    Article  PubMed  CAS  Google Scholar 

  63. Miyao N, Tsai YC, Lerner SP, et al. Role of chromosome 9 in human bladder cancer. Cancer Res. 1993;53(17):4066–70.

    PubMed  CAS  Google Scholar 

  64. Orlow I, Lianes P, Lacombe L, Dalbagni G, Reuter VE, Cordon-Cardo C. Chromosome 9 allelic losses and microsatellite alterations in human bladder tumors. Cancer Res. 1994;54(11):2848–51.

    PubMed  CAS  Google Scholar 

  65. Simoneau AR, Spruck 3rd CH, Gonzalez-Zulueta M, et al. Evidence for two tumor suppressor loci associated with proximal chromosome 9p to q and distal chromosome 9q in bladder cancer and the initial screening for GAS1 and PTC mutations. Cancer Res. 1996;56(21):5039–43.

    PubMed  CAS  Google Scholar 

  66. Hornigold N, Devlin J, Davies AM, Aveyard JS, Habuchi T, Knowles MA. Mutation of the 9q34 gene TSC1 in sporadic bladder cancer. Oncogene. 1999;18(16):2567–61.

    Article  CAS  Google Scholar 

  67. van Slegtenhorst M, de Hoogt R, Hermans C, et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science. 1997;277(5327):805–8.

    Article  PubMed  Google Scholar 

  68. Knowles MA, Habuchi T, Kennedy W, Cuthbert-Heavens D. Mutation spectrum of the 9q34 tuberous sclerosis gene TSC1 in transitional cell carcinoma of the bladder. Cancer Res. 2003;63(22):7652–6.

    PubMed  CAS  Google Scholar 

  69. Pymar LS, Platt FM, Askham JM, Morrison EE, Knowles MA. Bladder tumour-derived somatic TSC1 missense mutations cause loss of function via distinct mechanisms. Hum Mol Genet. 2008;17(13):2006–17.

    Article  PubMed  CAS  Google Scholar 

  70. Adachi H, Igawa M, Shiina H, Urakami S, Shigeno K, Hino O. Human bladder tumors with 2-hit mutations of tumor suppressor gene TSC1 and decreased expression of p27. J Urol. 2003;170(2 Pt 1):601–4.

    Article  PubMed  CAS  Google Scholar 

  71. Habuchi T, Yoshida O, Knowles MA. A novel candidate tumour suppressor locus at 9q32-33 in bladder cancer: localization of the candidate region within a single 840 kb YAC. Hum Mol Genet. 1997;6(6):913–9.

    Article  PubMed  CAS  Google Scholar 

  72. Habuchi T, Luscombe M, Elder PA, Knowles MA. Structure and methylation-based silencing of a gene (DBCCR1) within a candidate bladder cancer tumor suppressor region at 9q32-q33. Genomics. 1998;48(3):277–88.

    Article  PubMed  CAS  Google Scholar 

  73. Simoneau M, Aboulkassim TO, LaRue H, Rousseau F, Fradet Y. Four tumor suppressor loci on chromosome 9q in bladder cancer: evidence for two novel candidate regions at 9q22.3 and 9q31. Oncogene. 1999;18(1):157–63.

    Article  PubMed  CAS  Google Scholar 

  74. Thievessen I, Wolter M, Prior A, Seifert HH, Schulz WA. Hedgehog signaling in normal urothelial cells and in urothelial carcinoma cell lines. J Cell Physiol. 2005;203(2):372–7.

    Article  PubMed  CAS  Google Scholar 

  75. Sonny LJ, Samuel MC. Epidemiology and etiology of bladder cancer. Semin Surg Oncol. 1997;13(5):291–8.

    Article  Google Scholar 

  76. Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 1993;366(6546):704–7.

    Article  PubMed  CAS  Google Scholar 

  77. Hannon GJ, Beach D. p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature. 1994;371(6494):257–61.

    Article  PubMed  CAS  Google Scholar 

  78. Schulze A, Zerfass K, Spitkovsky D, Henglein B, Jansen-Dürr P. Activation of the E2F transcription factor by cyclin D1 is blocked by p16INK4, the product of the putative tumor suppressor gene MTS1. Oncogene. 1994;9(12):3475–82.

    PubMed  CAS  Google Scholar 

  79. Johnson DG. Regulation of E2F-1 gene expression by p130 (Rb2) and D-type cyclin kinase activity. Oncogene. 1995;11(9):1685–92.

    PubMed  CAS  Google Scholar 

  80. Gonzalez-Zulueta M, Shibata A, Ohneseit PF, et al. High frequency of chromosome 9p allelic loss and CDKN2 tumor suppressor gene alterations in squamous cell carcinoma of the bladder. J Natl Cancer Inst. 1995;87(18):1383–93.

    Article  PubMed  CAS  Google Scholar 

  81. Gonzalez-Zulueta M, Bender CM, Yang AS, et al. Methylation of the 5’ CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res. 1995;55(20):4531–5.

    PubMed  CAS  Google Scholar 

  82. Orlow I, Lacombe L, Hannon GJ, et al. Deletion of the p16 and p15 genes in human bladder tumors. J Natl Cancer Inst. 1995;87(20):1524–9.

    Article  PubMed  CAS  Google Scholar 

  83. Southgate J, Proffitt J, Roberts P, Smith B, Selby P. Loss of cyclin-dependent kinase inhibitor genes and chromosome 9 karyotypic abnormalities in human bladder cancer cell lines. Br J Cancer. 1995;72(5):1214–8.

    Article  PubMed  CAS  Google Scholar 

  84. Le Frere-Belda MA, Cappellen D, Daher A, et al. p15INK4b in bladder carcinomas: decreased expression in superficial tumours. Br J Cancer. 2001;85(10):1515–21.

    Article  PubMed  Google Scholar 

  85. Joanne E, Pamela D, James JG, Amanda DW, Kenneth MG, John MSB. Identification of loci associated with putative recurrence genes in transitional cell carcinoma of the urinary bladder. J Pathol. 2002;196(4):380–5.

    Article  Google Scholar 

  86. Friedrich MG, Blind C, Milde-Langosch K, et al. Frequent p16/MTS1 inactivation in early stages of urothelial carcinoma of the bladder is not associated with tumor recurrence. Eur Urol. 2001;40(5):518–24.

    Article  PubMed  CAS  Google Scholar 

  87. Riccardo B, Tommaso C, Gabriella N, Lucia Roberta G, Gianna B, Maurizio Dal C. Loss of P16 expression and chromosome 9p21 LOH in predicting outcome of patients affected by superficial bladder cancer. J Surg Res. 2007;143(2):422–7.

    Article  CAS  Google Scholar 

  88. Bartlett JM, Watters AD, Ballantyne SA, Going JJ, Grigor KM, Cooke TG. Is chromosome 9 loss a marker of disease recurrence in transitional cell carcinoma of the urinary bladder? Br J Cancer. 1998;77(12):2193–8.

    Article  PubMed  CAS  Google Scholar 

  89. Lopez-Beltran A, Alvarez-Kindelan J, Luque RJ, et al. Loss of heterozygosity at 9q32-33 (DBC1 locus) in primary non-invasive papillary urothelial neoplasm of low malignant potential and low-grade urothelial carcinoma of the bladder and their associated normal urothelium. J Pathol. 2008;215(3):263–72.

    Article  PubMed  CAS  Google Scholar 

  90. Sanchez-Carbayo M, Socci ND, Charytonowicz E, et al. Molecular profiling of bladder cancer using cDNA microarrays: defining histogenesis and biological phenotypes. Cancer Res. 2002;62(23):6973–80.

    PubMed  CAS  Google Scholar 

  91. Dyrskjot L, Thykjaer T, Kruhoffer M, et al. Identifying distinct classes of bladder carcinoma using microarrays. Nat Genet. 2003;33(1):90–6.

    Article  PubMed  CAS  Google Scholar 

  92. Sanchez-Carbayo M, Socci ND, Lozano JJ, et al. Gene discovery in bladder cancer progression using cDNA microarrays. Am J Pathol. 2003;163(2):505–16.

    Article  PubMed  CAS  Google Scholar 

  93. Wild PJ, Herr A, Wissmann C, et al. Gene expression profiling of progressive papillary noninvasive carcinomas of the urinary bladder. Clin Cancer Res. 2005;11(12):4415–29.

    Article  PubMed  CAS  Google Scholar 

  94. Lindgren D, Liedberg F, Andersson A, et al. Molecular characterization of early-stage bladder carcinomas by expression profiles, FGFR3 mutation status, and loss of 9q. Oncogene. 2006;25(18):2685–96.

    Article  PubMed  CAS  Google Scholar 

  95. Dyrskjot L, Zieger K, Kruhoffer M, et al. A molecular signature in superficial bladder carcinoma predicts clinical outcome. Clin Cancer Res. 2005;11(11):4029–36.

    Article  PubMed  CAS  Google Scholar 

  96. Dyrskjot L, Zieger K, Real FX, et al. Gene expression signatures predict outcome in non-muscle-invasive bladder carcinoma: a multicenter validation study. Clin Cancer Res. 2007;13(12):3545–51.

    Article  PubMed  CAS  Google Scholar 

  97. Dyrskjot L, Kruhoffer M, Thykjaer T, et al. Gene expression in the urinary bladder: a common carcinoma in situ gene expression signature exists disregarding histopathological classification. Cancer Res. 2004;64(11):4040–8.

    Article  PubMed  CAS  Google Scholar 

  98. Wang R, Morris DS, Tomlins SA, et al. Development of a multiplex quantitative PCR signature to predict progression in non-muscle-invasive bladder cancer. Cancer Res. 2009;69(9):3810–8.

    Article  PubMed  CAS  Google Scholar 

  99. Holyoake A, O’Sullivan P, Pollock R, et al. Development of a multiplex RNA urine test for the detection and stratification of transitional cell carcinoma of the bladder. Clin Cancer Res. 2008;14(3):742–9.

    Article  PubMed  CAS  Google Scholar 

  100. Fan C, Oh DS, Wessels L, et al. Concordance among gene-expression-based predictors for breast cancer. N Engl J Med. 2006;355(6):560–9.

    Article  PubMed  CAS  Google Scholar 

  101. Alexandroff AB, Jackson AM, O’Donnell MA, James K. BCG immunotherapy of bladder cancer: 20 years on. Lancet. 1999;353(9165):1689–94.

    Article  PubMed  CAS  Google Scholar 

  102. Bevers RF, Kurth KH, Schamhart DH. Role of urothelial cells in BCG immunotherapy for superficial bladder cancer. Br J Cancer. 2004;91(4):607–12.

    PubMed  CAS  Google Scholar 

  103. Kawashima T, Norose Y, Watanabe Y, et al. Cutting edge: major CD8 T cell response to live bacillus Calmette-Guerin is mediated by CD1 molecules. J Immunol. 2003;170(11):5345–8.

    PubMed  CAS  Google Scholar 

  104. Ayari C, LaRue H, Hovington H, et al. Bladder tumor infiltrating mature dendritic cells and macrophages as predictors of response to bacillus Calmette-Guerin immunotherapy. Eur Urol. 2009;55(6):1386–95.

    Article  PubMed  CAS  Google Scholar 

  105. Jemal A, Siegel R, Ward E, et al. Cancer Statistics, 2008. CA Cancer J Clin 2008.

    Google Scholar 

  106. Messing EM. Urothelial tumors of the bladder. In: Wein A, Kavoussi L, Novick A, Partin A, Peters C, editors. Campbell-Walsh urology. 9th ed. Philadelphia: Saunders Elsevier; 2007.

    Google Scholar 

  107. Babaian RJ, Johnson DE, Llamas L, Ayala AG. Metastases from transitional cell carcinoma of urinary bladder. Urology. 1980;16(2):142–4.

    Article  PubMed  CAS  Google Scholar 

  108. Goldman SM, Fajardo AA, Naraval RC, Madewell JE. Metastatic transitional cell carcinoma from the bladder: radiographic manifestions. AJR Am J Roentgenol. 1979;132(3):419–25.

    PubMed  CAS  Google Scholar 

  109. Sengelov L, Kamby C, von der Maase H. Pattern of metastases in relation to characteristics of primary tumor and treatment in patients with disseminated urothelial carcinoma. J Urol. 1996;155(1):111–4.

    Article  PubMed  CAS  Google Scholar 

  110. Mitra AP, Datar RH, Cote RJ. Molecular pathways in invasive bladder cancer: new insights into mechanisms, progression, and target identification. J Clin Oncol. 2006;24(35):5552–64.

    Article  PubMed  CAS  Google Scholar 

  111. Mitra AP, Birkhahn M, Cote RJ. p53 and retinoblastoma pathways in bladder cancer. World J Urol. 2007;25(6):563–71.

    Article  PubMed  CAS  Google Scholar 

  112. Spruck III CH, Ohneseit PF, Gonzalez-Zulueta M, et al. Two molecular pathways to transitional cell carcinoma of the bladder. Cancer Res. 1994;54(3):784–8.

    PubMed  CAS  Google Scholar 

  113. Ioachim E, Charchanti A, Stavropoulos NE, Skopelitou A, Athanassiou ED, Agnantis NJ. Immuno­histochemical expression of retinoblastoma gene product (Rb), p53 protein, MDM2, c-erbB-2, HLA-DR and proliferation indices in human urinary bladder carcinoma. Histol Histopathol. 2000;15(3):721–7.

    PubMed  CAS  Google Scholar 

  114. Peyromaure M, Ravery V. Prognostic value of p53 overexpression in bladder tumors treated with Bacillus Calmette-Guerin. Exp Rev Anticancer Ther. 2002;2(6):667–70.

    Article  CAS  Google Scholar 

  115. Stavropoulos NE, Filiadis I, Ioachim E, et al. Prognostic significance of p53, bcl-2 and Ki-67 in high risk superficial bladder cancer. Anticancer Res. 2002;22(6B):3759–64.

    PubMed  Google Scholar 

  116. Sarkis AS, Bajorin DF, Reuter VE, et al. Prognostic value of p53 nuclear overexpression in patients with invasive bladder cancer treated with neoadjuvant MVAC. J Clin Oncol. 1995;13(6):1384–90.

    PubMed  CAS  Google Scholar 

  117. Sarkis AS, Dalbagni G, Cordon-Cardo C, et al. Nuclear overexpression of p53 protein in transitional cell bladder carcinoma: a marker for disease progression. J Natl Cancer Inst. 1993;85(1):53–9.

    Article  PubMed  CAS  Google Scholar 

  118. Esrig D, Elmajian D, Groshen S, et al. Accumulation of nuclear p53 and tumor progression in bladder cancer. N England J Med. 1994;331(19):1259–64.

    Article  CAS  Google Scholar 

  119. Esrig D, Spruck 3rd CH, Nichols PW, et al. p53 nuclear protein accumulation correlates with mutations in the p53 gene, tumor grade, and stage in bladder cancer. Am J Pathol. 1993;143(5):1389–97.

    PubMed  CAS  Google Scholar 

  120. Fujimoto K, Yamada Y, Okajima E, et al. Frequent association of p53 gene mutation in invasive bladder cancer. Cancer Res. 1992;52(6):1393–8.

    PubMed  CAS  Google Scholar 

  121. Matsuyama H, Pan Y, Mahdy EA, et al. p53 deletion as a genetic marker in urothelial tumor by fluorescence in situ hybridization. Cancer Res. 1994;54(23):6057–60.

    PubMed  CAS  Google Scholar 

  122. Moch H, Sauter G, Moore D, Mihatsch MJ, Gudat F, Waldman F. p53 and erbB-2 protein overexpression are associated with early invasion and metastasis in bladder cancer. Virchows Arch A Pathol Anat Histopathol. 1993;423(5):329–34.

    Article  PubMed  CAS  Google Scholar 

  123. Soini Y, Turpeenniemi-Hujanen T, Kamel D, et al. p53 immunohistochemistry in transitional cell carcinoma and dysplasia of the urinary bladder correlates with disease progression. Br J Cancer. 1993;68(5):1029–35.

    Article  PubMed  CAS  Google Scholar 

  124. Yamamoto S, Masui T, Murai T, et al. Frequent mutations of the p53 gene and infrequent H- and K-ras mutations in urinary bladder carcinomas of NON/Shi mice treated with N-butyl-N-(4-hydroxybutyl)nitrosamine. Carcinogenesis. 1995;16(10):2363–8.

    Article  PubMed  CAS  Google Scholar 

  125. Thomas CY, Theodorescu D. Molecular markers of prognosis and novel therapeutic strategies for urothelial cell carcinomas. World J Urol. 2006;24(5):565–78.

    Article  PubMed  Google Scholar 

  126. Cairns P, Proctor AJ, Knowles MA. Loss of heterozygosity at the RB locus is frequent and correlates with muscle invasion in bladder carcinoma. Oncogene. 1991;6(12):2305–9.

    PubMed  CAS  Google Scholar 

  127. Cordon-Cardo C, Sheinfeld J, Dalbagni G. Genetic studies and molecular markers of bladder cancer. Semin Surg Oncol. 1997;13(5):319–27.

    Article  PubMed  CAS  Google Scholar 

  128. Cordon-Cardo C, Wartinger D, Petrylak D, et al. Altered expression of the retinoblastoma gene product: prognostic indicator in bladder cancer. J Natl Cancer Inst. 1992;84(16):1251–6.

    Article  PubMed  CAS  Google Scholar 

  129. Grossman HB, Liebert M, Antelo M, et al. p53 and RB expression predict progression in T1 bladder cancer. Clin Cancer Res. 1998;4(4):829–34.

    PubMed  CAS  Google Scholar 

  130. Shariat SF, Tokunaga H, Zhou J, et al. p53, p21, pRB, and p16 expression predict clinical outcome in cystectomy with bladder cancer. J Clin Oncol. 2004;22(6):1014–24.

    Article  PubMed  CAS  Google Scholar 

  131. Gorgoulis VG, Barbatis C, Poulias I, Karameris AM. Molecular and immunohistochemical evaluation of epidermal growth factor receptor and c-erb-B-2 gene product in transitional cell carcinomas of the urinary bladder: a study in Greek patients. Mod Pathol. 1995;8(7):758–64.

    PubMed  CAS  Google Scholar 

  132. Lipponen P, Eskelinen M. Expression of epidermal growth factor receptor in bladder cancer as related to established prognostic factors, oncoprotein (c-erbB-2, p53) expression and long-term prognosis. Br J Cancer. 1994;69(6):1120–5.

    Article  PubMed  CAS  Google Scholar 

  133. Chow NH, Liu HS, Lee EI, et al. Significance of urinary epidermal growth factor and its receptor expression in human bladder cancer. Anticancer Res. 1997;17(2B):1293–6.

    PubMed  CAS  Google Scholar 

  134. Ravery V, Grignon D, Angulo J, et al. Evaluation of epidermal growth factor receptor, transforming growth factor alpha, epidermal growth factor and c-erbB2 in the progression of invasive bladder cancer. Urol Res. 1997;25(1):9–17.

    Article  PubMed  CAS  Google Scholar 

  135. Nguyen PL, Swanson PE, Jaszcz W, et al. Expression of epidermal growth factor receptor in invasive transitional cell carcinoma of the urinary bladder. A multivariate survival analysis. Am J Clin Pathol. 1994;101(2):166–76.

    PubMed  CAS  Google Scholar 

  136. Sauter G, Haley J, Chew K, et al. Epidermal-growth-factor-receptor expression is associated with rapid tumor proliferation in bladder cancer. Int J Cancer. 1994;57(4):508–14.

    Article  PubMed  CAS  Google Scholar 

  137. Gontero P, Banisadr S, Frea B, Brausi M. Metastasis markers in bladder cancer: a review of the literature and clinical considerations. Eur Urol. 2004;46(3):296–311.

    Article  PubMed  CAS  Google Scholar 

  138. Knowles MA. Molecular subtypes of bladder cancer: Jekyll and Hyde or chalk and cheese? Carcinogenesis. 2006;27(3):361–73.

    Article  PubMed  CAS  Google Scholar 

  139. Miyake H, Hara I, Gohji K, Yoshimura K, Arakawa S, Kamidono S. Expression of basic fibroblast growth factor is associated with resistance to cisplatin in a human bladder cancer cell line. Cancer Lett. 1998;123(2):121–6.

    Article  PubMed  CAS  Google Scholar 

  140. Miyake H, Yoshimura K, Hara I, Eto H, Arakawa S, Kamidono S. Basic fibroblast growth factor regulates matrix metalloproteinases production and in vitro invasiveness in human bladder cancer cell lines. J Urol. 1997;157(6):2351–5.

    Article  PubMed  CAS  Google Scholar 

  141. Munro NP, Knowles MA. Fibroblast growth factors and their receptors in transitional cell carcinoma. J Urol. 2003;169(2):675–82.

    Article  PubMed  CAS  Google Scholar 

  142. Thomas-Mudge RJ, Okada-Ban M, Vandenbroucke F, et al. Nuclear FGF-2 facilitates cell survival in vitro and during establishment of metastases. Oncogene. 2004;23(27):4771–9.

    Article  PubMed  CAS  Google Scholar 

  143. Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol 2001;2(3):Reviews 3005.

    Google Scholar 

  144. Ricol D, Cappellen D, El Marjou A, et al. Tumour suppressive properties of fibroblast growth factor receptor 2-IIIb in human bladder cancer. Oncogene. 1999;18(51):7234–43.

    Article  PubMed  CAS  Google Scholar 

  145. Bernard-Pierrot I, Brams A, Dunois-Larde C, et al. Oncogenic properties of the mutated forms of fibroblast growth factor receptor 3b. Carcinogenesis. 2006;27(4):740–7.

    Article  PubMed  CAS  Google Scholar 

  146. Bernard-Pierrot I, Ricol D, Cassidy A, et al. Inhibition of human bladder tumour cell growth by fibroblast growth factor receptor 2b is independent of its kinase activity. Involvement of the carboxy-terminal region of the receptor. Oncogene. 2004;23(57):9201–11.

    PubMed  CAS  Google Scholar 

  147. Shibuya M. Vascular endothelial growth factor-dependent and -independent regulation of angiogenesis. BMB Rep. 2008;41(4):278–86.

    Article  PubMed  CAS  Google Scholar 

  148. Crew JP, O’Brien T, Bradburn M, et al. Vascular endothelial growth factor is a predictor of relapse and stage progression in superficial bladder cancer. Cancer Res. 1997;57(23):5281–5.

    PubMed  CAS  Google Scholar 

  149. Bouck N, Campbell S. Anti-cancer dividends from captopril and other inhibitors of angiogenesis. J Nephrol. 1998;11(1):3–4.

    PubMed  CAS  Google Scholar 

  150. Campbell CL, Savarese DM, Quesenberry PJ, Savarese TM. Expression of multiple angiogenic cytokines in cultured normal human prostate epithelial cells: predominance of vascular endothelial growth factor. Int J Cancer. 1999;80(6):868–74.

    Article  PubMed  CAS  Google Scholar 

  151. Campbell SC, Volpert OV, Ivanovich M, Bouck NP. Molecular mediators of angiogenesis in bladder cancer. Cancer Res. 1998;58(6):1298–304.

    PubMed  CAS  Google Scholar 

  152. Wu W, Shu X, Hovsepyan H, Mosteller RD, Broek D. VEGF receptor expression and signaling in human bladder tumors. Oncogene. 2003;22(22):3361–70.

    Article  PubMed  CAS  Google Scholar 

  153. Herrmann E, Eltze E, Bierer S, et al. VEGF-C, VEGF-D and Flt-4 in transitional bladder cancer: relationships to clinicopathological parameters and long-term survival. Anticancer Res. 2007;27(5A):3127–33.

    PubMed  Google Scholar 

  154. Herrmann E, Eltze E, Kopke T, et al. New markers for pharmacological targeting in bladder cancer with lymph node metastasis. Aktuelle Urol. 2007;38(5):392–7.

    Article  PubMed  CAS  Google Scholar 

  155. Sporn MB, Roberts AB. Transforming growth factor-beta. Multiple actions and potential clinical applications. JAMA. 1989;262(7):938–41.

    Article  PubMed  CAS  Google Scholar 

  156. Coombs LM, Pigott DA, Eydmann ME, Proctor AJ, Knowles MA. Reduced expression of TGF beta is associated with advanced disease in transitional cell carcinoma. Br J Cancer. 1993;67(3):578–84.

    Article  PubMed  CAS  Google Scholar 

  157. Miyamoto H, Kubota Y, Shuin T, Torigoe S, Dobashi Y, Hosaka M. Expression of transforming growth factor-beta 1 in human bladder cancer. Cancer. 1995;75(10):2565–70.

    Article  PubMed  CAS  Google Scholar 

  158. Eder IE, Stenzl A, Hobisch A, Cronauer MV, Bartsch G, Klocker H. Transforming growth factors-beta 1 and beta 2 in serum and urine from patients with bladder carcinoma. J Urol. 1996;156(3):953–7.

    Article  PubMed  CAS  Google Scholar 

  159. Eder IE, Stenzl A, Hobisch A, Cronauer MV, Bartsch G, Klocker H. Expression of transforming growth factors beta-1, beta 2 and beta 3 in human bladder carcinomas. Br J Cancer. 1997;75(12):1753–60.

    Article  PubMed  CAS  Google Scholar 

  160. Kim JH, Shariat SF, Kim IY, et al. Predictive value of expression of transforming growth factor-beta(1) and its receptors in transitional cell carcinoma of the urinary bladder. Cancer. 2001;92(6):1475–83.

    Article  PubMed  CAS  Google Scholar 

  161. Matsumoto K, Shariat SF, Casella R, Wheeler TM, Slawin KM, Lerner SP. Preoperative plasma soluble E-cadherin predicts metastases to lymph nodes and prognosis in patients undergoing radical cystectomy. J Urol. 2003;170(6 Pt 1):2248–52.

    Article  PubMed  CAS  Google Scholar 

  162. Shariat SF, Casella R, Monoski MA, Sulser T, Gasser TC, Lerner SP. The addition of urinary urokinase-type plasminogen activator to urinary nuclear matrix protein 22 and cytology improves the detection of bladder cancer. J Urol. 2003;170(6 Pt 1):2244–7.

    Article  PubMed  CAS  Google Scholar 

  163. Shariat SF, Matsumoto K, Kim J, et al. Correlation of cyclooxygenase-2 expression with molecular markers, pathological features and clinical outcome of transitional cell carcinoma of the bladder. J Urol. 2003;170(3):985–9.

    Article  PubMed  CAS  Google Scholar 

  164. Wieser R. The transforming growth factor-beta signaling pathway in tumorigenesis. Curr Opin Oncol. 2001;13(1):70–7.

    Article  PubMed  CAS  Google Scholar 

  165. Titus B, Frierson Jr HF, Conaway M, et al. Endothelin axis is a target of the lung metastasis suppressor gene RhoGDI2. Cancer Res. 2005;65(16):7320–7.

    Article  PubMed  CAS  Google Scholar 

  166. Ellenbroek SI, Collard JG. Rho GTPases: functions and association with cancer. Clin Exp Metastasis. 2007;24(8):657–72.

    Article  PubMed  CAS  Google Scholar 

  167. Kamai T, Tsujii T, Arai K, et al. Significant association of Rho/ROCK pathway with invasion and metastasis of bladder cancer. Clin Cancer Res. 2003;9(7):2632–41.

    PubMed  CAS  Google Scholar 

  168. Nitz MD, Harding MA, Theodorescu D. Invasion and metastasis models for studying RhoGDI2 in bladder cancer. Methods Enzymol. 2008;439:219–33.

    Article  PubMed  CAS  Google Scholar 

  169. Theodorescu D. Molecular biology of invasive and metastatic urothelial cancer. In: Lerner S, Schoenberg M, Sternberg C, editors. Textbook of bladder cancer. New York: Taylor & Francis; 2006. p. 147–56.

    Google Scholar 

  170. Seraj MJ, Harding MA, Gildea JJ, Welch DR, Theodorescu D. The relationship of BRMS1 and RhoGDI2 gene expression to metastatic potential in lineage related human bladder cancer cell lines. Clin Exp Metastasis. 2000;18(6):519–25.

    Article  PubMed  CAS  Google Scholar 

  171. Theodorescu D, Sapinoso LM, Conaway MR, Oxford G, Hampton GM, Frierson Jr HF. Reduced expression of metastasis suppressor RhoGDI2 is associated with decreased survival for patients with bladder cancer. Clin Cancer Res. 2004;10(11):3800–6.

    Article  PubMed  CAS  Google Scholar 

  172. Gildea JJ, Seraj MJ, Oxford G, et al. RhoGDI2 is an invasion and metastasis suppressor gene in human cancer. Cancer Res. 2002;62(22):6418–23.

    PubMed  CAS  Google Scholar 

  173. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54.

    Article  PubMed  CAS  Google Scholar 

  174. Bornman DM, Mathew S, Alsruhe J, Herman JG, Gabrielson E. Methylation of the E-cadherin gene in bladder neoplasia and in normal urothelial epithelium from elderly individuals. Am J Pathol. 2001;159(3):831–5.

    Article  PubMed  CAS  Google Scholar 

  175. Dhawan D, Hamdy FC, Rehman I, et al. Evidence for the early onset of aberrant promoter methylation in urothelial carcinoma. J Pathol. 2006;209(3):336–43.

    Article  PubMed  CAS  Google Scholar 

  176. Horikawa Y, Sugano K, Shigyo M, et al. Hypermethylation of an E-cadherin (CDH1) promoter region in high grade transitional cell carcinoma of the bladder comprising carcinoma in situ. J Urol. 2003;169(4):1541–5.

    Article  PubMed  CAS  Google Scholar 

  177. Nakopoulou L, Zervas A, Gakiopoulou-Givalou H, et al. Prognostic value of E-cadherin, beta-catenin, P120ctn in patients with transitional cell bladder cancer. Anticancer Res. 2000;20(6B):4571–8.

    PubMed  CAS  Google Scholar 

  178. Sun W, Herrera GA. E-cadherin expression in urothelial carcinoma in situ, superficial papillary transitional cell carcinoma, and invasive transitional cell carcinoma. Hum Pathol. 2002;33(10):996–1000.

    Article  PubMed  Google Scholar 

  179. Sun W, Herrera GA. E-cadherin expression in invasive urothelial carcinoma. Ann Diagn Pathol. 2004;8(1):17–22.

    Article  PubMed  Google Scholar 

  180. Imao T, Koshida K, Endo Y, Uchibayashi T, Sasaki T, Namiki M. Dominant role of E-cadherin in the progression of bladder cancer. J Urol. 1999;161(2):692–8.

    Article  PubMed  CAS  Google Scholar 

  181. Syrigos KN, Krausz T, Waxman J, et al. E-cadherin expression in bladder cancer using formalin-fixed, paraffin-embedded tissues: correlation with histopathological grade, tumour stage and survival. Int J Cancer. 1995;64(6):367–70.

    Article  PubMed  CAS  Google Scholar 

  182. Mahnken A, Kausch I, Feller AC, Kruger S. E-cadherin immunoreactivity correlates with recurrence and progression of minimally invasive transitional cell carcinomas of the urinary bladder. Oncol Rep. 2005;14(4):1065–70.

    PubMed  CAS  Google Scholar 

  183. Shariat SF, Pahlavan S, Baseman AG, et al. E-cadherin expression predicts clinical outcome in carcinoma in situ of the urinary bladder. Urology. 2001;57(1):60–5.

    Article  PubMed  CAS  Google Scholar 

  184. Byrne RR, Shariat SF, Brown R, et al. E-cadherin immunostaining of bladder transitional cell carcinoma, carcinoma in situ and lymph node metastases with long-term followup. J Urol. 2001;165(5):1473–9.

    Article  PubMed  CAS  Google Scholar 

  185. Rao J, Seligson D, Visapaa H, et al. Tissue microarray analysis of cytoskeletal actin-associated biomarkers gelsolin and E-cadherin in urothelial carcinoma. Cancer. 2002;95(6):1247–57.

    Article  PubMed  CAS  Google Scholar 

  186. Rieger-Christ KM, Lee P, Zagha R, et al. Novel expression of N-cadherin elicits in vitro bladder cell invasion via the Akt signaling pathway. Oncogene. 2004;23(27):4745–53.

    Article  PubMed  CAS  Google Scholar 

  187. Clairotte A, Lascombe I, Fauconnet S, et al. Expression of E-cadherin and alpha-, beta-, gamma-catenins in patients with bladder cancer: identification of gamma-catenin as a new prognostic marker of neoplastic progression in T1 superficial urothelial tumors. Am J Clin Pathol. 2006;125(1):119–26.

    PubMed  CAS  Google Scholar 

  188. Shariat SF, Matsumoto K, Casella R, Jian W, Lerner SP. Urinary levels of soluble e-cadherin in the detection of transitional cell carcinoma of the urinary bladder. Eur Urol. 2005;48(1):69–76.

    Article  PubMed  CAS  Google Scholar 

  189. Julien S, Puig I, Caretti E, et al. Activation of NF-kappaB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene. 2007;26(53):7445–56.

    Article  PubMed  CAS  Google Scholar 

  190. Zhang Z, Xie D, Li X, et al. Significance of TWIST expression and its association with E-cadherin in bladder cancer. Hum Pathol. 2007;38(4):598–606.

    Article  PubMed  CAS  Google Scholar 

  191. Fondrevelle ME, Kantelip B, Reiter RE, et al. The expression of Twist has an impact on survival in human bladder cancer and is influenced by the smoking status. Urol Oncol. 2009;27(3):268–76.

    Article  PubMed  CAS  Google Scholar 

  192. Harabayashi T, Kanai Y, Yamada T, et al. Reduction of integrin beta4 and enhanced migration on laminin in association with intraepithelial spreading of ­urinary bladder carcinomas. J Urol. 1999;161(4):1364–71.

    Article  PubMed  CAS  Google Scholar 

  193. Grossman HB, Lee C, Bromberg J, Liebert M. Expression of the alpha6beta4 integrin provides prognostic information in bladder cancer. Oncol Rep. 2000;7(1):13–6.

    PubMed  CAS  Google Scholar 

  194. Liebert M, Gebhardt D, Wood C, et al. Urothelial differentiation and bladder cancer. Adv Exp Med Biol. 1999;462:437–48.

    Article  PubMed  CAS  Google Scholar 

  195. Chen F, Zhang G, Iwamoto Y, See WA. Bacillus Calmette-Guerin initiates intracellular signaling in a transitional carcinoma cell line by cross-linking alpha 5 beta 1 integrin. J Urol. 2003;170(2 Pt 1):605–10.

    Article  PubMed  CAS  Google Scholar 

  196. Kausch I, Ardelt P, Bohle A, Ratliff TL. Immune gene therapy in urology. Curr Urol Rep. 2002;3(1):82–9.

    Article  PubMed  Google Scholar 

  197. Numahata K, Satoh M, Handa K, et al. Sialosyl-Le(x) expression defines invasive and metastatic properties of bladder carcinoma. Cancer. 2002;94(3):673–85.

    Article  PubMed  CAS  Google Scholar 

  198. Al-Sukhun S, Hussain M. Molecular biology of transitional cell carcinoma. Crit Rev Oncol Hematol. 2003;47(2):181–93.

    Article  PubMed  Google Scholar 

  199. Sathyanarayana UG, Maruyama R, Padar A, et al. Molecular detection of noninvasive and invasive bladder tumor tissues and exfoliated cells by aberrant promoter methylation of laminin-5 encoding genes. Cancer Res. 2004;64(4):1425–30.

    Article  PubMed  CAS  Google Scholar 

  200. Lokeshwar VB, Obek C, Pham HT, et al. Urinary hyaluronic acid and hyaluronidase: markers for bladder cancer detection and evaluation of grade. J Urol. 2000;163(1):348–56.

    Article  PubMed  CAS  Google Scholar 

  201. Lokeshwar VB, Selzer MG. Differences in hyaluronic acid-mediated functions and signaling in arterial, microvessel, and vein-derived human endothelial cells. J Biol Chem. 2000;275(36):27641–9.

    PubMed  CAS  Google Scholar 

  202. Lokeshwar VB, Obek C, Soloway MS, Block NL. Tumor-associated hyaluronic acid: a new sensitive and specific urine marker for bladder cancer. Cancer Res. 1997;57(4):773–7.

    PubMed  CAS  Google Scholar 

  203. Lokeshwar VB, Block NL. HA-HAase urine test. A sensitive and specific method for detecting bladder cancer and evaluating its grade. Urol Clin North Am. 2000;27(1):53–61.

    Article  PubMed  CAS  Google Scholar 

  204. Lokeshwar VB, Selzer MG. Urinary bladder tumor markers. Urol Oncol. 2006;24(6):528–37.

    Article  PubMed  CAS  Google Scholar 

  205. Kuncova J, Urban M, Mandys V. Expression of CD44s and CD44v6 in transitional cell carcinomas of the urinary bladder: comparison with tumour grade, proliferative activity and p53 immunoreactivity of tumour cells. APMIS. 2007;115(11):1194–205.

    Article  PubMed  Google Scholar 

  206. Muramaki M, Miyake H, Kamidono S, Hara I. Over expression of CD44V8-10 in human bladder cancer cells decreases their interaction with hyaluronic acid and potentiates their malignant progression. J Urol. 2004;171(1):426–30.

    Article  PubMed  CAS  Google Scholar 

  207. Naor D, Sionov RV, Ish-Shalom D. CD44: structure, function, and association with the malignant process. Adv Cancer Res. 1997;71:241–319.

    Article  PubMed  CAS  Google Scholar 

  208. Garcia del Muro X, Torregrosa A, Munoz J, et al. Prognostic value of the expression of E-cadherin and beta-catenin in bladder cancer. Eur J Cancer. 2000;36(3):357–62.

    Article  PubMed  CAS  Google Scholar 

  209. Hong RL, Pu YS, Chu JS, Lee WJ, Chen YC, Wu CW. Correlation of expression of CD44 isoforms and E-cadherin with differentiation in human urothelial cell lines and transitional cell carcinoma. Cancer Lett. 1995;89(1):81–7.

    Article  PubMed  CAS  Google Scholar 

  210. Hong RL, Pu YS, Hsieh TS, Chu JS, Lee WJ. Expressions of E-cadherin and exon v6-containing isoforms of CD44 and their prognostic values in human transitional cell carcinoma. J Urol. 1995;153(6):2025–8.

    Article  PubMed  CAS  Google Scholar 

  211. Lipponen P, Aaltoma S, Kosma VM, Ala-Opas M, Eskelinen M. Expression of CD44 standard and variant-v6 proteins in transitional cell bladder tumours and their relation to prognosis during a long-term follow-up. J Pathol. 1998;186(2):157–64.

    Article  PubMed  CAS  Google Scholar 

  212. Sugino T, Gorham H, Yoshida K, et al. Progressive loss of CD44 gene expression in invasive bladder cancer. Am J Pathol. 1996;149(3):873–82.

    PubMed  CAS  Google Scholar 

  213. Ioachim E, Michael MC, Salmas M, et al. Thrombospondin-1 expression in urothelial carcinoma: prognostic significance and association with p53 alterations, tumour angiogenesis and extracellular matrix components. BMC Cancer. 2006;6:140.

    Article  PubMed  CAS  Google Scholar 

  214. Goddard JC, Sutton CD, Jones JL, O’Byrne KJ, Kockelbergh RC. Reduced thrombospondin-1 at presentation predicts disease progression in superficial bladder cancer. Eur Urol. 2002;42(5):464–8.

    Article  PubMed  Google Scholar 

  215. Smith SC, Oxford G, Wu Z, et al. The metastasis-associated gene CD24 is regulated by Ral GTPase and is a mediator of cell proliferation and survival in human cancer. Cancer Res. 2006;66(4):1917–22.

    Article  PubMed  CAS  Google Scholar 

  216. Choi YL, Lee SH, Kwon GY, et al. Overexpression of CD24: association with invasiveness in urothelial carcinoma of the bladder. Arch Pathol Lab Med. 2007;131(2):275–81.

    PubMed  CAS  Google Scholar 

  217. Black PC, Dinney CP. Bladder cancer angiogenesis and metastasis–translation from murine model to clinical trial. Cancer Metastasis Rev. 2007;26(3–4):623–34.

    Article  PubMed  Google Scholar 

  218. Margulis V, Shariat SF, Ashfaq R, et al. Expression of cyclooxygenase-2 in normal urothelium, and superficial and advanced transitional cell carcinoma of bladder. J Urol. 2007;177(3):1163–8.

    Article  PubMed  CAS  Google Scholar 

  219. Hammam OA, Aziz AA, Roshdy MS, Abdel Hadi AM. Possible role of cyclooxygenase-2 in schistosomal and non-schistosomal-associated bladder cancer. Medscape J Med. 2008;10(3):60.

    PubMed  Google Scholar 

  220. Yates DR, Rehman I, Abbod MF, et al. Promoter hypermethylation identifies progression risk in bladder cancer. Clin Cancer Res. 2007;13(7):2046–53.

    Article  PubMed  CAS  Google Scholar 

  221. Zu X, Tang Z, Li Y, Gao N, Ding J, Qi L. Vascular endothelial growth factor-C expression in bladder transitional cell cancer and its relationship to lymph node metastasis. BJU Int. 2006;98(5):1090–3.

    Article  PubMed  Google Scholar 

  222. Wulfing C, Eltze E, Piechota H, et al. Expression of endothelin-1 and endothelin-A and -B receptors in invasive bladder cancer. Oncol Rep. 2005;13(2):223–8.

    PubMed  Google Scholar 

  223. Modlich O, Prisack HB, Pitschke G, et al. Identifying superficial, muscle-invasive, and metastasizing transitional cell carcinoma of the bladder: use of cDNA array analysis of gene expression profiles. Clin Cancer Res. 2004;10(10):3410–21.

    Article  PubMed  CAS  Google Scholar 

  224. Sanchez-Carbayo M, Socci ND, Lozano J, Saint F, Cordon-Cardo C. Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays. J Clin Oncol. 2006;24(5):778–89.

    Article  PubMed  CAS  Google Scholar 

  225. Stein JP, Lieskovsky G, Cote R, et al. Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. J Clin Oncol. 2001;19(3):666–75.

    PubMed  CAS  Google Scholar 

  226. Sanchez-Carbayo M, Socci ND, Lozano JJ, Haab BB, Cordon-Cardo C. Profiling bladder cancer using targeted antibody arrays. Am J Pathol. 2006;168(1):93–103.

    Article  PubMed  CAS  Google Scholar 

  227. Havaleshko DM, Cho H, Conaway M, et al. Prediction of drug combination chemosensitivity in human bladder cancer. Mol Cancer Ther. 2007;6(2):578–86.

    Article  PubMed  CAS  Google Scholar 

  228. Takata R, Katagiri T, Kanehira M, et al. Predicting response to methotrexate, vinblastine, doxorubicin, and cisplatin neoadjuvant chemotherapy for bladder cancers through genome-wide gene expression profiling. Clin Cancer Res. 2005;11(7):2625–36.

    Article  PubMed  CAS  Google Scholar 

  229. Takata R, Katagiri T, Kanehira M, et al. Validation study of the prediction system for clinical response of M-VAC neoadjuvant chemotherapy. Cancer Sci. 2007;98(1):113–7.

    Article  PubMed  CAS  Google Scholar 

  230. Als AB, Dyrskjot L, von der Maase H, et al. Emmprin and survivin predict response and survival following cisplatin-containing chemotherapy in patients with advanced bladder cancer. Clin Cancer Res. 2007;13(15 Pt 1):4407–14.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Marchionni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marchionni, L., Theodorescu, D. (2012). Molecular Pathogenesis of Bladder Cancer. In: Hansel, D., McKenney, J., Stephenson, A., Chang, S. (eds) The Urinary Tract. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5320-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5320-8_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5319-2

  • Online ISBN: 978-1-4614-5320-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics