Skip to main content

Inverse Lax–Wendroff Procedure for Numerical Boundary Conditions of Hyperbolic Equations: Survey and New Developments

  • Chapter
Advances in Applied Mathematics, Modeling, and Computational Science

Part of the book series: Fields Institute Communications ((FIC,volume 66))

Abstract

In this paper, we give a survey and discuss new developments and computational results for a high order accurate numerical boundary condition based on finite difference methods for solving hyperbolic equations on Cartesian grids, while the physical domain can be arbitrarily shaped. The challenges result from the wide stencil of the high order interior scheme and the fact that the physical boundary does not usually coincide with grid lines. There are two main ingredients of the method. The first one is an inverse Lax-Wendroff procedure for inflow boundary conditions and the other one is a robust and high order accurate extrapolation for outflow boundary conditions. The method is high order accurate, stable under standard CFL conditions determined by the interior schemes, and easy to implement. We show applications in simulating interactions between compressible inviscid flows and rigid (static or moving) boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Appelö, D., Petersson, N.A.: A fourth-order accurate embedded boundary method for the wave equation. Preprint. www.its.caltech.edu/~appelo/preprints/PadeEBPaper.pdf

  2. Arienti, M., Hung, P., Morano, E., Shepherd, J.E.: A level set approach to Eulerian-Lagrangian coupling. J. Comput. Phys. 185, 213–251 (2003)

    Article  MATH  Google Scholar 

  3. Bassi, F., Rebay, S.: High-order accurate discontinuous finite element solution of the 2D Euler equations. J. Comput. Phys. 138, 251–285 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berger, M.J., Helzel, C., LeVeque, R.J.: h-box methods for the approximation of hyperbolic conservation laws on irregular grids. SIAM J. Numer. Anal. 41, 893–918 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carpenter, M.H., Gottlieb, D., Abarbanel, S., Don, W.-S.: The theoretical accuracy of Runge-Kutta time discretizations for the initial boundary value problem: a study of the boundary error. SIAM J. Sci. Comput. 16, 1241–1252 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. De Palma, P., de Tullio, M.D., Pascazio, G., Napolitano, M.: An immersed-boundary method for compressible viscous flows. Comput. Fluids 35, 693–702 (2006)

    Article  MATH  Google Scholar 

  7. de Tullio, M.D., De Palma, P., Iaccarino, G., Pascazio, G., Napolitano, M.: An immersed boundary method for compressible flows using local grid refinement. J. Comput. Phys. 225, 2098–2117 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Falcovitz, J., Alfandary, G., Hanoch, G.: A two-dimensional conservation laws scheme for compressible flows with moving boundaries. J. Comput. Phys. 138, 83–102 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Forrer, H., Berger, M.: Flow simulations on Cartesian grids involving complex moving geometries. In: Jeltsch, R. (ed.) Proc. 7th Intl. Conf. on Hyperbolic Problems, pp. 315–324. Birkhäuser, Basel (1998)

    Google Scholar 

  10. Forrer, H., Jeltsh, R.: A high-order boundary treatment for Cartesian-grid methods. J. Comput. Phys. 140, 259–277 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ghias, R., Mittal, R., Dong, H.: A sharp interface immersed boundary method for compressible viscous flows. J. Comput. Phys. 225, 528–553 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goldberg, M., Tadmor, E.: Scheme-independent stability criteria for difference approximations of hyperbolic initial-boundary value problems. I. Math. Comput. 32, 1097–1107 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goldberg, M., Tadmor, E.: Scheme-independent stability criteria for difference approximations of hyperbolic initial-boundary value problems. II. Math. Comput. 36, 603–626 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes. III. J. Comput. Phys. 71, 231–303 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Helzel, C., Berger, M.J., LeVeque, R.J.: A high-resolution rotated grid method for conservation laws with embedded geometries. SIAM J. Sci. Comput. 26, 785–809 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu, X.Y., Khoo, B.C., Adams, N.A., Huang, F.L.: A conservative interface method for compressible flows. J. Comput. Phys. 219, 553–578 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang, L., Shu, C.-W., Zhang, M.: Numerical boundary conditions for the fast sweeping high order WENO methods for solving the Eikonal equation. J. Comput. Math. 26, 336–346 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kreiss, H.-O., Petersson, N.A.: A second order accurate embedded boundary method for the wave equation with Dirichlet data. SIAM J. Sci. Comput. 27, 1141–1167 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kreiss, H.-O., Petersson, N.A., Yström, J.: Difference approximations for the second order wave equation. SIAM J. Numer. Anal. 40, 1940–1967 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kreiss, H.-O., Petersson, N.A., Yström, J.: Difference approximations of the Neumann problem for the second order wave equation. SIAM J. Numer. Anal. 42, 1292–1323 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Krivodonova, L., Berger, M.: High-order accurate implementation of solid wall boundary conditions in curved geometries. J. Comput. Phys. 211, 492–512 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lax, P.D., Wendroff, B.: Systems of conservation laws. Commun. Pure Appl. Math. 13, 217–237 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  24. LeVeque, R.J., Calhoun, D.: Cartesian grid methods for fluid flow in complex geometries. In: Fauci, L.J., Gueron, S. (eds.) Computational Modeling in Biological Fluid Dynamics, IMA Vol. Math. Appl., vol. 124, pp. 117–143. Springer, New York (2001)

    Chapter  Google Scholar 

  25. LeVeque, R.J., Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31, 1019–1044 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. LeVeque, R.J., Li, Z.: Immersed interface methods for Stokes flow with elastic boundaries or surface tensions. SIAM J. Sci. Comput. 18, 709–735 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lombard, B., Piraux, J., Gélis, C., Virieux, J.: Free and smooth boundaries in 2-D finite-difference schemes for transient elastic waves. Geophys. J. Int. 172, 252–261 (2008)

    Article  Google Scholar 

  28. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005)

    Article  MathSciNet  Google Scholar 

  29. Peskin, C.S.: Flow patterns around the heart valves. J. Comput. Phys. 10, 252–271 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shyue, K.-M.: A moving-boundary tracking algorithm for inviscid compressible flow. In: Benzoni-Gavage, S., Serre, D. (eds.) Hyperbolic Problems: Theory, Numerics, Applications, pp. 989–996. Springer, Berlin (2008)

    Chapter  Google Scholar 

  32. Sjögreen, B., Petersson, N.A.: A Cartesian embedded boundary method for hyperbolic conservation laws. Commun. Comput. Phys. 2, 1199–1219 (2007)

    MathSciNet  MATH  Google Scholar 

  33. Tan, S., Shu, C.-W.: Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws. J. Comput. Phys. 229, 8144–8166 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tan, S., Shu, C.-W.: A high order moving boundary treatment for compressible inviscid flows. J. Comput. Phys. 230, 6023–6036 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tan, S., Wang, C., Shu, C.-W., Ning, J.: Efficient implementation of high order inverse Lax-Wendroff boundary treatment for conservation laws. J. Comput. Phys. 231, 2510–2527 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Xiong, T., Zhang, M., Zhang, Y.-T., Shu, C.-W.: Fifth order fast sweeping WENO scheme for static Hamilton-Jacobi equations with accurate boundary treatment. J. Sci. Comput. 45, 514–536 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, Y.-T., Chen, S., Li, F., Zhao, H., Shu, C.-W.: Uniformly accurate discontinuous Galerkin fast sweeping methods for Eikonal equations. SIAM J. Sci. Comput. 33, 1873–1896 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Research is supported by AFOSR grant FA9550-09-1-0126 and NSF grant DMS-1112700.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Wang Shu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tan, S., Shu, CW. (2013). Inverse Lax–Wendroff Procedure for Numerical Boundary Conditions of Hyperbolic Equations: Survey and New Developments. In: Melnik, R., Kotsireas, I. (eds) Advances in Applied Mathematics, Modeling, and Computational Science. Fields Institute Communications, vol 66. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5389-5_3

Download citation

Publish with us

Policies and ethics