Skip to main content

Climate Change Projections: Characterizing Uncertainty Using Climate Models

  • Chapter
  • First Online:
Climate Change Modeling Methodology

Abstract

The atmosphere, ocean, land surfaces, and ice sheets of the Earth are highly complex and coupled systems, with physical laws which describe behavior from the microscopic to the planetary scale.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Bayes’ Theorem:

A law in probability theory relating the probability of a hypothesis given observed evidence to the often easier to characterize probability of that evidence given the hypothesis. The theorem states that the conditional “posterior” probability of an event A given an event B is equal to the “prior” probability of A multiplied by the likelihood of B given A is true, normalized by the prior probability of B.

Climate sensitivity:

The equilibrium global mean near surface air temperature response in Kelvin to a sustained doubling of the atmospheric carbon dioxide concentration.

CMIP-3:

The Coupled Model Intercomparison Project Phase 3, a set of coordinated model experiments using General Circulation Models from the world’s major modeling centers.

Detection and attribution:

A process whereby spatial “fingerprints” associated with individual climate forcing factors (such as aerosol or greenhouse gas concentrations) are identified and used to quantify whether an observed change exceeds the range of natural internal climate variability (detection) and to attribute it to different causes, that is, different forcings (attribution).

Empirical model:

A model based on fitting empirical data, and thus makes no attempt to justify its representations of the system with any physical basis.

General circulation model (GCM):

A three-dimensional mathematical model for the atmosphere and possibly the ocean, land, and sea ice.

Initial condition ensemble:

A number of simulations using a single climate model, each with a small, unique perturbation to the initial state.

Last glacial maximum (LGM):

A period in the most recent ice age lasting several 1,000 years, peaking approximately 20,000 years ago at the maximum extent of the ice sheets.

Lead time:

The period in between the time at which the forecast is made and the time to be forecasted.

Multi-model ensemble (MME):

A collection of structurally different models from a range of institutions used to perform a coordinated set of experiments.

Parameter space:

The multidimensional domain created by considering the possible values of a number of parameters within a model.

Perturbed physics ensemble:

A set of climate simulations generated by taking a single physical model and altering uncertain parameters within a range of plausibility.

Prior probability (marginal probability):

The probability of an event before any additional data is considered in a Bayesian sense.

Posterior probability:

The probability of an event after considering additional relevant evidence in a Bayesian sense.

Systematic error:

The difference between a model simulation and observations or a poorly represented process which is not reducible by parameter tuning.

Bibliography

Primary Literature

  1. Ad Hoc Study Group on Carbon Dioxide and Climate (1979) Carbon dioxide and climate: a scientific assessment. National Academy of Sciences, Washington, DC

    Google Scholar 

  2. Manabe S et al (1979) A global ocean-atmosphere climate model with seasonal variation for future studies of climate sensitivity. Dyn Atmos Oceans 3:393–426

    Article  ADS  Google Scholar 

  3. Hansen JE et al (1983) Efficient three-dimensional global models for climate studies: models I and II. Mon Weather Rev 111:609–662

    Article  ADS  Google Scholar 

  4. Houghton JT, Jenkins GJ, Ephraums JJ (eds) (1991) Scientific assessment of climate change – report of working group I. Cambridge University Press, Cambridge, p 365

    Google Scholar 

  5. Houghton JT, Meira Filho LG, Callender BA, Harris N, Kattenberg A, Maskell K (eds) (1995) Contribution of working group I to the second assessment of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 572

    Google Scholar 

  6. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (eds) (2001) Contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, p 944

    Google Scholar 

  7. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, 2007. Cambridge University Press, Cambridge/New York

    Google Scholar 

  8. Parker WS (2006) Understanding pluralism in climate modeling. Found Sci 11:349–368

    Article  Google Scholar 

  9. Collins M, Allen MR (2002) Assessing the relative roles of initial and boundary conditions in interannual to decadal climate predictability. J Climate 15:3104–3109

    Article  ADS  Google Scholar 

  10. Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. BAMS 90:1095–1107

    Article  ADS  Google Scholar 

  11. Murphy JM et al (2004) Quantifying uncertainties in climate change from a large ensemble of general circulation model predictions. Nature 430:768–772

    Article  ADS  Google Scholar 

  12. Stainforth DA et al (2005) Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433:403–406

    Article  ADS  Google Scholar 

  13. Annan J, Hargreaves J (2006) Using multiple observationally-based constraints to estimate climate sensitivity. Geophys Res Lett 33(4):L06704

    Article  Google Scholar 

  14. Palmer TN, Doblas-Reyes FJ, Hagedorn R, Weisheimer A (2005) Probabilistic prediction of climate using multi-model ensembles: from basics to applications. Philos Trans R Soc B 360:1991–1998

    Article  Google Scholar 

  15. Weigel AP, Liniger MA, Appenzeller C (2008) Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts? Q J R Meteorol Soc 134:241–260

    Article  ADS  Google Scholar 

  16. Hagedorn R, Doblas-Reyes FJ, Palmer TN (2005) The rationale behind the success of multi-model ensembles in seasonal forecasting. Part I: basic concept. Tellus 57A:219–233

    ADS  Google Scholar 

  17. Frame DJ, Booth BBB, Kettleborough JA, Stainforth DA, Gregory JM, Collins M, Allen MR (2005) Constraining climate forecasts: the role of prior assumptions. Geophys Res Lett 32:L09702. doi:10.1029/2004GL022241

    Article  Google Scholar 

  18. van der Sluijs J et al (1998) Anchoring devices in science for policy: the case of consensus around climate sensitivity. Soc Stud Sci 28(2):291–323

    Article  Google Scholar 

  19. Knutti R, Hegerl GC (2008) The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nat Geosci 1:735–743

    Article  ADS  Google Scholar 

  20. Cantelaube P, Terres J-M (2005) Seasonal weather forecasts for crop yield modelling in Europe. Tellus Ser A 57:476–487. doi:10.1111/j.1600-0870.2005.00125.x

    Article  ADS  Google Scholar 

  21. Thomson MC, Doblas-Reyes FJ, Mason SJ, Hagedorn R, Connor SJ, Phindela T, Morse AP, Palmer TN (2006) Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature 439:576–579. doi:10.1038/nature04503

    Article  ADS  Google Scholar 

  22. Schclar A et al (2009) Ensemble methods for improving the performance of neighborhood-based collaborative filtering. In: Proceedings of the third ACM conference on recommender systems, ACM, New York, 23–25 Oct 2009, pp 261–264

    Chapter  Google Scholar 

  23. Hagedorn R, Doblas-Reyes FJ, Palmer TN (2005) The rationale behind the success of multi- model ensembles in seasonal forecasting – I. Basic concept. Tellus A57:219–233. doi:10.1111/j.1600-0870.2005.00103.x

    ADS  Google Scholar 

  24. Gillett NP, Zwiers FW, Weaver AJ, Hegerl GC, Allen MR, Stott PA (2002) Detecting anthropogenic influence with a multi-model ensemble. Geophys Res Lett 29:1970. doi:10.1029/2002GL015836

    Article  ADS  Google Scholar 

  25. Lambert SJ, Boer GJ (2001) CMIP1 evaluation and intercomparison of coupled climate models. Clim Dyn 17:83–106. doi:10.1007/PL00013736

    Article  Google Scholar 

  26. Reichler T, Kim J (2008) How well do coupled models simulate today’s climate? Bull Am Meteorol Soc 89:303–311

    Article  Google Scholar 

  27. Robertson AW, Lall U, Zebiak SE, Goddard L (2004) Improved combination of multiple atmospheric GCM ensembles for seasonal predition. Mon Weather Rev 132:2732–2744. doi:10.1175/MWR2818.1

    Article  ADS  Google Scholar 

  28. Krishnamurti TN, Kishtawal CM, Zhang Z, Larow T, Bachiochi D, Williford E, Gadgil S, Surendran S (2000) Multimodel ensemble forecasts for weather and seasonal climate. J Climate 13:4196–4216. doi:10.1175/1520-0442(2000)013!4196:MEFFWAO2.0.CO;2

    Article  ADS  Google Scholar 

  29. Santer BD, Taylor KE, Gleckler PJ, Bonfils C, Barnett TP, Pierce DW, Wigley TML, Mears C, Wentz FJ, Brüggemann W, Gillett NP, Klein SA, Solomon S, Stott PA, Wehner MF (2009) Incorporating model quality information in climate change detection and attribution studies. PNAS 106:14778–14783

    Article  ADS  Google Scholar 

  30. Knutti R (2010) The end of model democracy? Clim Change 102(3–4):395–404. doi:10.1007/s10584-010-9800-2

    Article  Google Scholar 

  31. Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010) Challenges in combining projections from multiple climate models. J Climate 23:2739–2758

    Article  ADS  Google Scholar 

  32. Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans R Soc A 365(1857):2053–2075

    Article  MathSciNet  ADS  Google Scholar 

  33. Knutti R, Stocker TF, Joos F, Plattner G-K (2002) Constraints on radiative forcing and future climate change from observations and climate model ensembles. Nature 416:719–723. doi:10.1038/416719a

    Article  ADS  Google Scholar 

  34. Jackson C et al (2004) An efficient stochastic Bayesian approach to optimal parameter and uncertainty estimation for climate model predictions. J Climate 17(14):2828–2841

    Article  ADS  Google Scholar 

  35. Kiehl JT (2007) Twentieth century climate model response and climate sensitivity. Geophys Res Lett 34:22710

    Article  ADS  Google Scholar 

  36. Knutti R (2008) Why are climate models reproducing the observed global surface warming so well? Geophys Res Lett 35(18):5

    Article  Google Scholar 

  37. Sanderson BM et al (2008) Constraints on model response to greenhouse gas forcing and the role of subgrid-scale processes. J Climate 21(11):2384–2400

    Article  ADS  Google Scholar 

  38. Evensen G (2003) The Ensemble Kalman Filter: theoretical formulation and practical implementation. Ocean Dyn 53:343

    Article  ADS  Google Scholar 

  39. Annan JD et al (2005) Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter. Ocean Model 8:135

    Article  ADS  Google Scholar 

  40. Raisanen J, Palmer TN (2001) A probability and decision-model analysis of a multimodel ensemble of climate change simulations. J Climate 14(15):3212–3226

    Article  ADS  Google Scholar 

  41. Giorgi F, Mearns LO (2002) Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the ‘reliability ensemble averaging’ (REA) method. J Climate 15:1141

    Article  ADS  Google Scholar 

  42. Tebaldi C et al (2004) Regional probabilities of precipitation change: a Bayesian analysis of multimodel simulations. Geophys Res Lett 31:24213

    Article  ADS  Google Scholar 

  43. Furrer R, Sain S, Nychka D, Meehl G (2007) Multivariate Bayesian analysis of atmosphere–ocean general circulation models. Environ Ecol Stat 14:249–266

    Article  MathSciNet  Google Scholar 

  44. Lopez A et al (2006) Two approaches to quantifying uncertainty in global temperature changes. J Climate 19:4785

    Article  ADS  Google Scholar 

  45. Smith R, Tebaldi C, Nychka D, Mearns L (2009) Bayesian modeling of uncertainty in ensembles of climate models. J Am Stat Assoc 104:97–116

    Article  MathSciNet  Google Scholar 

  46. Boé J et al (2009) September sea-ice cover in the Arctic ocean projected to vanish by 2100. Nat Geosci 2(4):1–3

    Google Scholar 

  47. Greene AM et al (2006) Probabilistic multimodel regional temperature change projections. J Climate 19:4326

    Article  ADS  Google Scholar 

  48. Buser CM et al (2009) Bayesian multi-model projection of climate: bias assumptions and interannual variability. Clim Dyn 33(6):849–868

    Article  Google Scholar 

  49. Stott PA, Kettleborough JA (2002) Origins and estimates of uncertainty in predictions of twenty first century temperature rise. Nature 416:723–726

    Article  ADS  Google Scholar 

  50. Sanderson BM et al (2008) Towards constraining climate sensitivity by linear analysis of feedback patterns in thousands of perturbed-physics GCM simulations. Clim Dyn 30(2–3):175–190

    Article  Google Scholar 

  51. Frame DJ et al (2005) Constraining climate forecasts: the role of prior assumptions. Geophys Res Lett 32(9):L09702

    Article  Google Scholar 

  52. Piani C et al (2005) Constraints on climate change from a multi-thousand member ensemble of simulations. Geophys Res Lett 32(23):L23825

    Article  ADS  Google Scholar 

  53. Knutti R et al (2006) Constraining climate sensitivity from the seasonal cycle in surface temperature. J Climate 19(17):4224–4233

    Article  ADS  Google Scholar 

  54. Dessai S et al (2008) In: Adger N, Lorenzoni I, O’Brien K (eds) Climate prediction: a limit to adaptation. Living with climate change: are there limits to adaptation. Cambridge University Press, Cambridge, pp 49–57

    Google Scholar 

  55. Gleckler PJ et al (2008) Performance metrics for climate models. J Geophys Res 113:D06104

    Article  Google Scholar 

  56. Allen MR, Frame DJ (2007) ATMOSPHERE: call off the quest. Science 318:582–583

    Article  Google Scholar 

  57. Edmonds J, Wise M, Pitcher H, Richels R, Wigley T, MacCracken C (1997) An integrated assessment of climate change and the accelerated introduction of advanced energy technologies. Mitig Adapt Strateg Glob Change 1:311–339

    Article  Google Scholar 

  58. Messner S, Strubegger M (1995) User’s guide for MESSAGE III, WP-95-69. International Institute for Applied Systems Analysis, Laxenburg

    Google Scholar 

  59. Bouwman AF, Kram T (2006) Integrated modelling of global environmental change. An overview of IMAGE 2.4. Netherlands Environmental Assessment Agency (MNP), MNP publication number 500110002/2006, Bilthoven

    Google Scholar 

Books and Reviews

  • Kharin VV, Zwiers FW (2002) Climate predictions with multimodel ensembles. J Climate 15(7):793–799

    Article  ADS  Google Scholar 

  • Knutti R et al (2008) A review of uncertainties in global temperature projections over the twenty-first century. J Climate 21:2651–2663

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Sanderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sanderson, B., Knutti, R. (2012). Climate Change Projections: Characterizing Uncertainty Using Climate Models. In: Rasch, P. (eds) Climate Change Modeling Methodology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5767-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5767-1_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5766-4

  • Online ISBN: 978-1-4614-5767-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics