Skip to main content

Radiation Transfer

  • Chapter
  • First Online:
Cosmic Electrodynamics

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 388))

  • 1842 Accesses

Abstract

While propagating through a medium the electromagnetic radiation changes due to emission, absorption, scattering, and nonlinear wave transformations; thus, the radiation intensity, spectral distribution, polarization, and directivity can all vary in space and time. The theory of radiation transfer represents a broad field of the physics with numerous astrophysical applications (Chandrasekhar 1961;Mihalas 1978;Dolginov etal.1979;Ginzburg 1987; Nagirner 2007a), including radiation transfer in stellar interiors, Faraday rotation in intergalactic and interstellar media, group delay in solar corona, and many more. This chapter considers the most fundamental elements of the radiation transfer theory and gives a few examples of its application to the space plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use here ρ, rather than W, for the wave energy density because W is commonly used for the probabilities defined above within the Einstein coefficient problem.

  2. 2.

    Note that many radio observatories use “extensive” definition of the brightness temperature, \(T_{I} = T_{O} + T_{X}\), i.e., with additional factor of 2 in the rhs of Eq. (10.33) for any polarization mode.

  3. 3.

    Here, unlike Sect. 10.1, the absorption coefficient is \(-\varkappa (f,\boldsymbol{r})\); thus, \(\varkappa (f,\boldsymbol{r})\) is the amplification coefficient.

References

  • T.S. Bastian, A.O. Benz, D.E. Gary, Radio emission from solar flares. ARA&A 36, 131–188 (1998)

    Article  ADS  Google Scholar 

  • T.S. Bastian, J. Bookbinder, G.A. Dulk, M. Davis, Dynamic spectra of radio bursts from flare stars. ApJ 353, 265–273 (1990)

    Article  ADS  Google Scholar 

  • T.S. Bastian, G.D. Fleishman, D.E. Gary, Radio spectral evolution of an X-Ray-poor impulsive solar flare: implications for plasma heating and electron acceleration. ApJ 666, 1256–1267 (2007)

    Article  ADS  Google Scholar 

  • S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Clarendon Press, Oxford, 1961)

    MATH  Google Scholar 

  • G.T. Delory, R.E. Ergun, C.W. Carlson, L. Muschietti, C.C. Chaston, W. Peria, J.P. McFadden, R. Strangeway, FAST observations of electron distributions within AKR source regions. Geophys. Res. Lett. 25, 2069–2072 (1998)

    Article  ADS  Google Scholar 

  • A.Z. Dolginov, Y.N. Gnedin, N.A. Silant’ev, Propagation and Polarization of Radiation Through Cosmic Medium (Nauka, Moskva, 1979)

    Google Scholar 

  • G.A. Dulk, Radio emission from the sun and stars. ARA&A 23, 169–224 (1985)

    Article  ADS  Google Scholar 

  • R.E. Ergun, C.W. Carlson, J.P. McFadden, G.T. Delory, R.J. Strangeway, P.L. Pritchett, Electron-cyclotron maser driven by charged-particle acceleration from magnetic field-aligned electric fields. ApJ 538, 456–466 (2000)

    Article  ADS  Google Scholar 

  • G.D. Fleishman, Effect of random inhomogeneities on electron cyclotron maser emission. ApJ 601, 559–564 (2004a)

    Article  ADS  Google Scholar 

  • G.D. Fleishman, Natural spectral bandwidth of electron cyclotron maser emission. Astron. Lett.30, 603–614 (2004b)

    Article  ADS  Google Scholar 

  • G.D. Fleishman, A.A. Kuznetsov, Fast gyrosynchrotron codes. ApJ721, 1127–1141 (2010)

    Google Scholar 

  • G.D. Fleishman, V.F. Melnikov, Millisecond solar radio spikes. Uspekhi Fizicheskikh Nauk 41, 1157–1189 (1998)

    Article  Google Scholar 

  • V.L. Ginzburg,Theoretical Physics and Astrophysics, 3rd revised and enlarged edn. [in Russian] (Izdatel Nauka, Moscow, 1987)

    Google Scholar 

  • A.A. Kuznetsov, J.G. Doyle, S. Yu, G. Hallinan, A. Antonova, A. Golden, Comparative analysis of two formation scenarios of bursty radio emission from ultracool dwarfs. ApJ 746, 99 (2012)

    Article  ADS  Google Scholar 

  • A.A. Kuznetsov, G.M. Nita, G.D. Fleishman, Three-dimensional simulations of gyrosynchrotron emission from mildly anisotropic nonuniform electron distributions in symmetric magnetic loops. arXiv eprint 1108.5150. ApJ, vol. 742, pp. 87 (2011). doi 10.1088/0004-637X/742/2/87. http://adsabs.harvard.edu/abs/2011ApJ...742...87K. Provided by the SAO/NASA Astrophysics Data System

  • L. Lamy, P. Schippers, P. Zarka, B. Cecconi, C.S. Arridge, M.K. Dougherty, P. Louarn, N. André, W.S. Kurth, R.L. Mutel, D.A. Gurnett, A.J. Coates, Properties of Saturn kilometric radiation measured within its source region. Geophys. Res. Lett. 371, 12104 (2010)

    ADS  Google Scholar 

  • V.F. Melnikov, G.D. Fleishman, Q.J. Fu, G.L. Huang, Flare-plasma diagnostics from millisecond pulsations of the solar radio emission. Astron. Rep. 46, 497–514 (2002a)

    Article  ADS  Google Scholar 

  • D. Mihalas, Stellar atmospheres /2nd edition/. San Francisco, W. H. Freeman and Co., 1978. 650 p., Provided by the SAO/NASA Astrophysics Data System, p. 650 (1978). http://adsabs.harvard.edu/abs/1978stat.book.....M

  • D.I. Nagirner,Lektsii po Teorii Perenosa Izlucheniya [in Russian] (SPb University, St. Petersburg, 2007a)

    Google Scholar 

  • G.M. Nita, D.E. Gary, J. Lee, Statistical study of two years of solar flare radio spectra obtained with the Owens valley solar array. ApJ 605, 528–545 (2004)

    Article  ADS  Google Scholar 

  • R.A. Osten, T.S. Bastian, Ultrahigh time resolution observations of radio bursts on AD Leonis. ApJ 674, 1078–1085 (2008)

    Article  ADS  Google Scholar 

  • I.V. Rozhansky, G.D. Fleishman, G.L. Huang, Millisecond microwave spikes: statistical study and application for plasma diagnostics. ApJ 681, 1688–1697 (2008)

    Article  ADS  Google Scholar 

  • R.J. Strangeway, R.E. Ergun, C.W. Carlson, J.P. McFadden, G.T. Delory, E.L. Pritchett. Accelerated electrons as the source of auroral kilometric radiation. Phys. Chemistry of the Earth C26, 145–149 (2001)

    ADS  Google Scholar 

  • R.A. Treumann, The electron-cyclotron maser for astrophysical application. A&AR 13, 229–315 (2006)

    Article  ADS  Google Scholar 

  • V.V. Zaitsev, A.V. Stepanov, The plasma radiation of flare kernels. Solar Phys. 88, 297–313 (1983)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fleishman, G.D., Toptygin, I.N. (2013). Radiation Transfer. In: Cosmic Electrodynamics. Astrophysics and Space Science Library, vol 388. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5782-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5782-4_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5781-7

  • Online ISBN: 978-1-4614-5782-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics