Skip to main content

Angiogenesis, Arteriogenesis, and Mitochondrial Dysfunction

  • Chapter
  • First Online:
Cardiac Remodeling

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 5))

Abstract

Angiogenesis and arteriogenesis are key processes involved in the response to occlusive arterial disease and the pathology of cancer. Angiogenesis remodels the circulatory bed by new capillary formation, while arteriogenesis remodels existing arterioles by increasing their diameter. The main molecular mechanism of angiogenesis is initiation by activation of hypoxia-inducible factor (HIF)-1, and arteriogenesis, initiated mainly by shear stress, is modulated by HIF-1 activation. Mitochondria can modulate HIF-1 activation by release of mitochondrial reactive oxygen species and alpha-ketoglutarate, a required cofactor for prolyl hydroxylation and destruction of HIF components, and thus, mitochondria can influence HIF-1-dependent angiogenesis and arteriogenesis. Mitochondria may serve as metabolic sensors that link metabolic derangements to appropriate neovascularization in health and in chronic ischemia and inappropriate neovascularization in the context of cancer. Mitochondrial remodeling or dysfunction may impair angiogenesis and contribute to the pathology of diseases, including diabetes and myocardial dysfunction. Drugs that alter mitochondrial function may alter HIF-1-dependent neovascularization and may represent novel therapies for chronic ischemic diseases and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Statistics-Canada (2008) http://www40.statcan.ca/l01/cst01/health30a.htm

  2. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ (2006) Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367:1747–1757

    PubMed  Google Scholar 

  3. Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K et al (2009) Heart disease and stroke statistics–2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119:480–486

    PubMed  Google Scholar 

  4. Mukherjee D, Bhatt DL, Roe MT, Patel V, Ellis SG (1999) Direct myocardial revascularization and angiogenesis – how many patients might be eligible? Am J Cardiol 84:598–600, A598

    PubMed  CAS  Google Scholar 

  5. Mannheimer C, Camici P, Chester MR, Collins A, DeJongste M, Eliasson T et al (2002) The problem of chronic refractory angina; report from the ESC Joint Study Group on the Treatment of Refractory Angina. Eur Heart J 23:355–370

    PubMed  CAS  Google Scholar 

  6. Palmer-Kazen U, Wahlberg E (2003) Arteriogenesis in peripheral arterial disease. Endothelium 10:225–232

    PubMed  Google Scholar 

  7. Carmona GA, Hoffmeyer P, Herrmann FR, Vaucher J, Tschopp O, Lacraz A et al (2005) Major lower limb amputations in the elderly observed over ten years: the role of diabetes and peripheral arterial disease. Diabetes Metab 31:449–454

    PubMed  CAS  Google Scholar 

  8. Heller G, Gunster C, Schellschmidt H (2004) How frequent are diabetes-related amputations of the lower limbs in Germany? An analysis on the basis of routine data. Dtsch Med Wochenschr 129:429–433

    PubMed  CAS  Google Scholar 

  9. Senior PA, McMurtry MS, Tsuyuki RT (2007) Diabetes and lower limb amputations in Alberta. In: Alberta diabetes atlas 2007. Institute of Health Economics, Alberta, pp 73–81

    Google Scholar 

  10. Rissanen TT, Vajanto I, Yla-Herttuala S (2001) Gene therapy for therapeutic angiogenesis in critically ischaemic lower limb - on the way to the clinic. Eur J Clin Invest 31:651–666

    PubMed  CAS  Google Scholar 

  11. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    PubMed  CAS  Google Scholar 

  12. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660

    PubMed  CAS  Google Scholar 

  13. Schaper W, Ito WD (1996) Molecular mechanisms of coronary collateral vessel growth. Circ Res 79:911–919

    PubMed  CAS  Google Scholar 

  14. Simons M (2005) Angiogenesis: where do we stand now? Circulation 111:1556–1566

    PubMed  Google Scholar 

  15. Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9:677–684

    PubMed  CAS  Google Scholar 

  16. Schaper W (2009) Collateral circulation: past and present. Basic Res Cardiol 104:5–21

    PubMed  CAS  Google Scholar 

  17. Heil M, Schaper W (2004) Influence of mechanical, cellular, and molecular factors on ­collateral artery growth (arteriogenesis). Circ Res 95:449–458

    PubMed  CAS  Google Scholar 

  18. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228

    PubMed  CAS  Google Scholar 

  19. Luttun A, Carmeliet P (2003) De novo vasculogenesis in the heart. Cardiovasc Res 58:378–389

    PubMed  CAS  Google Scholar 

  20. Baklanov D, Simons M (2003) Arteriogenesis: lessons learned from clinical trials. Endothelium 10:217–223

    PubMed  Google Scholar 

  21. Lekas M, Lekas P, Latter DA, Kutryk MB, Stewart DJ (2006) Growth factor-induced therapeutic neovascularization for ischaemic vascular disease: time for a re-evaluation? Curr Opin Cardiol 21:376–384

    PubMed  Google Scholar 

  22. Schirmer SH, van Nooijen FC, Piek JJ, van Royen N (2009) Stimulation of collateral artery growth: travelling further down the road to clinical application. Heart 95:191–197

    PubMed  CAS  Google Scholar 

  23. Schirmer SH, van Royen N (2004) Stimulation of collateral artery growth: a potential treatment for peripheral artery disease. Expert Rev Cardiovasc Ther 2:581–588

    PubMed  Google Scholar 

  24. Grimm D, Bauer J, Schoenberger J (2009) Blockade of neoangiogenesis, a new and promising technique to control the growth of malignant tumors and their metastases. Curr Vasc Pharmacol 7:347–357

    PubMed  CAS  Google Scholar 

  25. Carmeliet P, De Smet F, Loges S, Mazzone M (2009) Branching morphogenesis and antiangiogenesis candidates: tip cells lead the way. Nat Rev Clin Oncol 6:315–326

    PubMed  CAS  Google Scholar 

  26. Semenza GL (2007) Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE 2007:cm8

    PubMed  Google Scholar 

  27. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M et al (2001) HIF alpha targeted for VHL- mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–468

    PubMed  CAS  Google Scholar 

  28. Semenza GL (2004) Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda) 19:176–182

    CAS  Google Scholar 

  29. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop- helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92:5510–5514

    PubMed  CAS  Google Scholar 

  30. Yamakawa M, Liu LX, Date T, Belanger AJ, Vincent KA, Akita GY et al (2003) ­Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ Res 93:664–673

    PubMed  CAS  Google Scholar 

  31. Liu Y, Cox SR, Morita T, Kourembanas S (1995) Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5’ enhancer. Circ Res 77:638–643

    PubMed  CAS  Google Scholar 

  32. Tuder RM, Flook BE, Voelkel NF (1995) Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or to chronic hypoxia. Modulation of gene expression by nitric oxide. J Clin Invest 95:1798–1807

    PubMed  CAS  Google Scholar 

  33. Currie MJ, Gunningham SP, Turner K, Han C, Scott PA, Robinson BA et al (2002) Expression of the angiopoietins and their receptor Tie2 in human renal clear cell carcinomas; regulation by the von Hippel-Lindau gene and hypoxia. J Pathol 198:502–510

    PubMed  CAS  Google Scholar 

  34. Ben-Yosef Y, Lahat N, Shapiro S, Bitterman H, Miller A (2002) Regulation of endothelial matrix metalloproteinase-2 by hypoxia/reoxygenation. Circ Res 90:784–791

    PubMed  CAS  Google Scholar 

  35. Gleadle JM, Ebert BL, Firth JD, Ratcliffe PJ (1995) Regulation of angiogenic growth factor expression by hypoxia, transition metals, and chelating agents. Am J Physiol 268:C1362–C1368

    PubMed  CAS  Google Scholar 

  36. Kuwabara K, Ogawa S, Matsumoto M, Koga S, Clauss M, Pinsky DJ et al (1995) Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells. Proc Natl Acad Sci USA 92:4606–4610

    PubMed  CAS  Google Scholar 

  37. Negus RP, Turner L, Burke F, Balkwill FR (1998) Hypoxia down-regulates MCP-1 expression: implications for macrophage distribution in tumors. J Leukoc Biol 63:758–765

    PubMed  CAS  Google Scholar 

  38. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    PubMed  CAS  Google Scholar 

  39. Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V et al (1998) Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3’- kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 273:30336–30343

    PubMed  CAS  Google Scholar 

  40. Byrne AM, Bouchier-Hayes DJ, Harmey JH (2005) Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med 9:777–794

    PubMed  CAS  Google Scholar 

  41. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309

    PubMed  CAS  Google Scholar 

  42. Plouet J, Schilling J, Gospodarowicz D (1989) Isolation and characterization of a newly identified endothelial cell mitogen produced by AtT-20 cells. EMBO J 8:3801–3806

    PubMed  CAS  Google Scholar 

  43. Tang N, Wang L, Esko J, Giordano FJ, Huang Y, Gerber HP et al (2004) Loss of HIF-1 alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 6:485–495

    PubMed  CAS  Google Scholar 

  44. Jung YD, Liu W, Reinmuth N, Ahmad SA, Fan F, Gallick GE et al (2001) Vascular endothelial growth factor is upregulated by interleukin-1 beta in human vascular smooth muscle cells via the P38 mitogen-activated protein kinase pathway. Angiogenesis 4:155–162

    PubMed  CAS  Google Scholar 

  45. Giordano FJ, Gerber HP, Williams SP, VanBruggen N, Bunting S, Ruiz-Lozano P et al (2001) A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proc Natl Acad Sci USA 98:5780–5785

    PubMed  CAS  Google Scholar 

  46. van Weel V, Seghers L, de Vries MR, Kuiper EJ, Schlingemann RO, Bajema IM et al (2007) Expression of vascular endothelial growth factor, stromal cell-derived factor-1, and CXCR4 in human limb muscle with acute and chronic ischemia. Arterioscler Thromb Vasc Biol 27:1426–1432

    PubMed  Google Scholar 

  47. Tuomisto TT, Rissanen TT, Vajanto I, Korkeela A, Rutanen J, Yla-Herttuala S (2004) HIF-VEGF- VEGFR-2, TNF-alpha and IGF pathways are upregulated in critical human skeletal muscle ischemia as studied with DNA array. Atherosclerosis 174:111–120

    PubMed  CAS  Google Scholar 

  48. Noma K, Smalley KS, Lioni M, Naomoto Y, Tanaka N, El-Deiry W et al (2008) The essential role of fibroblasts in esophageal squamous cell carcinoma-induced angiogenesis. Gastroenterology 134:1981–1993

    PubMed  Google Scholar 

  49. O’Neill TJ, Wamhoff BR, Owens GK, Skalak TC (2005) Mobilization of bone marrow-derived cells enhances the angiogenic response to hypoxia without transdifferentiation into endothelial cells. Circ Res 97:1027–1035

    PubMed  Google Scholar 

  50. Aitkenhead M, Christ B, Eichmann A, Feucht M, Wilson DJ, Wilting J (1998) Paracrine and autocrine regulation of vascular endothelial growth factor during tissue differentiation in the quail. Dev Dyn 212:1–13

    PubMed  CAS  Google Scholar 

  51. Fong GH (2009) Regulation of angiogenesis by oxygen sensing mechanisms. J Mol Med 87:549–560

    PubMed  CAS  Google Scholar 

  52. Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S et al (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130:691–703

    PubMed  CAS  Google Scholar 

  53. Topper JN, Gimbrone MA Jr (1999) Blood flow and vascular gene expression: fluid shear stress as a modulator of endothelial phenotype. Mol Med Today 5:40–46

    PubMed  CAS  Google Scholar 

  54. Pipp F, Boehm S, Cai WJ, Adili F, Ziegler B, Karanovic G et al (2004) Elevated fluid shear stress enhances postocclusive collateral artery growth and gene expression in the pig hind limb. Arterioscler Thromb Vasc Biol 24:1664–1668

    PubMed  CAS  Google Scholar 

  55. Eitenmuller I, Volger O, Kluge A, Troidl K, Barancik M, Cai WJ et al (2006) The range of adaptation by collateral vessels after femoral artery occlusion. Circ Res 99:656–662

    PubMed  Google Scholar 

  56. Bergmann CE, Hoefer IE, Meder B, Roth H, van Royen N, Breit SM et al (2006) Arteriogenesis depends on circulating monocytes and macrophage accumulation and is severely depressed in op/op mice. J Leukoc Biol 80:59–65

    PubMed  CAS  Google Scholar 

  57. Ito WD, Arras M, Winkler B, Scholz D, Schaper J, Schaper W (1997) Monocyte chemotactic protein-1 increases collateral and peripheral conductance after femoral artery occlusion. Circ Res 80:829–837

    PubMed  CAS  Google Scholar 

  58. Hoefer IE, Grundmann S, van Royen N, Voskuil M, Schirmer SH, Ulusans S et al (2005) Leukocyte subpopulations and arteriogenesis: specific role of monocytes, lymphocytes and granulocytes. Atherosclerosis 181:285–293

    PubMed  CAS  Google Scholar 

  59. Stabile E, Burnett MS, Watkins C, Kinnaird T, Bachis A, la Sala A et al (2003) Impaired arteriogenic response to acute hindlimb ischemia in CD4-knockout mice. Circulation 108:205–210

    PubMed  Google Scholar 

  60. Scholz D, Ito W, Fleming I, Deindl E, Sauer A, Wiesnet M et al (2000) Ultrastructure and molecular histology of rabbit hind-limb collateral artery growth (arteriogenesis). Virchows Arch 436:257–270

    PubMed  CAS  Google Scholar 

  61. Hoefer IE, van Royen N, Rectenwald JE, Bray EJ, Abouhamze Z, Moldawer LL et al (2002) Direct evidence for tumor necrosis factor-alpha signaling in arteriogenesis. Circulation 105:1639–1641

    PubMed  CAS  Google Scholar 

  62. Grundmann S, Hoefer I, Ulusans S, van Royen N, Schirmer SH, Ozaki CK et al (2005) Anti-tumor necrosis factor-{alpha} therapies attenuate adaptive arteriogenesis in the rabbit. Am J Physiol Heart Circ Physiol 289:H1497–H1505

    PubMed  CAS  Google Scholar 

  63. Deindl E, Hoefer IE, Fernandez B, Barancik M, Heil M, Strniskova M et al (2003) Involvement of the fibroblast growth factor system in adaptive and chemokine-induced arteriogenesis. Circ Res 92:561–568

    PubMed  CAS  Google Scholar 

  64. Werner GS, Jandt E, Krack A, Schwarz G, Mutschke O, Kuethe F et al (2004) Growth factors in the collateral circulation of chronic total coronary occlusions: relation to duration of occlusion and collateral function. Circulation 110:1940–1945

    PubMed  CAS  Google Scholar 

  65. Okazaki T, Ebihara S, Takahashi H, Asada M, Kanda A, Sasaki H (2005) Macrophage colony- stimulating factor induces vascular endothelial growth factor production in skeletal muscle and promotes tumor angiogenesis. J Immunol 174:7531–7538

    PubMed  CAS  Google Scholar 

  66. Schneeloch E, Mies G, Busch HJ, Buschmann IR, Hossmann KA (2004) Granulocyte-macrophage colony-stimulating factor-induced arteriogenesis reduces energy failure in hemodynamic stroke. Proc Natl Acad Sci USA 101:12730–12735

    PubMed  CAS  Google Scholar 

  67. Wiseman DM, Polverini PJ, Kamp DW, Leibovich SJ (1988) Transforming growth factor-beta (TGF beta) is chemotactic for human monocytes and induces their expression of angiogenic activity. Biochem Biophys Res Commun 157:793–800

    PubMed  CAS  Google Scholar 

  68. Resar JR, Roguin A, Voner J, Nasir K, Hennebry TA, Miller JM et al (2005) Hypoxia-inducible factor 1alpha polymorphism and coronary collaterals in patients with ischemic heart disease. Chest 128:787–791

    PubMed  CAS  Google Scholar 

  69. Chen SM, Li YG, Zhang HX, Zhang GH, Long JR, Tan CJ et al (2008) Hypoxia-inducible factor-1alpha induces the coronary collaterals for coronary artery disease. Coron Artery Dis 19:173–179

    PubMed  Google Scholar 

  70. Couffinhal T, Silver M, Kearney M, Sullivan A, Witzenbichler B, Magner M et al (1999) Impaired collateral vessel development associated with reduced expression of vascular endothelial growth factor in ApoE−/− mice. Circulation 99:3188–3198

    PubMed  CAS  Google Scholar 

  71. Jacobi J, Tam BY, Wu G, Hoffman J, Cooke JP, Kuo CJ (2004) Adenoviral gene transfer with soluble vascular endothelial growth factor receptors impairs angiogenesis and perfusion in a murine model of hindlimb ischemia. Circulation 110:2424–2429

    PubMed  CAS  Google Scholar 

  72. Toyota E, Warltier DC, Brock T, Ritman E, Kolz C, O’Malley P et al (2005) Vascular endothelial growth factor is required for coronary collateral growth in the rat. Circulation 112:2108–2113

    PubMed  CAS  Google Scholar 

  73. Deindl E, Buschmann I, Hoefer IE, Podzuweit T, Boengler K, Vogel S et al (2001) Role of ischemia and of hypoxia-inducible genes in arteriogenesis after femoral artery occlusion in the rabbit. Circ Res 89:779–786

    PubMed  CAS  Google Scholar 

  74. Schierling W, Troidl K, Troidl C, Schmitz-Rixen T, Schaper W, Eitenmuller IK (2009) The role of angiogenic growth factors in arteriogenesis. J Vasc Res 46:365–374

    PubMed  CAS  Google Scholar 

  75. Clayton JA, Chalothorn D, Faber JE (2008) Vascular endothelial growth factor-A specifies formation of native collaterals and regulates collateral growth in ischemia. Circ Res 103:1027–1036

    PubMed  CAS  Google Scholar 

  76. Lloyd PG, Prior BM, Li H, Yang HT, Terjung RL (2005) VEGF receptor antagonism blocks arteriogenesis, but only partially inhibits angiogenesis, in skeletal muscle of exercise- trained rats. Am J Physiol Heart Circ Physiol 288:H759–H768

    PubMed  CAS  Google Scholar 

  77. Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B et al (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426–431

    PubMed  CAS  Google Scholar 

  78. Duchen MR (2004) Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med 25:365–451

    PubMed  CAS  Google Scholar 

  79. Michelakis ED (2008) Mitochondrial medicine: a new era in medicine opens new windows and brings new challenges. Circulation 117:2431–2434

    PubMed  Google Scholar 

  80. Barron JT, Parrillo JE (1995) Production of lactic acid and energy metabolism in vascular smooth muscle: effect of dichloroacetate. Am J Physiol 268:H713–H719

    PubMed  CAS  Google Scholar 

  81. Michelakis ED, Weir EK (2008) The metabolic basis of vascular oxygen sensing: diversity, compartmentalization and lessons from cancer. Am J Physiol Heart Circ Physiol 295(3):H928–H930

    PubMed  CAS  Google Scholar 

  82. Fisslthaler B, Fleming I (2009) Activation and signaling by the AMP-activated protein kinase in endothelial cells. Circ Res 105:114–127

    PubMed  CAS  Google Scholar 

  83. Michelakis ED, Hampl V, Nsair A, Wu X, Harry G, Haromy A et al (2002) Diversity in mitochondrial function explains differences in vascular oxygen sensing. Circ Res 90:1307–1315

    PubMed  CAS  Google Scholar 

  84. Goldenthal MJ, Marin-Garcia J (2004) Mitochondrial signaling pathways: a receiver/integrator organelle. Mol Cell Biochem 262:1–16

    PubMed  CAS  Google Scholar 

  85. Davidson SM, Duchen MR (2007) Endothelial mitochondria: contributing to vascular function and disease. Circ Res 100:1128–1141

    PubMed  CAS  Google Scholar 

  86. Aird WC (2007) Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res 100:174–190

    PubMed  CAS  Google Scholar 

  87. Aird WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100:158–173

    PubMed  CAS  Google Scholar 

  88. Bell EL, Emerling BM, Chandel NS (2005) Mitochondrial regulation of oxygen sensing. Mitochondrion 5:322–332

    PubMed  CAS  Google Scholar 

  89. Chavez A, Miranda LF, Pichiule P, Chavez JC (2008) Mitochondria and hypoxia-induced gene expression mediated by hypoxia-inducible factors. Ann N Y Acad Sci 1147:312–320 [Review]

    PubMed  CAS  Google Scholar 

  90. Hagen T, Taylor CT, Lam F, Moncada S (2003) Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1 alpha. Science 302:1975–1978

    PubMed  CAS  Google Scholar 

  91. Guzy RD, Schumacker PT (2006) Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 91:807–819

    PubMed  CAS  Google Scholar 

  92. Brunelle JK, Bell EL, Quesada NM, Vercauteren K, Tiranti V, Zeviani M et al (2005) Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab 1:409–414

    PubMed  CAS  Google Scholar 

  93. Simon MC (2006) Mitochondrial reactive oxygen species are required for hypoxic HIF alpha stabilization. Adv Exp Med Biol 588:165–170

    PubMed  Google Scholar 

  94. Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA 95:11715–11720

    PubMed  CAS  Google Scholar 

  95. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM et al (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia- inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 275:25130–25138

    PubMed  CAS  Google Scholar 

  96. Schroedl C, McClintock DS, Budinger GR, Chandel NS (2002) Hypoxic but not anoxic stabilization of HIF-1 alpha requires mitochondrial reactive oxygen species. Am J Physiol Lung Cell Mol Physiol 283:L922–L931

    PubMed  CAS  Google Scholar 

  97. Mansfield KD, Guzy RD, Pan Y, Young RM, Cash TP, Schumacker PT et al (2005) Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab 1:393–399

    PubMed  CAS  Google Scholar 

  98. Sun W, Zhou S, Chang SS, McFate T, Verma A, Califano JA (2009) Mitochondrial mutations contribute to HIF1alpha accumulation via increased reactive oxygen species and up-regulated pyruvate dehydrogenease kinase 2 in head and neck squamous cell carcinoma. Clin Cancer Res 15:476–484

    PubMed  CAS  Google Scholar 

  99. Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD et al (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1:401–408

    PubMed  CAS  Google Scholar 

  100. Archer SL, Gomberg-Maitland M, Maitland ML, Rich S, Garcia JG, Weir EK (2008) Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1alpha-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. Am J Physiol Heart Circ Physiol 294:H570–H578

    PubMed  CAS  Google Scholar 

  101. Berchner-Pfannschmidt U, Tug S, Kirsch M, Fandrey J (2010) Oxygen-sensing under the influence of nitric oxide. Cell Signal 22:349–356

    PubMed  CAS  Google Scholar 

  102. Koivunen P, Hirsila M, Remes AM, Hassinen IE, Kivirikko KI, Myllyharju J (2007) Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J Biol Chem 282:4524–4532

    PubMed  CAS  Google Scholar 

  103. MacKenzie ED, Selak MA, Tennant DA, Payne LJ, Crosby S, Frederiksen CM et al (2007) Cell-permeating alpha-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. Mol Cell Biol 27:3282–3289

    PubMed  CAS  Google Scholar 

  104. Mailloux RJ, Puiseux-Dao S, Appanna VD (2009) Alpha-ketoglutarate abrogates the nuclear localization of HIF-1alpha in aluminum-exposed hepatocytes. Biochimie 91:408–415

    PubMed  CAS  Google Scholar 

  105. Hao HX, Khalimonchuk O, Schraders M, Dephoure N, Bayley JP, Kunst H et al (2009) SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 325:1139–1142

    PubMed  CAS  Google Scholar 

  106. Pollard PJ, Briere JJ, Alam NA, Barwell J, Barclay E, Wortham NC et al (2005) Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet 14:2231–2239

    PubMed  CAS  Google Scholar 

  107. Vaux EC, Metzen E, Yeates KM, Ratcliffe PJ (2001) Regulation of hypoxia-inducible factor is preserved in the absence of a functioning mitochondrial respiratory chain. Blood 98:296–302

    PubMed  CAS  Google Scholar 

  108. Pan Y, Mansfield KD, Bertozzi CC, Rudenko V, Chan DA, Giaccia AJ et al (2007) Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. Mol Cell Biol 27:912–925

    PubMed  CAS  Google Scholar 

  109. Taylor CT (2008) Mitochondria and cellular oxygen sensing in the HIF pathway. Biochem J 409:19–26

    PubMed  CAS  Google Scholar 

  110. Bellance N, Lestienne P, Rossignol R (2009) Mitochondria: from bioenergetics to the metabolic regulation of carcinogenesis. Front Biosci 14:4015–4034

    PubMed  Google Scholar 

  111. Lu H, Forbes RA, Verma A (2002) Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 277:23111–23115

    PubMed  CAS  Google Scholar 

  112. Hagg M, Wennstrom S (2005) Activation of hypoxia-induced transcription in normoxia. Exp Cell Res 306:180–191

    PubMed  Google Scholar 

  113. Dunn LL, Buckle AM, Cooke JP, Ng MK (2010) The emerging role of the thioredoxin system in angiogenesis. Arterioscler Thromb Vasc Biol 30:2089–2098 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]

    PubMed  CAS  Google Scholar 

  114. Dai S, He Y, Zhang H, Yu L, Wan T, Xu Z et al (2009) Endothelial-specific expression of mitochondrial thioredoxin promotes ischemia-mediated arteriogenesis and angiogenesis. Arterioscler Thromb Vasc Biol 29(4):495–502 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]

    PubMed  CAS  Google Scholar 

  115. Sliman SM, Eubank TD, Kotha SR, Kuppusamy ML, Sherwani SI, Butler ES et al (2010) Hyperglycemic oxoaldehyde, glyoxal, causes barrier dysfunction, cytoskeletal alterations, and inhibition of angiogenesis in vascular endothelial cells: aminoguanidine protection. Mol Cell Biochem 333(1–2):9–26 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]

    PubMed  CAS  Google Scholar 

  116. Satoh M, Fujimoto S, Horike H, Ozeki M, Nagasu H, Tomita N et al (2011) Mitochondrial damage-induced impairment of angiogenesis in the aging rat kidney. Lab Invest 91:190–202 [Research Support, Non-U.S. Gov’t]

    PubMed  CAS  Google Scholar 

  117. Forini F, Lionetti V, Ardehali H, Pucci A, Cecchetti F, Ghanefar M et al (2011) Early long-term L-T3 replacement rescues mitochondria and prevents ischemic cardiac remodelling in rats. J Cell Mol Med 15(3):514–524 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]

    PubMed  CAS  Google Scholar 

  118. Comito G, Calvani M, Giannoni E, Bianchini F, Calorini L, Torre E et al (2011) HIF-1 alpha stabilization by mitochondrial ROS promotes Met-dependent invasive growth and vasculogenic mimicry in melanoma cells. Free Radic Biol Med 51:893–904 [Research Support, Non-U.S. Gov’t]

    PubMed  CAS  Google Scholar 

  119. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3:187–197

    PubMed  CAS  Google Scholar 

  120. Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185

    PubMed  Google Scholar 

  121. Richards JG, Sardella BA, Schulte PM (2008) Regulation of pyruvate dehydrogenase in the common killifish, Fundulus heteroclitus, during hypoxia exposure. Am J Physiol Regul Integr Comp Physiol 295:R979–R990

    PubMed  CAS  Google Scholar 

  122. De Palma S, Ripamonti M, Vigano A, Moriggi M, Capitanio D, Samaja M et al (2007) Metabolic modulation induced by chronic hypoxia in rats using a comparative proteomic analysis of skeletal muscle tissue. J Proteome Res 6:1974–1984

    PubMed  Google Scholar 

  123. Holness MJ, Sugden MC (2003) Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem Soc Trans 31:1143–1151

    PubMed  CAS  Google Scholar 

  124. Stacpoole PW, Owen R, Flotte TR (2003) The pyruvate dehydrogenase complex as a target for gene therapy. Curr Gene Ther 3:239–245

    PubMed  CAS  Google Scholar 

  125. Mattevi A, Obmolova G, Schulze E, Kalk KH, Westphal AH, de Kok A et al (1992) Atomic structure of the cubic core of the pyruvate dehydrogenase multienzyme complex. Science 255:1544–1550

    PubMed  CAS  Google Scholar 

  126. Patel MS, Korotchkina LG (2006) Regulation of the pyruvate dehydrogenase complex. Biochem Soc Trans 34:217–222

    PubMed  CAS  Google Scholar 

  127. Semenza GL (2007) Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem J 405:1–9

    PubMed  CAS  Google Scholar 

  128. Roche TE, Hiromasa Y (2007) Pyruvate dehydrogenase kinase regulatory mechanisms and inhibition in treating diabetes, heart ischemia, and cancer. Cell Mol Life Sci 64:830–849

    PubMed  CAS  Google Scholar 

  129. Mason SD, Rundqvist H, Papandreou I, Duh R, McNulty WJ, Howlett RA et al (2007) HIF-1 alpha in endurance training: suppression of oxidative metabolism. Am J Physiol Regul Integr Comp Physiol 293:R2059–R2069

    PubMed  CAS  Google Scholar 

  130. Sugden MC, Holness MJ (2006) Mechanisms underlying regulation of the expression and activities of the mammalian pyruvate dehydrogenase kinases. Arch Physiol Biochem 112:139–149

    PubMed  CAS  Google Scholar 

  131. Abbot EL, McCormack JG, Reynet C, Hassall DG, Buchan KW, Yeaman SJ (2005) Diverging regulation of pyruvate dehydrogenase kinase isoform gene expression in cultured human muscle cells. FEBS J 272:3004–3014

    PubMed  CAS  Google Scholar 

  132. Stacpoole PW, Gilbert LR, Neiberger RE, Carney PR, Valenstein E, Theriaque DW et al (2008) Evaluation of long-term treatment of children with congenital lactic acidosis with dichloroacetate. Pediatrics 121:e1223–e1228

    PubMed  Google Scholar 

  133. Huang B, Wu P, Bowker-Kinley MM, Harris RA (2002) Regulation of pyruvate dehydrogenase kinase expression by peroxisome proliferator-activated receptor-alpha ligands, glucocorticoids, and insulin. Diabetes 51:276–283

    PubMed  CAS  Google Scholar 

  134. Way JM, Harrington WW, Brown KK, Gottschalk WK, Sundseth SS, Mansfield TA et al (2001) Comprehensive messenger ribonucleic acid profiling reveals that peroxisome proliferator-activated receptor gamma activation has coordinate effects on gene expression in multiple insulin-sensitive tissues. Endocrinology 142:1269–1277

    PubMed  CAS  Google Scholar 

  135. Brown A, Nemeria N, Yi J, Zhang D, Jordan WB, Machado RS et al (1997) 2-Oxo-3-alkynoic acids, universal mechanism-based inactivators of thiamin diphosphate-dependent decarboxylases: synthesis and evidence for potent inactivation of the pyruvate dehydrogenase multienzyme complex. Biochemistry 36:8071–8081

    PubMed  CAS  Google Scholar 

  136. Hue L, Taegtmeyer H (2009) The Randle cycle revisited: a new head for an old hat. Am J Physiol Endocrinol Metab 297:E578–E591

    PubMed  CAS  Google Scholar 

  137. Kantor PF, Lucien A, Kozak R, Lopaschuk GD (2000) The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res 86:580–588

    PubMed  CAS  Google Scholar 

  138. Cosse JP, Michiels C (2008) Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression. Anticancer Agents Med Chem 8:790–797

    PubMed  CAS  Google Scholar 

  139. McFate T, Mohyeldin A, Lu H, Thakar J, Henriques J, Halim ND et al (2008) Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. J Biol Chem 283:22700–22708

    PubMed  CAS  Google Scholar 

  140. Michelakis ED, Sutendra G, Dromparis P, Webster L, Haromy A, Niven E et al (2010) Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med 2(31):31ra34 [In Vitro Research Support, Non-U.S. Gov’t]. 12;2(31):31–34

    PubMed  CAS  Google Scholar 

  141. Sutendra G, Dromparis P, Kinnaird A, Stenson TH, Haromy A, Parker JM et al (2012) Mitochondrial activation by inhibition of PDKII suppresses HIF1a signaling and angiogenesis in cancer. Oncogene. doi: 10.1038/onc.2012.198

  142. Biscetti F, Straface G, Pitocco D, Zaccardi F, Ghirlanda G, Flex A (2009) Peroxisome proliferator-activated receptors and angiogenesis. Nutr Metab Cardiovasc Dis 19(11):751–759

    PubMed  CAS  Google Scholar 

  143. Giaginis C, Margeli A, Theocharis S (2007) Peroxisome proliferator-activated receptor-gamma ligands as investigational modulators of angiogenesis. Expert Opin Investig Drugs 16:1561–1572

    PubMed  CAS  Google Scholar 

  144. Panigrahy D, Huang S, Kieran MW, Kaipainen A (2005) PPAR gamma as a therapeutic target for tumor angiogenesis and metastasis. Cancer Biol Ther 4:687–693

    PubMed  CAS  Google Scholar 

  145. Margeli A, Kouraklis G, Theocharis S (2003) Peroxisome proliferator activated receptor-gamma (PPAR-gamma) ligands and angiogenesis. Angiogenesis 6:165–169

    PubMed  CAS  Google Scholar 

  146. Xin X, Yang S, Kowalski J, Gerritsen ME (1999) Peroxisome proliferator-activated receptor gamma ligands are potent inhibitors of angiogenesis in vitro and in vivo. J Biol Chem 274:9116–9121

    PubMed  CAS  Google Scholar 

  147. Murata T, He S, Hangai M, Ishibashi T, Xi XP, Kim S et al (2000) Peroxisome proliferator-activated receptor-gamma ligands inhibit choroidal neovascularization. Invest Ophthalmol Vis Sci 41:2309–2317

    PubMed  CAS  Google Scholar 

  148. Kim KY, Cheon HG (2006) Antiangiogenic effect of rosiglitazone is mediated via peroxisome proliferator-activated receptor gamma-activated maxi-K channel opening in human umbilical vein endothelial cells. J Biol Chem 281:13503–13512

    PubMed  CAS  Google Scholar 

  149. Peeters LL, Vigne JL, Tee MK, Zhao D, Waite LL, Taylor RN (2005) PPAR gamma represses VEGF expression in human endometrial cells: implications for uterine angiogenesis. Angiogenesis 8:373–379

    PubMed  CAS  Google Scholar 

  150. Aljada A, O’Connor L, Fu YY, Mousa SA (2008) PPAR gamma ligands, rosiglitazone and pioglitazone, inhibit bFGF- and VEGF-mediated angiogenesis. Angiogenesis 11:361–367

    PubMed  CAS  Google Scholar 

  151. Gealekman O, Burkart A, Chouinard M, Nicoloro SM, Straubhaar J, Corvera S (2008) Enhanced angiogenesis in obesity and in response to PPARgamma activators through adipocyte VEGF and ANGPTL4 production. Am J Physiol Endocrinol Metab 295:E1056–E1064

    PubMed  CAS  Google Scholar 

  152. Chintalgattu V, Harris GS, Akula SM, Katwa LC (2007) PPAR-gamma agonists induce the expression of VEGF and its receptors in cultured cardiac myofibroblasts. Cardiovasc Res 74:140–150

    PubMed  CAS  Google Scholar 

  153. Huang PH, Sata M, Nishimatsu H, Sumi M, Hirata Y, Nagai R (2008) Pioglitazone ameliorates endothelial dysfunction and restores ischemia-induced angiogenesis in diabetic mice. Biomed Pharmacother 62:46–52

    PubMed  CAS  Google Scholar 

  154. Shen LQ, Child A, Weber GM, Folkman J, Aiello LP (2008) Rosiglitazone and delayed onset of proliferative diabetic retinopathy. Arch Ophthalmol 126:793–799

    PubMed  Google Scholar 

  155. Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK et al (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366:1279–1289

    PubMed  CAS  Google Scholar 

  156. Home PD, Pocock SJ, Beck-Nielsen H, Curtis PS, Gomis R, Hanefeld M et al (2009) Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet 373:2125–2135

    PubMed  CAS  Google Scholar 

  157. Erdmann E, Charbonnel B, Wilcox RG, Skene AM, Massi-Benedetti M, Yates J et al (2007) Pioglitazone use and heart failure in patients with type 2 diabetes and preexisting cardiovascular disease: data from the PROactive study (PROactive 08). Diabetes Care 30:2773–2778

    PubMed  CAS  Google Scholar 

  158. Giaginis C, Tsantili-Kakoulidou A, Theocharis S (2008) Peroxisome proliferator-activated receptor-gamma ligands: potential pharmacological agents for targeting the angiogenesis signaling cascade in cancer. PPAR Res 2008:431763

    PubMed  Google Scholar 

  159. Cadoudal T, Distel E, Durant S, Fouque F, Blouin JM, Collinet M et al (2008) Pyruvate dehydrogenase kinase 4: regulation by thiazolidinediones and implication in glyceroneogenesis in adipose tissue. Diabetes 57:2272–2279

    PubMed  CAS  Google Scholar 

  160. Biscetti F, Gaetani E, Flex A, Aprahamian T, Hopkins T, Straface G et al (2008) Selective activation of peroxisome proliferator-activated receptor (PPAR)alpha and PPAR gamma induces neoangiogenesis through a vascular endothelial growth factor-dependent mechanism. Diabetes 57:1394–1404

    PubMed  CAS  Google Scholar 

  161. Brunmair B, Staniek K, Gras F, Scharf N, Althaym A, Clara R et al (2004) Thiazolidinediones, like metformin, inhibit respiratory complex I: a common mechanism contributing to their antidiabetic actions? Diabetes 53:1052–1059

    PubMed  CAS  Google Scholar 

  162. Agani FH, Pichiule P, Carlos Chavez J, LaManna JC (2002) Inhibitors of mitochondrial complex Iattenuate the accumulation of hypoxia-inducible factor-1 during hypoxia in Hep3B cells. Comp Biochem Physiol A Mol Integr Physiol 132:107–109

    PubMed  Google Scholar 

  163. Rabia K, Khoo EM (2007) Prevalence of peripheral arterial disease in patients with diabetes mellitus in a primary care setting. Med J Malaysia 62:130–133

    PubMed  CAS  Google Scholar 

  164. Guan H, Li YJ, Xu ZR, Li GW, Guo XH, Liu ZM et al (2007) Prevalence and risk factors of peripheral arterial disease in diabetic patients over 50 years old in China. Chin Med Sci J 22:83–88

    PubMed  CAS  Google Scholar 

  165. Starner CI, Schafer JA, Heaton AH, Gleason PP (2008) Rosiglitazone and pioglitazone utilization from January 2007 through May 2008 associated with five risk-warning events. vJ Manag Care Pharm 14:523–531

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. McMurtry M.D., Ph.D., F.R.C.P.C. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

McMurtry, M.S. (2013). Angiogenesis, Arteriogenesis, and Mitochondrial Dysfunction. In: Jugdutt, B., Dhalla, N. (eds) Cardiac Remodeling. Advances in Biochemistry in Health and Disease, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5930-9_15

Download citation

Publish with us

Policies and ethics