Skip to main content

Circadian Regulation of Kisspeptin in Female Reproductive Functioning

  • Chapter
  • First Online:
Kisspeptin Signaling in Reproductive Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 784))

Abstract

Female reproductive functioning requires the precise temporal ­organization of numerous neuroendocrine events by a master circadian brain clock located in the suprachiasmatic nucleus. Across species, including humans, disruptions to circadian timing result in pronounced deficits in ovulation and fecundity. The present chapter provides an overview of the circadian control of female reproduction, underscoring the significance of kisspeptin as a key locus of integration for circadian and steroidal signaling necessary for the initiation of ovulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahlborg G Jr, Axelsson G, Bodin L (1996) Shift work, nitrous oxide exposure and subfertility among Swedish midwives. Int J Epidemiol 25(4):783–790

    PubMed  Google Scholar 

  2. Nurminen T (1998) Shift work and reproductive health. Scand J Work Environ Health 24(suppl 3):28–34

    PubMed  Google Scholar 

  3. Kerdelhue B, Brown S, Lenoir V, Queenan JT Jr, Jones GS, Scholler R et al (2002) Timing of initiation of the preovulatory luteinizing hormone surge and its relationship with the circadian cortisol rhythm in the human. Neuroendocrinology 75(3):158–163

    PubMed  CAS  Google Scholar 

  4. Mahoney MM, Sisk C, Ross HE, Smale L (2004) Circadian regulation of gonadotropin-­releasing hormone neurons and the preovulatory surge in luteinizing hormone in the diurnal rodent, Arvicanthis niloticus, and in a nocturnal rodent, Rattus norvegicus. Biol Reprod 70(4):1049–1054

    PubMed  CAS  Google Scholar 

  5. Christian CA, Moenter SM (2010) The neurobiology of preovulatory and estradiol-induced gonadotropin-releasing hormone surges. Endocr Rev 31(4):544–577

    PubMed  CAS  Google Scholar 

  6. Miller BH, Olson SL, Turek FW, Levine JE, Horton TH, Takahashi JS (2004) Circadian clock mutation disrupts estrous cyclicity and maintenance of pregnancy. Curr Biol 14(15):1367–1373

    PubMed  CAS  Google Scholar 

  7. Nunez AA, Stephan FK (1977) The effects of hypothalamic knife cuts on drinking rhythms and the estrus cycle of the rat. Behav Biol 20(2):224–234

    PubMed  CAS  Google Scholar 

  8. Wiegand SJ, Terasawa E (1982) Discrete lesions reveal functional heterogeneity of suprachiasmatic structures in regulation of gonadotropin secretion in the female rat. Neuroendocrinology 34(6):395–404

    PubMed  CAS  Google Scholar 

  9. Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69(6):1583–1586

    PubMed  CAS  Google Scholar 

  10. Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42(1):201–206

    PubMed  CAS  Google Scholar 

  11. Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science (New York, NY) 247(4945):975–978

    CAS  Google Scholar 

  12. Lehman MN, Silver R, Gladstone WR, Kahn RM, Gibson M, Bittman EL (1987) Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J Neurosci 7(6):1626–1638

    PubMed  CAS  Google Scholar 

  13. Green DJ, Gillette R (1982) Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice. Brain Res 245(1):198–200

    PubMed  CAS  Google Scholar 

  14. Morin LP, Allen CN (2006) The circadian visual system, 2005. Brain Res Rev 51(1):1–60

    PubMed  CAS  Google Scholar 

  15. Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science (New York, NY) 295(5557):1065–1070

    CAS  Google Scholar 

  16. Provencio I, Rollag MD, Castrucci AM (2002) Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature 415(6871):493

    PubMed  CAS  Google Scholar 

  17. Panda S, Sato TK, Castrucci AM, Rollag MD, DeGrip WJ, Hogenesch JB et al (2002) Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science (New York, NY) 298(5601):2213–2216

    CAS  Google Scholar 

  18. Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science (New York, NY) 295(5557):1070–1073

    CAS  Google Scholar 

  19. Ruby NF, Brennan TJ, Xie X, Cao V, Franken P, Heller HC et al (2002) Role of melanopsin in circadian responses to light. Science (New York, NY) 298(5601):2211–2213

    CAS  Google Scholar 

  20. Maywood ES, O’Neill JS, Chesham JE, Hastings MH (2007) Minireview: the circadian clockwork of the suprachiasmatic nuclei—analysis of a cellular oscillator that drives endocrine rhythms. Endocrinology 148(12):5624–5634

    PubMed  CAS  Google Scholar 

  21. Mohawk JA, Takahashi JS (2011) Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends Neurosci 34(7):349–358

    Google Scholar 

  22. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418(6901):935–941

    PubMed  CAS  Google Scholar 

  23. Chen R, Schirmer A, Lee Y, Lee H, Kumar V, Yoo SH et al (2009) Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism. Mol Cell 36(3):417–430

    PubMed  Google Scholar 

  24. Lowrey PL, Shimomura K, Antoch MP, Yamazaki S, Zemenides PD, Ralph MR et al (2000) Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science (New York, NY) 288(5465):483–492

    CAS  Google Scholar 

  25. Wang GQ, Du YZ, Tong J (2007) Daily oscillation and photoresponses of clock gene, Clock, and clock-associated gene, arylalkylamine N-acetyltransferase gene transcriptions in the rat pineal gland. Chronobiol Int 24(1):9–20

    PubMed  Google Scholar 

  26. Ueda HR, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y et al (2005) System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 37(2):187–192

    PubMed  CAS  Google Scholar 

  27. Ripperger JA, Schibler U (2006) Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat Genet 38(3):369–374

    PubMed  CAS  Google Scholar 

  28. Lavery DJ, Lopez-Molina L, Margueron R, Fleury-Olela F, Conquet F, Schibler U et al (1999) Circadian expression of the steroid 15 alpha-hydroxylase (Cyp2a4) and coumarin 7-hydroxylase (Cyp2a5) genes in mouse liver is regulated by the PAR leucine zipper transcription factor DBP. Mol Cell Biol 19(10):6488–6499

    PubMed  CAS  Google Scholar 

  29. Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93(6):929–937

    PubMed  CAS  Google Scholar 

  30. Welsh DK, Yoo SH, Liu AC, Takahashi JS, Kay SA (2004) Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr Biol 14(24):2289–2295

    PubMed  CAS  Google Scholar 

  31. Nequin LG, Alvarez J, Schwartz NB (1975) Steroid control of gonadotropin release. J Steroid Biochem 6(6):1007–1012

    PubMed  CAS  Google Scholar 

  32. Sarkar DK, Chiappa SA, Fink G, Sherwood NM (1976) Gonadotropin-releasing hormone surge in pro-oestrous rats. Nature 264(5585):461–463

    PubMed  CAS  Google Scholar 

  33. Everett JW, Sawyer CH (1950) A 24-hour periodicity in the “LH-release apparatus” of female rats, disclosed by barbiturate sedation. Endocrinology 47(3):198–218

    PubMed  CAS  Google Scholar 

  34. Alleva JJ, Waleski MV, Alleva FR (1971) A biological clock controlling the estrous cycle of the hamster. Endocrinology 88(6):1368–1379

    PubMed  CAS  Google Scholar 

  35. Fitzgerald K, Zucker I (1976) Circadian organization of the estrous cycle of the golden hamster. Proc Natl Acad Sci U S A 73(8):2923–2927

    PubMed  CAS  Google Scholar 

  36. Kriegsfeld LJ, Silver R (2006) The regulation of neuroendocrine function: timing is everything. Horm Behav 49(5):557–574

    PubMed  CAS  Google Scholar 

  37. Legan SJ, Karsch FJ (1975) A daily signal for the LH surge in the rat. Endocrinology 96(1):57–62

    PubMed  CAS  Google Scholar 

  38. Legan SJ, Coon GA, Karsch FJ (1975) Role of estrogen as initiator of daily LH surges in the ovariectomized rat. Endocrinology 96(1):50–56

    PubMed  CAS  Google Scholar 

  39. Christian CA, Mobley JL, Moenter SM (2005) Diurnal and estradiol-dependent changes in gonadotropin-releasing hormone neuron firing activity. Proc Natl Acad Sci U S A 102(43):15682–15687

    PubMed  CAS  Google Scholar 

  40. de la Iglesia HO, Schwartz WJ (2006) Minireview: timely ovulation: circadian regulation of the female hypothalamo-pituitary-gonadal axis. Endocrinology 147(3):1148–1153

    PubMed  Google Scholar 

  41. Silver R, Lehman MN, Gibson M, Gladstone WR, Bittman EL (1990) Dispersed cell suspensions of fetal SCN restore circadian rhythmicity in SCN-lesioned adult hamsters. Brain Res 525(1):45–58

    PubMed  CAS  Google Scholar 

  42. Meyer-Bernstein EL, Jetton AE, Matsumoto SI, Markuns JF, Lehman MN, Bittman EL (1999) Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters. Endocrinology 140(1):207–218

    PubMed  CAS  Google Scholar 

  43. Silver R, LeSauter J, Tresco PA, Lehman MN (1996) A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382(6594):810–813

    PubMed  CAS  Google Scholar 

  44. de la Iglesia HO, Meyer J, Carpino A Jr, Schwartz WJ (2000) Antiphase oscillation of the left and right suprachiasmatic nuclei. Science (New York, NY) 290(5492):799–801

    Google Scholar 

  45. Yan L, Foley NC, Bobula JM, Kriegsfeld LJ, Silver R (2005) Two antiphase oscillations occur in each suprachiasmatic nucleus of behaviorally split hamsters. J Neurosci 25(39):9017–9026

    PubMed  CAS  Google Scholar 

  46. Tavakoli-Nezhad M, Schwartz WJ (2005) c-Fos expression in the brains of behaviorally “split” hamsters in constant light: calling attention to a dorsolateral region of the suprachiasmatic nucleus and the medial division of the lateral habenula. J Biol Rhythms 20(5):419–429

    PubMed  Google Scholar 

  47. Swann JM, Turek FW (1985) Multiple circadian oscillators regulate the timing of behavioral and endocrine rhythms in female golden hamsters. Science (New York, NY) 228(4701):898–900

    CAS  Google Scholar 

  48. Kriegsfeld LJ, Leak RK, Yackulic CB, LeSauter J, Silver R (2004) Organization of suprachiasmatic nucleus projections in Syrian hamsters (Mesocricetus auratus): an anterograde and retrograde analysis. J Comp Neurol 468(3):361–379

    PubMed  Google Scholar 

  49. Van der Beek EM, Horvath TL, Wiegant VM, Van den Hurk R, Buijs RM (1997) Evidence for a direct neuronal pathway from the suprachiasmatic nucleus to the gonadotropin-­releasing hormone system: combined tracing and light and electron microscopic immunocytochemical studies. J Comp Neurol 384(4):569–579

    PubMed  Google Scholar 

  50. DeVries GJ, Buijs RM, Van Leeuwen FW, Caffe AR, Swaab DF (1985) The vasopressinergic innervation of the brain in normal and castrated rats. J Comp Neurol 233(2):236–254

    PubMed  CAS  Google Scholar 

  51. Watts AG, Swanson LW (1987) Efferent projections of the suprachiasmatic nucleus: II. Studies using retrograde transport of fluorescent dyes and simultaneous peptide immunohistochemistry in the rat. J Comp Neurol 258(2):230–252

    PubMed  CAS  Google Scholar 

  52. de la Iglesia HO, Meyer J, Schwartz WJ (2003) Lateralization of circadian pacemaker output: activation of left- and right-sided luteinizing hormone-releasing hormone neurons involves a neural rather than a humoral pathway. J Neurosci 23(19):7412–7414

    PubMed  Google Scholar 

  53. Smarr BL, Morris E, de la Iglesia HO (2012) The dorsomedial suprachiasmatic nucleus times circadian expression of Kiss1 and the luteinizing hormone surge. Endocrinology 153(6):2839–2850

    PubMed  CAS  Google Scholar 

  54. Williams WP III, Jarjisian SG, Mikkelsen JD, Kriegsfeld LJ (2011) Circadian control of ­kisspeptin and a gated GnRH response mediate the preovulatory luteinizing hormone surge. Endocrinology 152(2):595–606

    PubMed  CAS  Google Scholar 

  55. Vida B, Deli L, Hrabovszky E, Kalamatianos T, Caraty A, Coen CW et al (2010) Evidence for suprachiasmatic vasopressin neurones innervating kisspeptin neurones in the rostral periventricular area of the mouse brain: regulation by oestrogen. J Neuroendocrinol 22(9):1032–1039

    PubMed  CAS  Google Scholar 

  56. Robertson JL, Clifton DK, de la Iglesia HO, Steiner RA, Kauffman AS (2009) Circadian regulation of Kiss1 neurons: implications for timing the preovulatory gonadotropin-releasing hormone/luteinizing hormone surge. Endocrinology 150(8):3664–3671

    PubMed  CAS  Google Scholar 

  57. Moore RY, Speh JC, Leak RK (2002) Suprachiasmatic nucleus organization. Cell Tissue Res 309(1):89–98

    PubMed  CAS  Google Scholar 

  58. Ibata Y, Takahashi Y, Okamura H, Kawakami F, Terubayashi H, Kubo T et al (1989) Vasoactive intestinal peptide (VIP)-like immunoreactive neurons located in the rat ­suprachiasmatic nucleus receive a direct retinal projection. Neurosci Lett 97(1–2):1–5

    PubMed  CAS  Google Scholar 

  59. Tanaka M, Ichitani Y, Okamura H, Tanaka Y, Ibata Y (1993) The direct retinal projection to VIP neuronal elements in the rat SCN. Brain Res Bull 31(6):637–640

    PubMed  CAS  Google Scholar 

  60. Horvath TL, Cela V, van der Beek EM (1998) Gender-specific apposition between vasoactive intestinal peptide-containing axons and gonadotrophin-releasing hormone-producing neurons in the rat. Brain Res 795(1–2):277–281

    PubMed  CAS  Google Scholar 

  61. Smith MJ, Jiennes L, Wise PM (2000) Localization of the VIP2 receptor protein on GnRH neurons in the female rat. Endocrinology 141(11):4317–4320

    PubMed  CAS  Google Scholar 

  62. Kriegsfeld LJ, Silver R, Gore AC, Crews D (2002) Vasoactive intestinal polypeptide contacts on gonadotropin-releasing hormone neurones increase following puberty in female rats. J Neuroendocrinol 14(9):685–690

    PubMed  CAS  Google Scholar 

  63. Krajnak K, Rosewell KL, Wise PM (2001) Fos-induction in gonadotropin-releasing hormone neurons receiving vasoactive intestinal polypeptide innervation is reduced in middle-aged female rats. Biol Reprod 64(4):1160–1164

    PubMed  CAS  Google Scholar 

  64. van der Beek EM, van Oudheusden HJ, Buijs RM, van der Donk HA, van den Hurk R, Wiegant VM (1994) Preferential induction of c-fos immunoreactivity in vasoactive intestinal polypeptide-innervated gonadotropin-releasing hormone neurons during a steroid-induced luteinizing hormone surge in the female rat. Endocrinology 134(6):2636–2644

    PubMed  Google Scholar 

  65. Gerhold LM, Rosewell KL, Wise PM (2005) Suppression of vasoactive intestinal polypeptide in the suprachiasmatic nucleus leads to aging-like alterations in cAMP rhythms and activation of gonadotropin-releasing hormone neurons. J Neurosci 25(1):62–67

    PubMed  CAS  Google Scholar 

  66. Harney JP, Scarbrough K, Rosewell KL, Wise PM (1996) In vivo antisense antagonism of vasoactive intestinal peptide in the suprachiasmatic nuclei causes aging-like changes in the estradiol-induced luteinizing hormone and prolactin surges. Endocrinology 137(9):3696–3701

    PubMed  CAS  Google Scholar 

  67. Christian CA, Moenter SM (2008) Vasoactive intestinal polypeptide can excite gonadotropin-­releasing hormone neurons in a manner dependent on estradiol and gated by time of day. Endocrinology 149(6):3130–3136

    PubMed  CAS  Google Scholar 

  68. Herbison AE, Theodosis DT (1992) Localization of oestrogen receptors in preoptic neurons containing neurotensin but not tyrosine hydroxylase, cholecystokinin or luteinizing hormone-­releasing hormone in the male and female rat. Neuroscience 50(2):283–298

    PubMed  CAS  Google Scholar 

  69. Dorling AA, Todman MG, Korach KS, Herbison AE (2003) Critical role for estrogen receptor alpha in negative feedback regulation of gonadotropin-releasing hormone mRNA expression in the female mouse. Neuroendocrinology 78(4):204–209

    PubMed  CAS  Google Scholar 

  70. Wintermantel TM, Campbell RE, Porteous R, Bock D, Grone HJ, Todman MG et al (2006) Definition of estrogen receptor pathway critical for estrogen positive feedback to gonadotropin-­releasing hormone neurons and fertility. Neuron 52(2):271–280

    PubMed  CAS  Google Scholar 

  71. Wiegand SJ, Terasawa E, Bridson WE, Goy RW (1980) Effects of discrete lesions of preoptic and suprachiasmatic structures in the female rat. Alterations in the feedback regulation of gonadotropin secretion. Neuroendocrinology 31(2):147–157

    PubMed  CAS  Google Scholar 

  72. Ronnekleiv OK, Kelly MJ (1988) Plasma prolactin and luteinizing hormone profiles during the estrous cycle of the female rat: effects of surgically induced persistent estrus. Neuroendocrinology 47(2):133–141

    PubMed  CAS  Google Scholar 

  73. Gu GB, Simerly RB (1997) Projections of the sexually dimorphic anteroventral periventricular nucleus in the female rat. J Comp Neurol 384(1):142–164

    PubMed  CAS  Google Scholar 

  74. Le WW, Berghorn KA, Rassnick S, Hoffman GE (1999) Periventricular preoptic area neurons coactivated with luteinizing hormone (LH)-releasing hormone (LHRH) neurons at the time of the LH surge are LHRH afferents. Endocrinology 140(1):510–519

    PubMed  CAS  Google Scholar 

  75. Watson RE Jr, Langub MC Jr, Engle MG, Maley BE (1995) Estrogen-receptive neurons in the anteroventral periventricular nucleus are synaptic targets of the suprachiasmatic nucleus and peri-suprachiasmatic region. Brain Res 689(2):254–264

    PubMed  CAS  Google Scholar 

  76. de la Iglesia HO, Blaustein JD, Bittman EL (1995) The suprachiasmatic area in the female hamster projects to neurons containing estrogen receptors and GnRH. Neuroreport 6(13):1715–1722

    PubMed  Google Scholar 

  77. Shughrue PJ, Lane MV, Merchenthaler I (1997) Comparative distribution of estrogen receptor-­alpha and -beta mRNA in the rat central nervous system. J Comp Neurol 388(4):507–525

    PubMed  CAS  Google Scholar 

  78. Leak RK, Moore RY (2001) Topographic organization of suprachiasmatic nucleus projection neurons. J Comp Neurol 433(3):312–334

    PubMed  CAS  Google Scholar 

  79. Hoorneman EM, Buijs RM (1982) Vasopressin fiber pathways in the rat brain following suprachiasmatic nucleus lesioning. Brain Res 243(2):235–241

    PubMed  CAS  Google Scholar 

  80. Leak RK, Moore RY (2001) Topographic organization of suprachiasmatic nucleus projection neurons. J Comp Neurol 433(3):312–334

    PubMed  CAS  Google Scholar 

  81. Palm IF, Van Der Beek EM, Wiegant VM, Buijs RM, Kalsbeek A (1999) Vasopressin induces a luteinizing hormone surge in ovariectomized, estradiol-treated rats with lesions of the suprachiasmatic nucleus. Neuroscience 93(2):659–666

    PubMed  CAS  Google Scholar 

  82. Ostrowski NL, Lolait SJ, Young WS III (1994) Cellular localization of vasopressin V1a receptor messenger ribonucleic acid in adult male rat brain, pineal, and brain vasculature. Endocrinology 135(4):1511–1528

    PubMed  CAS  Google Scholar 

  83. Funabashi T, Shinohara K, Mitsushima D, Kimura F (2000) Estrogen increases arginine-­vasopressin V1a receptor mRNA in the preoptic area of young but not of middle-aged female rats. Neurosci Lett 285(3):205–208

    PubMed  CAS  Google Scholar 

  84. Petersen SL, Barraclough CA (1989) Suppression of spontaneous LH surges in estrogen-­treated ovariectomized rats by microimplants of antiestrogens into the preoptic brain. Brain Res 484(1–2):279–289

    PubMed  CAS  Google Scholar 

  85. Grace CO, Fink G, Quinn JP (1999) Characterization of potential regulatory elements within the rat arginine vasopressin proximal promoter. Neuropeptides 33(1):81–90

    PubMed  CAS  Google Scholar 

  86. Munoz E, Brewer M, Baler R (2002) Circadian transcription. Thinking outside the E-box. J Biol Chem 277(39):36009–36017

    PubMed  CAS  Google Scholar 

  87. Jin X, Shearman LP, Weaver DR, Zylka MJ, de Vries GJ, Reppert SM (1999) A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96(1):57–68

    PubMed  CAS  Google Scholar 

  88. Shinohara K, Honma S, Katsuno Y, Abe H, Honma K (1994) Circadian rhythms in the release of vasoactive intestinal polypeptide and arginine-vasopressin in organotypic slice culture of rat suprachiasmatic nucleus. Neurosci Lett 170(1):183–186

    PubMed  CAS  Google Scholar 

  89. Schwartz WJ, Coleman RJ, Reppert SM (1983) A daily vasopressin rhythm in rat cerebrospinal fluid. Brain Res 263(1):105–112

    PubMed  CAS  Google Scholar 

  90. Kalsbeek A, Buijs RM, Engelmann M, Wotjak CT, Landgraf R (1995) In vivo measurement of a diurnal variation in vasopressin release in the rat suprachiasmatic nucleus. Brain Res 682(1–2):75–82

    PubMed  CAS  Google Scholar 

  91. Funabashi T, Shinohara K, Mitsushima D, Kimura F (2000) Gonadotropin-releasing hormone exhibits circadian rhythm in phase with arginine-vasopressin in co-cultures of the female rat preoptic area and suprachiasmatic nucleus. J Neuroendocrinol 12(6):521–528

    PubMed  CAS  Google Scholar 

  92. Funabashi T, Aiba S, Sano A, Shinohara K, Kimura F (1999) Intracerebroventricular ­injection of arginine-vasopressin V1 receptor antagonist attenuates the surge of luteinizing hormone and prolactin secretion in proestrous rats. Neurosci Lett 260(1):37–40

    PubMed  CAS  Google Scholar 

  93. Gottsch ML, Cunningham MJ, Smith JT, Popa SM, Acohido BV, Crowley WF et al (2004) A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 145(9):4073–4077

    PubMed  CAS  Google Scholar 

  94. Smith JT, Dungan HM, Stoll EA, Gottsch ML, Braun RE, Eacker SM et al (2005) Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology 146(7):2976–2984

    PubMed  CAS  Google Scholar 

  95. Clarkson J, Herbison AE (2006) Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology 147(12):5817–5825

    PubMed  CAS  Google Scholar 

  96. Revel FG, Saboureau M, Masson-Pevet M, Pevet P, Mikkelsen JD, Simonneaux V (2006) Kisspeptin mediates the photoperiodic control of reproduction in hamsters. Curr Biol 16(17):1730–1735

    PubMed  CAS  Google Scholar 

  97. Greives TJ, Mason AO, Scotti MA, Levine J, Ketterson ED, Kriegsfeld LJ et al (2007) Environmental control of kisspeptin: implications for seasonal reproduction. Endocrinology 148(3):1158–1166

    PubMed  CAS  Google Scholar 

  98. Smith JT, Cunningham MJ, Rissman EF, Clifton DK, Steiner RA (2005) Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology 146(9):3686–3692

    PubMed  CAS  Google Scholar 

  99. Irwig MS, Fraley GS, Smith JT, Acohido BV, Popa SM, Cunningham MJ et al (2004) Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuroendocrinology 80(4):264–272

    PubMed  CAS  Google Scholar 

  100. Matsui H, Takatsu Y, Kumano S, Matsumoto H, Ohtaki T (2004) Peripheral administration of metastin induces marked gonadotropin release and ovulation in the rat. Biochem Biophys Res Commun 320(2):383–388

    PubMed  CAS  Google Scholar 

  101. Navarro VM, Castellano JM, Fernandez-Fernandez R, Tovar S, Roa J, Mayen A et al (2005) Characterization of the potent luteinizing hormone-releasing activity of KiSS-1 peptide, the natural ligand of GPR54. Endocrinology 146(1):156–163

    PubMed  CAS  Google Scholar 

  102. Navarro VM, Castellano JM, Fernandez-Fernandez R, Tovar S, Roa J, Mayen A et al (2005) Effects of KiSS-1 peptide, the natural ligand of GPR54, on follicle-stimulating hormone secretion in the rat. Endocrinology 146(4):1689–1697

    PubMed  CAS  Google Scholar 

  103. Mayer C, Boehm U (2011) Female reproductive maturation in the absence of kisspeptin/GPR54 signaling. Nat Neurosci 14(6):704–710

    PubMed  CAS  Google Scholar 

  104. Silverman AJ, Zimmerman EA, Gibson MJ, Perlow MJ, Charlton HM, Kokoris GJ et al (1985) Implantation of normal fetal preoptic area into hypogonadal mutant mice: temporal relationships of the growth of gonadotropin-releasing hormone neurons and the development of the pituitary/testicular axis. Neuroscience 16(1):69–84

    PubMed  CAS  Google Scholar 

  105. Gibson MJ, Kokoris GJ, Silverman AJ (1988) Positive feedback in hypogonadal female mice with preoptic area brain transplants. Neuroendocrinology 48(2):112–119

    PubMed  CAS  Google Scholar 

  106. Smith JT, Popa SM, Clifton DK, Hoffman GE, Steiner RA (2006) Kiss1 neurons in the forebrain as central processors for generating the preovulatory luteinizing hormone surge. J Neurosci 26(25):6687–6694

    PubMed  CAS  Google Scholar 

  107. Adachi S, Yamada S, Takatsu Y, Matsui H, Kinoshita M, Takase K et al (2007) Involvement of anteroventral periventricular metastin/kisspeptin neurons in estrogen positive feedback action on luteinizing hormone release in female rats. J Reprod Dev 53(2):367–378

    PubMed  CAS  Google Scholar 

  108. Vida B, Deli L, Hrabovszky E, Kalamatianos T, Caraty A, Coen CW et al (2010) Evidence for suprachiasmatic vasopressin neurons innervating kisspeptin neurons in the rostral periventricular area of the mouse brain: regulation by oestrogen. J Neuroendocrinol 22(9):1032–1039

    PubMed  CAS  Google Scholar 

  109. de la Iglesia HO, Cambras T, Schwartz WJ, Diez-Noguera A (2004) Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus. Curr Biol 14(9):796–800

    PubMed  Google Scholar 

  110. Khan AR, Kauffman AS (2011) The role of kisspeptin and RFRP-3 neurons in the circadian-­timed preovulatory luteinizing hormone surge. J Neuroendocrinol 24(1):131–143

    Google Scholar 

  111. Palm IF, van der Beek EM, Wiegant VM, Buijs RM, Kalsbeek A (2001) The stimulatory effect of vasopressin on the luteinizing hormone surge in ovariectomized, estradiol-treated rats is time-dependent. Brain Res 901(1–2):109–116

    PubMed  CAS  Google Scholar 

  112. Chappell PE, White RS, Mellon PL (2003) Circadian gene expression regulates pulsatile gonadotropin-releasing hormone (GnRH) secretory patterns in the hypothalamic GnRH-­secreting GT1-7 cell line. J Neurosci 23(35):11202–11213

    PubMed  CAS  Google Scholar 

  113. Zhao S, Kriegsfeld LJ (2009) Daily changes in GT1-7 cell sensitivity to GnRH secretagogues that trigger ovulation. Neuroendocrinology 89(4):448–457

    PubMed  CAS  Google Scholar 

  114. Hickok JR, Tischkau SA (2010) In vivo circadian rhythms in gonadotropin-releasing hormone neurons. Neuroendocrinology 91(1):110–120

    PubMed  CAS  Google Scholar 

  115. Olcese J, Domagalski R, Bednorz A, Weaver DR, Urbanski HF, Reuss S et al (2003) Expression and regulation of mPer1 in immortalized GnRH neurons. Neuroreport 14(4):613–618

    PubMed  CAS  Google Scholar 

  116. Tonsfeldt KJ, Goodall CP, Latham KL, Chappell PE (2011) Oestrogen induces rhythmic expression of the Kisspeptin-1 receptor GPR54 in hypothalamic gonadotrophin-releasing hormone-secreting GT1-7 cells. J Neuroendocrinol 23(9):823–830

    PubMed  CAS  Google Scholar 

  117. Tsutsui K, Saigoh E, Ukena K, Teranishi H, Fujisawa Y, Kikuchi M et al (2000) A novel avian hypothalamic peptide inhibiting gonadotropin release. Biochem Biophys Res Commun 275(2):661–667

    PubMed  CAS  Google Scholar 

  118. Bentley GE, Tsutsui K, Kriegsfeld LJ (2010) Recent studies of gonadotropin-inhibitory hormone (GnIH) in the mammalian hypothalamus, pituitary and gonads. Brain Res 1364:62–71

    PubMed  CAS  Google Scholar 

  119. Kriegsfeld LJ, Gibson EM, Williams WP III, Zhao S, Mason AO, Bentley GE et al (2010) The roles of RFamide-related peptide-3 in mammalian reproductive function and behaviour. J Neuroendocrinol 22(7):692–700

    PubMed  CAS  Google Scholar 

  120. Tsutsui K, Bentley GE, Kriegsfeld LJ, Osugi T, Seong JY, Vaudry H (2010) Discovery and evolutionary history of gonadotrophin-inhibitory hormone and kisspeptin: new key neuropeptides controlling reproduction. J Neuroendocrinol 22(7):716–727

    PubMed  CAS  Google Scholar 

  121. Smith JT, Clarke IJ (2010) Gonadotropin inhibitory hormone function in mammals. Trends Endocrinol Metab 21(4):255–260

    PubMed  CAS  Google Scholar 

  122. Ancel C, Bentsen AH, Sebert ME, Tena-Sempere M, Mikkelsen JD, Simonneaux V (2012) Stimulatory effect of RFRP-3 on the gonadotrophic axis in the male Syrian hamster: the exception proves the rule. Endocrinology 153(3):1352–1363

    PubMed  CAS  Google Scholar 

  123. Kriegsfeld LJ, Mei DF, Bentley GE, Ubuka T, Mason AO, Inoue K et al (2006) Identification and characterization of a gonadotropin-inhibitory system in the brains of mammals. Proc Natl Acad Sci U S A 103(7):2410–2415

    PubMed  CAS  Google Scholar 

  124. Johnson MA, Tsutsui K, Fraley GS (2007) Rat RFamide-related peptide-3 stimulates GH secretion, inhibits LH secretion, and has variable effects on sex behavior in the adult male rat. Horm Behav 51(1):171–180

    PubMed  CAS  Google Scholar 

  125. Rizwan MZ, Poling MC, Corr M, Cornes PA, Augustine RA, Quennell JH et al (2012) RFamide-related peptide-3 receptor gene expression in GnRH and kisspeptin neurons and GnRH-dependent mechanism of action. Endocrinology 153(8):3770–3779

    PubMed  CAS  Google Scholar 

  126. Ubuka T, Inoue K, Fukuda Y, Mizuno T, Ukena K, Kriegsfeld LJ et al (2012) Identification, expression, and physiological functions of Siberian hamster gonadotropin-inhibitory hormone. Endocrinology 153(1):373–385

    PubMed  CAS  Google Scholar 

  127. Gibson EM, Humber SA, Jain S, Williams WP III, Zhao S, Bentley GE et al (2008) Alterations in RFamide-related peptide expression are coordinated with the preovulatory luteinizing hormone surge. Endocrinology 149(10):4958–4969

    PubMed  CAS  Google Scholar 

  128. Hinuma S, Shintani Y, Fukusumi S, Iijima N, Matsumoto Y, Hosoya M et al (2000) New neuropeptides containing carboxy-terminal RFamide and their receptor in mammals. Nat Cell Biol 2(10):703–708

    PubMed  CAS  Google Scholar 

  129. Murakami M, Matsuzaki T, Iwasa T, Yasui T, Irahara M, Osugi T et al (2008) Hypophysiotropic role of RFamide-related peptide-3 in the inhibition of LH secretion in female rats. J Endocrinol 199(1):105–112

    PubMed  CAS  Google Scholar 

  130. Rizwan MZ, Porteous R, Herbison AE, Anderson GM (2009) Cells expressing ­RFamide-­related peptide-1/3, the mammalian gonadotropin-inhibitory hormone orthologs, are not hypophysiotropic neuroendocrine neurons in the rat. Endocrinology 150(3):1413–1420

    PubMed  CAS  Google Scholar 

  131. Yin H, Ukena K, Ubuka T, Tsutsui K (2005) A novel G protein-coupled receptor for gonadotropin-­inhibitory hormone in the Japanese quail (Coturnix japonica): identification, expression and binding activity. J Endocrinol 184(1):257–266

    PubMed  CAS  Google Scholar 

  132. Anderson GM, Relf HL, Rizwan MZ, Evans JJ (2009) Central and peripheral effects of RFamide-related peptide-3 on luteinizing hormone and prolactin secretion in rats. Endocrinology 150(4):1834–1840

    PubMed  CAS  Google Scholar 

  133. Molnar CS, Kallo I, Liposits Z, Hrabovszky E (2011) Estradiol down-regulates ­RF-amide-related peptide (RFRP) expression in the mouse hypothalamus. Endocrinology 152(4):1684–1690

    PubMed  CAS  Google Scholar 

  134. Pineda R, Garcia-Galiano D, Sanchez-Garrido MA, Romero M, Ruiz-Pino F, Aguilar E et al (2010) Characterization of the potent gonadotropin-releasing activity of RF9, a selective antagonist of RF-amide-related peptides and neuropeptide FF receptors: physiological and pharmacological implications. Endocrinology 151(4):1902–1913

    PubMed  CAS  Google Scholar 

  135. Wise PM (1982) Alterations in proestrous LH, FSH, and prolactin surges in middle-aged rats. Proc Soc Exp Biol Med 169(3):348–354

    PubMed  CAS  Google Scholar 

  136. Lloyd JM, Hoffman GE, Wise PM (1994) Decline in immediate early gene expression in gonadotropin-releasing hormone neurons during proestrus in regularly cycling, middle-aged rats. Endocrinology 134(4):1800–1805

    PubMed  CAS  Google Scholar 

  137. Krajnak K, Kashon ML, Rosewell KL, Wise PM (1998) Aging alters the rhythmic expression of vasoactive intestinal polypeptide mRNA but not arginine vasopressin mRNA in the suprachiasmatic nuclei of female rats. J Neurosci 18(12):4767–4774

    PubMed  CAS  Google Scholar 

  138. Lederman MA, Lebesgue D, Gonzalez VV, Shu J, Merhi ZO, Etgen AM et al (2010) Age-­related LH surge dysfunction correlates with reduced responsiveness of hypothalamic anteroventral periventricular nucleus kisspeptin neurons to estradiol positive feedback in middle-aged rats. Neuropharmacology 58(1):314–320

    PubMed  CAS  Google Scholar 

  139. Neal-Perry G, Lebesgue D, Lederman M, Shu J, Zeevalk GD, Etgen AM (2009) The excitatory peptide kisspeptin restores the luteinizing hormone surge and modulates amino acid neurotransmission in the medial preoptic area of middle-aged rats. Endocrinology 150(8):3699–3708

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lance J. Kriegsfeld Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kriegsfeld, L.J. (2013). Circadian Regulation of Kisspeptin in Female Reproductive Functioning. In: Kauffman, A., Smith, J. (eds) Kisspeptin Signaling in Reproductive Biology. Advances in Experimental Medicine and Biology, vol 784. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6199-9_18

Download citation

Publish with us

Policies and ethics