Skip to main content

Advanced Topics

  • Chapter
  • First Online:
Particle Filters for Random Set Models
  • 2258 Accesses

Abstract

This chapter is devoted to two tracking problems where random set models are particularly useful, because they offer elegant solutions unmatched by the standard approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Blackman and R. Popoli, Design and Analysis of Modern Tracking Systems. Artech House, 1999.

    Google Scholar 

  2. G. Bradski and A. Kaehler, Learning OpenCV. O’Reilly, Media, 2008.

    Google Scholar 

  3. J. Vermaak, N. Ikoma, and S. Godsill, “A sequential Monte Carlo framework for extended object tracking,” IEE Proc. Radar, Sonar and Navig., vol. 152, no. 5, pp. 353–363, 2005.

    Google Scholar 

  4. K. Gilholm and D. Salmond, “Spatial distribution model for tracking extended objects,” IEE Proc. Radar, Sonar Navig., vol. 152, no. 5, pp. 364–371, 2005.

    Google Scholar 

  5. J. W. Koch, “Bayesian approach to extended object and cluster tracking using random matrices,” IEEE Trans Aerospace and Electronic Systems, vol. 44, no. 3, pp. 1042–1059, 2008.

    Google Scholar 

  6. in Proc. Int. Conf. Information Fusion, (Chicago, USA), July 2011. Special Session: Extended Object and group target tracking.

    Google Scholar 

  7. R. Mahler, Statistical Multisource Multitarget Information Fusion. Artech House, 2007.

    Google Scholar 

  8. K. Gilholm, S. Godsill, S. Maskell, D. Salmond, “Poisson models for extended target and group tracking,” in, Proc. SPIE, vol. 5913, 2005.

    Google Scholar 

  9. R. Mahler, “PHD filters for nonstandard targets I: Extended targets,” in Proc. 12th Int. Conf. Information Fusion, (Seattle, USA), July 2009.

    Google Scholar 

  10. U. Orguner, C. Lundquist, and K. Granstr\(\ddot{o}\)m, “Extended target tracking with a cardinalized probability hypothesis density filter,” in Proc. 14th Int. Conf. Information Fusion, (Chicago, USA), July 2011.

    Google Scholar 

  11. A. Swain and D. Clark, “The single-group PHD filter: an analytic solution,” in Proc. 14th Int. Conf. Information Fusion, (Chicago, USA), July 2011.

    Google Scholar 

  12. Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation. John Wiley & Sons, 2001.

    Google Scholar 

  13. “PETS: performance evaluation of tracking and surveillance.” http://www.cvg.rdg.ac.uk/slides/pets.html

  14. J. Shi and C. Tomasi, “Good features to track,” in Proc. 9th IEEE Conference on Computer Vision and, Pattern Recognition, pp. 593–600, June 1994.

    Google Scholar 

  15. A. Swain and D. E. Clark, “First-moment filters for spatial independent cluster processes,” Proceedings of SPIE 7697, 2010.

    Google Scholar 

  16. A. Swain and D. Clark, “Extended object filtering using spatial independent cluster processes,” Proc. conf. Information Fusion (FUSION), 2010.

    Google Scholar 

  17. R. Mahler, “Detecting, tracking, and classifying group targets: a unified approach,” in Proceedings of SPIE, vol. 4380, pp. 217–228, 2001.

    Google Scholar 

  18. R. Mahler, “An Extended First-Order Bayes Filter for Force Aggregation,” in Proceedings of SPIE, vol. 4728, pp. 196–207, 2002.

    Google Scholar 

  19. B. Ristic and D. Clark, “Particle filter for joint estimation of multi-object dynamic state and multi-sensor bias,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), (Kyoto, Japan), pp. 3877–3880, March 2012.

    Google Scholar 

  20. C.-S. Lee, D. E. Clark, and J. Salvi, “SLAM with Single Cluster PHD Filters,” Proc. International Conference on Robotics and Automation, 2012.

    Google Scholar 

  21. D. E. Clark, C.-S. Lee, and S. Nagappa, “Single-cluster PHD filtering and smoothing for SLAM applications,” Proc. International Conference on Robotics and Automation, 2012.

    Google Scholar 

  22. C. P. Robert and G. Casella, Monte Carlo statistical methods. Springer, 2nd ed., 2004.

    Google Scholar 

  23. B. Jungbacker and S. J. Koopman, “Monte Carlo estimation for nonlinear non-gaussian state space models,” Biometrika, vol. 94, no. 4, pp. 827–839, 2007.

    Google Scholar 

  24. O. Cappé, S. J. Godsill, and E. Moulines, “An overview of existing methods and recent advances in sequential Monte Carlo,” Proc. IEEE, vol. 95, no. 5, pp. 899–924, 2007.

    Google Scholar 

  25. C. Andrieu, A. Doucet, and R. Holenstein, “Particle Markov chain Monte Carlo methods,” Journ. Royal Statistical Soc. B, vol. 72, no. Part 3, pp. 269–342, 2010.

    Google Scholar 

  26. F. Lindsten and T. B. Schön, “On the use of backward simulation in the particle Gibbs sampler,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), (Kyoto, Japan), pp. 3845–3848, March 2012.

    Google Scholar 

  27. X. Lin, Y. Bar-Shalom, and T. Kirubarajan, “Multisensor-multitarget bias estimation for general asynchronous sensors,” IEEE Transactions on Aerospace and Electronic Systems, vol. 41, no. 3, pp. 899–921, 2005.

    Google Scholar 

  28. Y. Qi, Z. Jing, and S. Hu, “General solution for asynchronous sensor bias estimation,” in Proc. 11th Int. Conf. Information Fusion, (Cologne, Germany), 2008.

    Google Scholar 

  29. N. Okello and B. Ristic, “Maximum likelihood registration for multiple dissimilar sensors,” IEEE Trans. Aerospace and Electronic Systems, vol. 39, no. 3, 2003.

    Google Scholar 

  30. R. P. S. Mahler, “Multi-target Bayes filtering via first-order multi-target moments,” IEEE Trans. Aerospace & Electronic Systems, vol. 39, no. 4, pp. 1152–1178, 2003.

    Google Scholar 

  31. C. Musso, N. Oudjane, and F. LeGland, “Improving regularised particle filters,” in Sequential Monte Carlo methods in Practice (A. Doucet, N. deFreitas, and N. J. Gordon, eds.), ch. 12, New York: Springer-Verlag, 2001.

    Google Scholar 

  32. B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman filter: Particle filters for tracking applications. Artech House, 2004.

    Google Scholar 

  33. M. Morelande and B. Ristic, “Radiological source detection and localisation using bayesian techniques,” IEEE Trans Signal Processing, vol. 57, no. 11, pp. 4220–4231, 2009.

    Google Scholar 

  34. R. P. S. Mahler, B.-T. Vo, and B. N. Vo, “Forward-backward probability hypothesis density smoothing,” IEEE Trans. Aerospace and Electronic Systems, 2012.

    Google Scholar 

  35. D. E. Clark, “First-Moment Multi-Object Forward-Backward Smoothing,” Int. Conf. on, Information Fusion, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branko Ristic .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ristic, B. (2013). Advanced Topics. In: Particle Filters for Random Set Models. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6316-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6316-0_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6315-3

  • Online ISBN: 978-1-4614-6316-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics