Skip to main content

Production and Purification of Recombinant Proteins

  • Chapter
  • First Online:
Pharmaceutical Biotechnology

Abstract

The growing therapeutic use of proteins has created an increasing need for practical and economical processing techniques. As a result, biotechnological production methods have advanced significantly over the last decade. Also, single-use production technology which has the potential to mitigate many of the economic and quality issues arising from manufacturing these products has evolved rapidly (Hodge 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afeyan N, Gordon N, Mazsaroff I, Varady L, Fulton S, Yang Y, Regnier F (1989) Flow-through particles of the high-performance liquid chromatographic separation of biomolecules, perfusion chromatography. J Chromatogr 519:1–29

    Google Scholar 

  • Benedek K, Swadesh JK (1991) HPLC of proteins and peptides in the pharmaceutical industry. In: Fong GW, Lam SK (eds) HPLC in the pharmaceutical industry. Dekker, New York, pp 241–302

    Google Scholar 

  • Berthold W, Walter J (1994) Protein purification: aspects of processes for pharmaceutical products. Biologicals 22:135–150

    Article  PubMed  CAS  Google Scholar 

  • Borman S (2006) Glycosylation engineering. Chem Eng News 84:13–22

    Google Scholar 

  • Cartwright T (1987) Isolation and purification of products from animal cells. Trends Biotechnol 5:25–30

    Article  CAS  Google Scholar 

  • Celik E, Calik P (2011) Production of recombinant proteins by yeast cells. Biotechnol Adv. doi:10.1016/j.biotechadv.2011.09.011

    PubMed  Google Scholar 

  • Chase HA (1994) Purification of proteins by adsorption chromatography in expanded beds. Trends Biotechnol 12:296–303

    Article  PubMed  CAS  Google Scholar 

  • Chase H, Draeger N (1993) Affinity purification of proteins using expanded beds. J Chromatogr 597:129–145

    Google Scholar 

  • Compton B, Jensen J (2007) Use of perfusion technology on the Rise – New modes are beginning to gain ground on Fed-Batch strategy. Genetic Engineering & Biotechnology News 27(17):48

    Google Scholar 

  • Cumming DA (1991) Glycosylation of recombinant protein therapeutics: Control and functional implications. Glycobiology 1(2):115–130

    Article  PubMed  CAS  Google Scholar 

  • Dell A, Galadari A, Sastre F, Hitchen P (2011) Similarities and differences in the glycosylation mechanisms in prokaryotes and eukaryotes. Int J Microbiol 2010(2010):148178

    Google Scholar 

  • EMA (2011) Note for guidance on minimising the risk of transmitting animal spongiform encephalopathy agents via human and veterinary medicinal products (EMA/410/01 rev.3)

    Google Scholar 

  • European Pharmacopoeia Seventh Edition. Strasbourg: Council of Europe (2011) 5.2.3. Cell substrates for the production of vaccines for human use

    Google Scholar 

  • FD3A, Center for Biologics Evaluation and Research (1990) Cytokine and growth factor pre-pivotal trial information package with special emphasis on products identified for consideration under 21 CFR 312 Subpart E. Bethesda

    Google Scholar 

  • FDA, Office of Biologicals Research and Review (1993) Points to consider in the characterization of cell lines used to produce biologicals. Rockville Pike/Bethesda

    Google Scholar 

  • Fulton SP (1994) Large scale processing of macromolecules. Curr Opin Biotechnol 5:201–205

    Article  PubMed  CAS  Google Scholar 

  • Gottschalk U (2006) The renaissance of protein purification. BioPharm Int 19(6):S8–S9

    Google Scholar 

  • Heng M, Glatz C (1993) Charged fusions for selective recovery of ß-galactosidase from cell extract using hollow fiber ion-exchange membrane adsorption. Biotechnol Bioeng 42:333–338

    Article  PubMed  CAS  Google Scholar 

  • Hjerten S, Mohammed J, Nakazato K (1993) Improvement in flow properties and pH stability of compressed, continuous polymer beds for high-performance liquid chromatography. J Chromatogr 646:121–128

    Article  CAS  Google Scholar 

  • Hodge G (2004) Disposable components enable a new approach to biopharmaceutical manufacturing. BioPharm Int 2004(15):38–49

    Google Scholar 

  • Homma T, Fuji M, Mori J, Kawakami T, Kuroda K, Taniguchi M (1993) Production of cellobiose by enzymatic hydrolysis: removal of ß-glucosidase from cellulase by affinity precipitation using chitosan. Biotechnol Bioeng 41:405–410

    Article  PubMed  CAS  Google Scholar 

  • Horowitz MS, Bolmer SD, Horowitz B (1991) Elimination of disease-transmitting enveloped viruses from human blood plasma and mammalian cell culture products. Bioseparation 1:409–417

    CAS  Google Scholar 

  • ICH (International Conference on Harmonization) Topic Q6B (1999a) Specifications: test procedures and acceptance criteria for biotechnology/biological products

    Google Scholar 

  • ICH (International Conference on Harmonization) Topic Q5A (1999b) Viral safety evaluation of biotechnology products derived from cell lines of human or animal origin

    Google Scholar 

  • International Conference on Harmonization guideline M7 on assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk

    Google Scholar 

  • James AM (1992) Introduction fundamental techniques. In: James AM (ed) Analysis of amino acids and nucleic acids. Butterworth-Heinemann, Oxford, pp 1–28

    Google Scholar 

  • Jones K (1990) Affinity chromatography, a technology up-date. Am Biotechnol Lab 8:26–30

    PubMed  CAS  Google Scholar 

  • Kelley B (2009) Industrialization of mAb production technology. MAbs 1(5):443–452

    Article  PubMed  Google Scholar 

  • Klegerman ME, Groves MJ (1992) Pharmaceutical biotechnology. Interpharm Press, Inc., Buffalo Grove

    Google Scholar 

  • Löwer J (1990) Risk of tumor induction in vivo by residual cellular DNA: quantitative considerations. J Med Virol 31:50–53

    Article  PubMed  Google Scholar 

  • Maerz H, Hahn SO, Maassen A, Meisel H, Roggenbuck D, Sato T, Tanzmann H, Emmrich F, Marx U (1996) Improved removal of viruslike particles from purified monoclonal antibody IgM preparation via virus filtration. Nat Biotechnol 14:651–652

    Article  PubMed  CAS  Google Scholar 

  • Marcus-Sekura CJ (1991) Validation and removal of human retroviruses. Center for Biologics Evaluation and Research, FDA, Bethesda

    Google Scholar 

  • Minor PD (1994) Ensuring safety and consistency in cell culture production processes: viral screening and inactivation. Trends Biotechnol 12:257–261

    Article  PubMed  CAS  Google Scholar 

  • Monteclaro F (2010) Protein expression systems, ringing in the new. Innov Pharm Technol 12:45–49

    Google Scholar 

  • Note for Guidance (1991) Validation of virus removal and inactivation procedure, Ad Hoc Working Party on Biotechnology/Pharmacy, European Community, DG III/8115/89-EN

    Google Scholar 

  • Orzaez D, Granell A, Blazquez MA (2009) Manufacturing antibodies in the plant cell. Biotechnol J 4:1712–1724

    Article  PubMed  CAS  Google Scholar 

  • PDA Journal of Pharmaceutical Science and Technology (2005) Technical report No. 41, Virus filtration, 59, No. S-2

    Google Scholar 

  • Peters J, Stoger E (2011) Transgenic crops for the production of recombinant vaccines and anti-microbial antibodies. Hum Vaccin 7(3):367–374

    Article  PubMed  CAS  Google Scholar 

  • Sadana A (1989) Protein inactivation during downstream separation, part I: the processes. Biopharm 2:14–25

    CAS  Google Scholar 

  • Sharma SK (1990) Key issues in the purification and characterization of recombinant proteins for therapeutic use. Adv Drug Deliv Rev 4:87–111

    Article  CAS  Google Scholar 

  • Shukla AA, Thömmes J (2010) Recent advances in large-scale production of monoclonal antibodies and related proteins. Trends Biotechnol 28:253–261

    Article  PubMed  CAS  Google Scholar 

  • Sinclair AM, Elliott S (2005) Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci 94:1626–1635

    Article  PubMed  CAS  Google Scholar 

  • Tennikova T, Svec F (1993) High performance membrane chromatography: highly efficient separation method for proteins in ion-exchange, hydrophobic interaction and reversed phase modes. J Chromatogr 646:279–288

    Article  CAS  Google Scholar 

  • Terstappen G, Ramelmeier R, Kula M (1993) Protein partitioning in detergent-based aqueous two-phase systems. J Biotechnol 28:263–275

    Article  PubMed  CAS  Google Scholar 

  • Van Wezel AL, van der Velden-de Groot CA, de Haan HH, van den Heuvel N, Schasfoort R (1985) Large scale animal cell cultivation for production of cellular biologicals. Dev Biol Stand 60:229–236

    PubMed  Google Scholar 

  • Walsh C (2006) Posttranslational modification of proteins: expanding nature’s inventory, vol xxi. Roberts and Co. Publishers, Englewood, p 490

    Google Scholar 

  • Walter J, Werner RG (1993) Regulatory requirements and economic aspects in downstream processing of biotechnically engineered proteins for parenteral application as pharmaceuticals. In: Kroner KH, Papamichael N, Schütte H (eds) Downstream processing, recovery and purification of proteins, a handbook of principles and practice. Carl Hauser Verlag, Muenchen

    Google Scholar 

  • Walter J, Werz W, McGoff P, Werner RG, Berthold W (1991) Virus removal/inactivation in downstream processing. In: Spier RE, Griffiths JB, MacDonald C (eds) Animal cell technology: development, processes and products. Butterworth-Heinemann Ltd. Linacre House, Oxford, pp 624–634

    Google Scholar 

  • Walter K, Werz W, Berthold W (1992) Virus removal and inactivation, concept and data for process validation of downstream processing. Biotech Forum Europe 9:560–564

    CAS  Google Scholar 

  • Wheelwright SM (1993) Designing downstream processing for large scale protein purification. Biotechnology 5:789–793

    Google Scholar 

  • WHO (World Health Organization) (2010) Recommendations for the evaluation of animal cell cultures as substrates for the manufacture of biological medicinal products and for the characterization of cell banks. Technical report series, proposed replacement of 878, annex 1 (not yet published)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emile van Corven Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kadir, F., Ives, P., Luitjens, A., van Corven, E. (2013). Production and Purification of Recombinant Proteins. In: Crommelin, D., Sindelar, R., Meibohm, B. (eds) Pharmaceutical Biotechnology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6486-0_3

Download citation

Publish with us

Policies and ethics