Skip to main content

Cbl as a Master Regulator of Receptor Tyrosine Kinase Trafficking

  • Chapter
  • First Online:
Vesicle Trafficking in Cancer

Abstract

The Cbl proteins are a family of RING finger ubiquitin ligases which are found throughout metazoans. In mammalian cells there are three Cbl proteins, Cbl, Cbl-b, and Cbl-c. The RING finger domain, responsible for ubiquitin ligase activity, is surrounded by protein interaction motifs that allow Cbl proteins to interact with a large number of signaling proteins and thus function in many signaling pathways. Receptor tyrosine kinases (RTKs) are rapidly internalized upon activation and can either be recycled to the cell surface or degraded in the lysosome (a process known as downregulation). The Cbl proteins ubiquitinate the activated RTKs and mediate their trafficking to the lysosome for degradation. Thus, they are critical regulators of RTK downregulation. This process is tightly regulated by RTK-mediated phosphorylation of the Cbl proteins that activates the ubiquitin ligase activity of the Cbl protein. In addition, multiple proteins can attenuate Cbl-mediated ubiquitination and downregulation of the RTK. Mutations which disrupt the ubiquitin ligase activity of the Cbl proteins result in oncogenic forms, and such mutations have been described in human myeloid neoplasms. In addition mutations in the RTK or overexpression of negative regulators of Cbl proteins can result in aberrant RTK downregulation and transformation. Thus, the Cbl proteins are critical regulators of RTK trafficking and serve to tune the level of RTK activity.

Ke Ma and Stephen C. Kales contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nau MM, Lipkowitz S (2003) Comparative genomic organization of the cbl genes. Gene 308:103–113

    Article  PubMed  CAS  Google Scholar 

  2. Nau MM, Lipkowitz S (2008) Welcome to the family: Cbl-family gene organization, overview of structure and functions of Cbl-related proteins in various taxonomical groups. In: Tsygankov AY (ed) Cbl proteins, 1st edn. Nova Science, New York, pp 3–25

    Google Scholar 

  3. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  PubMed  CAS  Google Scholar 

  4. Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2:169–178

    Article  PubMed  CAS  Google Scholar 

  5. Deshaies RJ, Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434

    Article  PubMed  CAS  Google Scholar 

  6. Lipkowitz S, Weissman AM (2011) RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat Rev Cancer 11:629–643

    Article  PubMed  CAS  Google Scholar 

  7. Langdon WY, Hartley JW, Klinken SP, Ruscetti SK, Morse HC III (1989) v-cbl, an oncogene from a dual-recombinant murine retrovirus that induces early B-lineage lymphomas. Proc Natl Acad Sci USA 86:1168–1172

    Article  PubMed  CAS  Google Scholar 

  8. Blake TJ, Shapiro M, Morse HC III, Langdon WY (1991) The sequences of the human and mouse c-cbl proto-oncogenes show v-cbl was generated by a large truncation encompassing a proline-rich domain and a leucine zipper-like motif. Oncogene 6:653–657

    PubMed  CAS  Google Scholar 

  9. Bustelo XR, Crespo P, Lopez-Barahona M, Gutkind JS, Barbacid M (1997) Cbl-b, a member of the Sli-1/c-Cbl protein family, inhibits Vav- mediated c-Jun N-terminal kinase activation. Oncogene 15:2511–2520

    Article  PubMed  CAS  Google Scholar 

  10. Keane MM, Ettenberg SA, Nau MM et al (1999) cbl-3: a new mammalian cbl family protein. Oncogene 18:3365–3375

    Article  PubMed  CAS  Google Scholar 

  11. Keane MM, Rivero-Lezcano OM, Mitchell JA, Robbins KC, Lipkowitz S (1995) Cloning and characterization of cbl-b: a SH3 binding protein with homology to the c-cbl proto-oncogene. Oncogene 10:2367–2377

    PubMed  CAS  Google Scholar 

  12. Kim M, Tezuka T, Suziki Y, Sugano S, Hirai M, Yamamoto T (1999) Molecular cloning and characterization of a novel cbl-family gene, cbl-c. Gene 239:145–154

    Article  PubMed  CAS  Google Scholar 

  13. Lupher ML Jr, Rao N, Eck MJ, Band H (1999) The Cbl protooncoprotein: a negative regulator of immune receptor signal transduction. Immunol Today 20:375–382

    Article  PubMed  CAS  Google Scholar 

  14. Hime GR, Dhungat MP, Ng A, Bowtell DD (1997) D-Cbl, the Drosophila homologue of the c-Cbl proto-oncogene, interacts with the Drosophila EGF receptor in vivo, despite lacking C-terminal adaptor binding sites. Oncogene 14:2709–2719

    Article  PubMed  CAS  Google Scholar 

  15. Meisner H, Daga A, Buxton J et al (1997) Interactions of Drosophila Cbl with epidermal growth factor receptors and role of Cbl in R7 photoreceptor cell development. Mol Cell Biol 17:2217–2225

    PubMed  CAS  Google Scholar 

  16. Robertson H, Hime GR, Lada H, Bowtell DD (2000) A Drosophila analogue of v-Cbl is a dominant-negative oncoprotein in vivo. Oncogene 19:3299–3308

    Article  PubMed  CAS  Google Scholar 

  17. Yoon CH, Lee J, Jongeward GD, Sternberg PW (1995) Similarity of sli-1, a regulator of vulval development in C. elegans, to the mammalian proto-oncogene c-cbl. Science 269:1102–1105

    Article  PubMed  CAS  Google Scholar 

  18. Eichinger L, Pachebat JA, Glockner G et al (2005) The genome of the social amoeba Dictyostelium discoideum. Nature 435:43–57

    Article  PubMed  CAS  Google Scholar 

  19. Ettenberg SA, Rubinstein YR, Banerjee P, Nau MM, Keane MM, Lipkowitz S (1999) Cbl-b inhibits EGF-receptor-induced apoptosis by enhancing ubiquitination and degradation of activated receptors. Mol Cell Biol Res Commun 2:111–118

    Article  PubMed  CAS  Google Scholar 

  20. Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC (1999) The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286:309–312

    Article  PubMed  CAS  Google Scholar 

  21. Levkowitz G, Waterman H, Ettenberg SA et al (1999) Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell 4:1029–1040

    Article  PubMed  CAS  Google Scholar 

  22. Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM (1999) RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA 96:11364–11369

    Article  PubMed  CAS  Google Scholar 

  23. Yokouchi M, Kondo T, Sanjay A et al (2001) Src-catalyzed phosphorylation of c-Cbl leads to the interdependent ubiquitination of both proteins. J Biol Chem 276:35185–35193

    Article  PubMed  CAS  Google Scholar 

  24. Lovering R, Hanson IM, Borden KL et al (1993) Identification and preliminary characterization of a protein motif related to the zinc finger. Proc Natl Acad Sci USA 90:2112–2116

    Article  PubMed  CAS  Google Scholar 

  25. Borden KL, Boddy MN, Lally J et al (1995) The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J 14:1532–1541

    PubMed  CAS  Google Scholar 

  26. Borden KL, Freemont PS (1996) The RING finger domain: a recent example of a sequence-­structure family. Curr Opin Struct Biol 6:395–401

    Article  PubMed  CAS  Google Scholar 

  27. Kobashigawa Y, Tomitaka A, Kumeta H, Noda NN, Yamaguchi M, Inagaki F (2011) Autoinhibition and phosphorylation-induced activation mechanisms of human cancer and autoimmune disease-related E3 protein Cbl-b. Proc Natl Acad Sci USA 108:20579–20584

    Article  PubMed  CAS  Google Scholar 

  28. Dou H, Buetow L, Hock A, Sibbet GJ, Vousden KH, Huang DT (2012) Structural basis for autoinhibition of and phosphorylation-dependent activation of c-Cbl. Nat Struct Mol Biol 19(2):184–192

    Article  PubMed  CAS  Google Scholar 

  29. Zheng N, Wang P, Jeffrey PD, Pavletich NP (2000) Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin- protein ligases. Cell 102:533–539

    Article  PubMed  CAS  Google Scholar 

  30. Visser GD, Lill NL (2005) The Cbl RING finger C-terminal flank controls epidermal growth factor receptor fate downstream of receptor ubiquitination. Exp Cell Res 311:281–293

    Article  PubMed  CAS  Google Scholar 

  31. Lupher ML Jr, Reedquist KA, Miyake S, Langdon WY, Band H (1996) A novel phosphotyrosine-­binding domain in the N-terminal transforming region of Cbl interacts directly and selectively with ZAP-70 in T cells. J Biol Chem 271:24063–24068

    Article  PubMed  CAS  Google Scholar 

  32. Meng W, Sawasdikosol S, Burakoff SJ, Eck MJ (1999) Structure of the amino-terminal domain of Cbl complexed to its binding site on ZAP-70 kinase. Nature 398:84–90

    Article  PubMed  CAS  Google Scholar 

  33. Deckert M, Elly C, Altman A, Liu YC (1998) Coordinated regulation of the tyrosine phosphorylation of Cbl by Fyn and Syk tyrosine kinases. J Biol Chem 273:8867–8874

    Article  PubMed  CAS  Google Scholar 

  34. Lupher MJ, Rao N, Lill NL et al (1998) Cbl-mediated negative regulation of the Syk tyrosine kinase. A critical role for Cbl phosphotyrosine-binding domain binding to Syk phosphotyrosine 323. J Biol Chem 273:35273–35281

    Article  PubMed  CAS  Google Scholar 

  35. Rubin C, Litvak V, Medvedovsky H, Zwang Y, Lev S, Yarden Y (2003) Sprouty fine-tunes EGF signaling through interlinked positive and negative feedback loops. Curr Biol 13:297–307

    Article  PubMed  CAS  Google Scholar 

  36. Peschard P, Ishiyama N, Lin T, Lipkowitz S, Park M (2004) A conserved DpYR motif in the juxtamembrane domain of the Met receptor family forms an atypical c-Cbl/Cbl-b tyrosine kinase binding domain binding site required for suppression of oncogenic activation. J Biol Chem 279:29565–29571

    Article  PubMed  CAS  Google Scholar 

  37. Hu J, Hubbard SR (2005) Structural characterization of a novel Cbl phosphotyrosine recognition motif in the APS family of adapter proteins. J Biol Chem 280:18943–18949

    Article  PubMed  CAS  Google Scholar 

  38. Sosinowski T, Killeen N, Weiss A (2001) The Src-like adaptor protein downregulates the T cell receptor on CD4+CD8+ thymocytes and regulates positive selection. Immunity 15:457–466

    Article  PubMed  CAS  Google Scholar 

  39. Tang J, Sawasdikosol S, Chang JH, Burakoff SJ (1999) SLAP, a dimeric adapter protein, plays a functional role in T cell receptor signaling. Proc Natl Acad Sci USA 96:9775–9780

    Article  PubMed  CAS  Google Scholar 

  40. Teckchandani AM, Birukova AA, Tar K, Verin AD, Tsygankov AY (2005) The multidomain protooncogenic protein c-Cbl binds to tubulin and stabilizes microtubules. Exp Cell Res 306:114–127

    Article  PubMed  CAS  Google Scholar 

  41. Schmidt MH, Dikic I (2005) The Cbl interactome and its functions. Nat Rev Mol Cell Biol 6:907–919

    Article  PubMed  CAS  Google Scholar 

  42. Szymkiewicz I, Kowanetz K, Soubeyran P, Dinarina A, Lipkowitz S, Dikic I (2002) CIN85 participates in Cbl-b-mediated down-regulation of receptor tyrosine kinases. J Biol Chem 277:39666–39672

    Article  PubMed  CAS  Google Scholar 

  43. Buchberger A (2002) From UBA, to UBX: new words in the ubiquitin vocabulary. Trends Cell Biol 12:216–221

    Article  PubMed  CAS  Google Scholar 

  44. Hofmann K, Bucher P (1996) The UBA domain: a sequence motif present in multiple enzyme classes of the ubiquitination pathway. Trends Biochem Sci 21:172–173

    PubMed  CAS  Google Scholar 

  45. Davies GC, Ettenberg SA, Coats AO et al (2004) Cbl-b interacts with ubiquitinated proteins; differential functions of the UBA domains of c-Cbl and Cbl-b. Oncogene 23:7104–7115

    Article  PubMed  CAS  Google Scholar 

  46. Raasi S, Varadan R, Fushman D, Pickart CM (2005) Diverse polyubiquitin interaction properties of ubiquitin-associated domains. Nat Struct Mol Biol 12:708–714

    Article  PubMed  CAS  Google Scholar 

  47. Bartkiewicz M, Houghton A, Baron R (1999) Leucine zipper-mediated homodimerization of the adaptor protein c-Cbl. A role in c-Cbl’s tyrosine phosphorylation and its association with epidermal growth factor receptor. J Biol Chem 274:30887–30895

    Article  PubMed  CAS  Google Scholar 

  48. Kozlov G, Peschard P, Zimmerman B et al (2007) Structural basis for UBA-mediated dimerization of c-Cbl ubiquitin ligase. J Biol Chem 282:27547–27555

    Article  PubMed  CAS  Google Scholar 

  49. Liu J, DeYoung SM, Hwang JB, O’Leary EE, Saltiel AR (2003) The roles of Cbl-b and c-Cbl in insulin-stimulated glucose transport. J Biol Chem 278:36754–36762

    Article  PubMed  CAS  Google Scholar 

  50. Peschard P, Kozlov G, Lin T et al (2007) Structural basis for ubiquitin-mediated dimerization and activation of the ubiquitin protein ligase Cbl-b. Mol Cell 27:474–485

    Article  PubMed  CAS  Google Scholar 

  51. Waterman H, Katz M, Rubin C et al (2002) A mutant EGF-receptor defective in ubiquitylation and endocytosis unveils a role for Grb2 in negative signaling. EMBO J 21:303–313

    Article  PubMed  CAS  Google Scholar 

  52. Waterman H, Levkowitz G, Alroy I, Yarden Y (1999) The RING Finger of c-Cbl Mediates Desensitization of the Epidermal Growth Factor Receptor. J Biol Chem 274:22151–22154

    Article  PubMed  CAS  Google Scholar 

  53. Fang D, Liu YC (2001) Proteolysis-independent regulation of PI3K by Cbl-b-mediated ubiquitination in T cells. Nat Immunol 2:870–875

    Article  PubMed  CAS  Google Scholar 

  54. Fang D, Wang HY, Fang N, Altman Y, Elly C, Liu YC (2001) Cbl-b, a RING-type E3 ubiquitin ligase, targets phosphatidylinositol 3-kinase for ubiquitination in T cells. J Biol Chem 276:4872–4878

    Article  PubMed  CAS  Google Scholar 

  55. Tsygankov AY, Teckchandani AM, Feshchenko EA, Swaminathan G (2001) Beyond the RING: CBL proteins as multivalent adapters. Oncogene 20:6382–6402

    Article  PubMed  CAS  Google Scholar 

  56. Carpenter G, Cohen S (1976) 125I-labeled human epidermal growth factor. Binding, internalization, and degradation in human fibroblasts. J Cell Biol 71:159–171

    Article  PubMed  CAS  Google Scholar 

  57. Haigler H, Ash JF, Singer SJ, Cohen S (1978) Visualization by fluorescence of the binding and internalization of epidermal growth factor in human carcinoma cells A-431. Proc Natl Acad Sci USA 75:3317–3321

    Article  PubMed  CAS  Google Scholar 

  58. Sorkin A, Goh LK (2009) Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res 315:683–696

    Article  PubMed  CAS  Google Scholar 

  59. Waterman H, Yarden Y (2001) Molecular mechanisms underlying endocytosis and sorting of ErbB receptor tyrosine kinases. FEBS Lett 490:142–152

    Article  PubMed  CAS  Google Scholar 

  60. Spencer SA, Hammonds RG, Henzel WJ, Rodriguez H, Waters MJ, Wood WI (1988) Rabbit liver growth hormone receptor and serum binding protein. Purification, characterization, and sequence. J Biol Chem 263:7862–7867

    PubMed  CAS  Google Scholar 

  61. Yarden Y, Escobedo JA, Kuang WJ et al (1986) Structure of the receptor for platelet-derived growth factor helps define a family of closely related growth factor receptors. Nature 323:226–232

    Article  PubMed  CAS  Google Scholar 

  62. Hicke L (1999) Gettin’ down with ubiquitin: turning off cell-surface receptors, transporters and channels. Trends Cell Biol 9:107–112

    Article  PubMed  CAS  Google Scholar 

  63. Galcheva-Gargova Z, Theroux SJ, Davis RJ (1995) The epidermal growth factor receptor is covalently linked to ubiquitin. Oncogene 11:2649–2655

    PubMed  CAS  Google Scholar 

  64. Miyazawa K, Toyama K, Gotoh A, Hendrie PC, Mantel C, Broxmeyer HE (1994) Ligand-­dependent polyubiquitination of c-kit gene product: a possible mechanism of receptor down modulation in M07e cells. Blood 83:137–145

    PubMed  CAS  Google Scholar 

  65. Mori S, Claesson-Welsh L, Okuyama Y, Saito Y (1995) Ligand-induced polyubiquitination of receptor tyrosine kinases. Biochem Biophys Res Commun 213:32–39

    Article  PubMed  CAS  Google Scholar 

  66. Mori S, Heldin CH, Claesson-Welsh L (1992) Ligand-induced polyubiquitination of the platelet-derived growth factor beta-receptor. J Biol Chem 267:6429–6434

    PubMed  CAS  Google Scholar 

  67. Mori S, Heldin CH, Claesson-Welsh L (1993) Ligand-induced ubiquitination of the platelet-­derived growth factor beta-receptor plays a negative regulatory role in its mitogenic signaling. J Biol Chem 268:577–583

    PubMed  CAS  Google Scholar 

  68. Yee NS, Hsiau CW, Serve H, Vosseller K, Besmer P (1994) Mechanism of down-regulation of c-kit receptor. Roles of receptor tyrosine kinase, phosphatidylinositol 3'-kinase, and protein kinase C. J Biol Chem 269:31991–31998

    PubMed  CAS  Google Scholar 

  69. Hicke L, Riezman H (1996) Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84:277–287

    Article  PubMed  CAS  Google Scholar 

  70. Terrell J, Shih S, Dunn R, Hicke L (1998) A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol Cell 1:193–202

    Article  PubMed  CAS  Google Scholar 

  71. Hicke L, Dunn R (2003) Regulation of membrane protein transport by ubiquitin and ubiquitin-­binding proteins. Annu Rev Cell Dev Biol 19:141–172

    Article  PubMed  CAS  Google Scholar 

  72. Katzmann DJ, Odorizzi G, Emr SD (2002) Receptor downregulation and multivesicular-body sorting. Nat Rev Mol Cell Biol 3:893–905

    Article  PubMed  CAS  Google Scholar 

  73. Blake TJ, Heath KG, Langdon WY (1993) The truncation that generated the v-cbl oncogene reveals an ability for nuclear transport, DNA binding and acute transformation. EMBO J 12:2017–2026

    PubMed  CAS  Google Scholar 

  74. Langdon WY, Hyland CD, Grumont RJ, Morse HC 3rd (1989) The c-cbl proto-oncogene is preferentially expressed in thymus and testis tissue and encodes a nuclear protein. J Virol 63:5420–5424

    PubMed  CAS  Google Scholar 

  75. Andoniou CE, Thien CBF, Langdon WY (1994) Tumour induction by activated abl involves tyrosine phosphorylation of the product of the cbl oncogene. EMBO J 13:4515–4523

    PubMed  CAS  Google Scholar 

  76. Cory GO, Lovering RC, Hinshelwood S, MacCarthy-Morrogh L, Levinsky RJ, Kinnon C (1995) The protein product of the c-cbl protooncogene is phosphorylated after B cell receptor stimulation and binds the SH3 domain of Bruton’s tyrosine kinase. J Exp Med 182:611–615

    Article  PubMed  CAS  Google Scholar 

  77. Donovan JA, Wange RL, Langdon WY, Samelson LE (1994) The protein product of the c-cbl protooncogene is the 120-kDa tyrosine-phosphorylated protein in Jurkat cells activated via the T cell antigen receptor. J Biol Chem 269:22921–22924

    PubMed  CAS  Google Scholar 

  78. Fukazawa T, Miyake S, Band V, Band H (1996) Tyrosine phosphorylation of Cbl upon epidermal growth factor (EGF) stimulation and its association with EGF receptor and downstream signaling proteins. J Biol Chem 271:14554–14559

    Article  PubMed  CAS  Google Scholar 

  79. Fukazawa T, Reedquist KA, Trub T et al (1995) The SH3 domain-binding T cell tyrosyl phosphoprotein p120. Demonstration of its identity with the c-cbl protooncogene product and in vivo complexes with Fyn, Grb2, and phosphatidylinositol 3-kinase. J Biol Chem 270:19141–19150

    Article  PubMed  CAS  Google Scholar 

  80. Hartley D, Meisner H, Corvera S (1995) Specific association of the beta isoform of the p85 subunit of phosphatidylinositol-3 kinase with the proto-oncogene c-cbl. J Biol Chem 270:18260–18263

    Article  PubMed  CAS  Google Scholar 

  81. Meisner H, Conway BR, Hartley D, Czech MP (1995) Interactions of Cbl with Grb2 and phosphatidylinositol 3'-kinase in activated Jurkat cells. Mol Cell Biol 15:3571–3578

    PubMed  CAS  Google Scholar 

  82. Meisner H, Czech MP (1995) Coupling of the proto-oncogene product c-Cbl to the epidermal growth factor receptor. J Biol Chem 270:25332–25335

    Article  PubMed  CAS  Google Scholar 

  83. Odai H, Sasaki K, Iwamatsu A et al (1995) The proto-oncogene product c-Cbl becomes tyrosine phosphorylated by stimulation with GM-CSF or Epo and constitutively binds to the SH3 domain of Grb2/Ash in human hematopoietic cells. J Biol Chem 270:10800–10805

    Article  PubMed  CAS  Google Scholar 

  84. Rivero-Lezcano OM, Sameshima JH, Marcilla A, Robbins KC (1994) Physical association between Src homology 3 elements and the protein product of the c-cbl proto-oncogene. J Biol Chem 269:17363–17366

    PubMed  CAS  Google Scholar 

  85. Tanaka S, Neff L, Baron R, Levy JB (1995) Tyrosine phosphorylation and translocation of the c-cbl protein after activation of tyrosine kinase signaling pathways. J Biol Chem 270:14347–14351

    Article  PubMed  CAS  Google Scholar 

  86. Galisteo ML, Dikic I, Batzer AG, Langdon WY, Schlessinger J (1995) Tyrosine phosphorylation of the c-cbl proto-oncogene protein product and association with epidermal growth factor (EGF) receptor upon EGF stimulation. J Biol Chem 270:20242–20245

    Article  PubMed  CAS  Google Scholar 

  87. Levkowitz G, Klapper LN, Tzahar E, Freywald A, Sela M, Yarden Y (1996) Coupling of the c-cbl protooncogene product to ErbB-1/EGF-receptor but not to other ErbB proteins. Oncogene 12:1117–1125

    PubMed  CAS  Google Scholar 

  88. Wang Y, Yeung YG, Langdon WY, Stanley ER (1996) c-Cbl is transiently tyrosine-­phosphorylated, ubiquitinated, and membrane-targeted following Csf-1 stimulation of macrophages. J Biol Chem 271:17–20

    Article  PubMed  CAS  Google Scholar 

  89. Jongeward GD, Clandinin TR, Sternberg PW (1995) sli-1, a negative regulator of let-23-mediated signaling in C. elegans. Genetics 139:1553–1566

    PubMed  CAS  Google Scholar 

  90. Thien CB, Langdon WY (1997) EGF receptor binding and transformation by v-cbl is ablated by the introduction of a loss-of-function mutation from the Caenorhabditis elegans sli-1 gene. Oncogene 14:2239–2249

    Article  PubMed  CAS  Google Scholar 

  91. Yoon CH, Chang C, Hopper NA, Lesa GM, Sternberg PW (2000) Requirements of multiple domains of SLI-1, a Caenorhabditis elegans homologue of c-Cbl, and an inhibitory tyrosine in LET-23 in regulating vulval differentiation. Mol Biol Cell 11:4019–4031

    PubMed  CAS  Google Scholar 

  92. Lill NL, Douillard P, Awwad RA et al (2000) The evolutionarily conserved N-terminal region of Cbl is sufficient to enhance down-regulation of the epidermal growth factor receptor. J Biol Chem 275:367–377

    Article  PubMed  CAS  Google Scholar 

  93. Pai LM, Barcelo G, Schupbach T (2000) D-cbl, a negative regulator of the Egfr pathway, is required for dorsoventral patterning in Drosophila oogenesis. Cell 103:51–61

    Article  PubMed  CAS  Google Scholar 

  94. Pai LM, Wang PY, Chen SR et al (2006) Differential effects of Cbl isoforms on Egfr signaling in Drosophila. Mech Dev 123:450–462

    Article  PubMed  CAS  Google Scholar 

  95. Ettenberg SA, Keane MM, Nau MM et al (1999) cbl-b inhibits epidermal growth factor receptor signaling. Oncogene 18:1855–1866

    Article  PubMed  CAS  Google Scholar 

  96. Levkowitz G, Waterman H, Zamir E et al (1998) c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev 12:3663–3674

    Article  PubMed  CAS  Google Scholar 

  97. Miyake S, Lupher ML Jr, Druker B, Band H (1998) The tyrosine kinase regulator Cbl enhances the ubiquitination and degradation of the platelet-derived growth factor receptor alpha. Proc Natl Acad Sci USA 95:7927–7932

    Article  PubMed  CAS  Google Scholar 

  98. Yokouchi M, Kondo T, Houghton A et al (1999) Ligand-induced ubiquitination of the epidermal growth factor receptor involves the interaction of the c-Cbl RING finger and UbcH7. J Biol Chem 274:31707–31712

    Article  PubMed  CAS  Google Scholar 

  99. Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A (2006) Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell 21:737–748

    Article  PubMed  CAS  Google Scholar 

  100. Haglund K, Sigismund S, Polo S, Szymkiewicz I, Di Fiore PP, Dikic I (2003) Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol 5:461–466

    Article  PubMed  CAS  Google Scholar 

  101. Mosesson Y, Shtiegman K, Katz M et al (2003) Endocytosis of receptor tyrosine kinases is driven by monoubiquitylation, not polyubiquitylation. J Biol Chem 278:21323–21326

    Article  PubMed  CAS  Google Scholar 

  102. de Melker AA, van der Horst G, Calafat J, Jansen H, Borst J (2001) c-Cbl ubiquitinates the EGF receptor at the plasma membrane and remains receptor associated throughout the endocytic route. J Cell Sci 114:2167–2178

    PubMed  Google Scholar 

  103. Duan L, Miura Y, Dimri M et al (2003) Cbl-mediated ubiquitinylation is required for lysosomal sorting of epidermal growth factor receptor but is dispensable for endocytosis. J Biol Chem 278:28950–28960

    Article  PubMed  CAS  Google Scholar 

  104. Huang F, Goh LK, Sorkin A (2007) EGF receptor ubiquitination is not necessary for its internalization. Proc Natl Acad Sci USA 104:16904–16909

    Article  PubMed  CAS  Google Scholar 

  105. Longva KE, Blystad FD, Stang E, Larsen AM, Johannessen LE, Madshus IH (2002) Ubiquitination and proteasomal activity is required for transport of the EGF receptor to inner membranes of multivesicular bodies. J Cell Biol 156:843–854

    Article  PubMed  CAS  Google Scholar 

  106. Visser Smit GD, Place TL, Cole SL et al (2009) Cbl controls EGFR fate by regulating early endosome fusion. Sci Signal 2:ra86

    Article  PubMed  CAS  Google Scholar 

  107. Ettenberg SA, Magnifico A, Cuello M et al (2001) Cbl-b-dependent coordinated degradation of the epidermal growth factor receptor signaling complex. J Biol Chem 276:27677–27684

    Article  PubMed  CAS  Google Scholar 

  108. Haglund K, Shimokawa N, Szymkiewicz I, Dikic I (2002) Cbl-directed monoubiquitination of CIN85 is involved in regulation of ligand-induced degradation of EGF receptors. Proc Natl Acad Sci USA 99:12191–12196

    Article  PubMed  CAS  Google Scholar 

  109. Zeng S, Xu Z, Lipkowitz S, Longley JB (2005) Regulation of stem cell factor receptor signaling by Cbl family proteins (Cbl-b/c-Cbl). Blood 105:226–232

    Article  PubMed  CAS  Google Scholar 

  110. Petrelli A, Gilestro GF, Lanzardo S, Comoglio PM, Migone N, Giordano S (2002) The endophilin-CIN85-Cbl complex mediates ligand-dependent downregulation of c-Met. Nature 416:187–190

    Article  PubMed  CAS  Google Scholar 

  111. Soubeyran P, Kowanetz K, Szymkiewicz I, Langdon WY, Dikic I (2002) Cbl-CIN85-endophilin complex mediates ligand-induced downregulation of EGF receptors. Nature 416:183–187

    Article  PubMed  CAS  Google Scholar 

  112. Ryan PE, Davies GC, Nau MM, Lipkowitz S (2006) Regulating the regulator: negative regulation of Cbl ubiquitin ligases. Trends Biochem Sci 31:79–88

    Article  PubMed  CAS  Google Scholar 

  113. Kassenbrock CK, Anderson SM (2004) Regulation of ubiquitin protein ligase activity in c-Cbl by phosphorylation-induced conformational change and constitutive activation by tyrosine to glutamate point mutations. J Biol Chem 279:28017–28027

    Article  PubMed  CAS  Google Scholar 

  114. Ryan PE, Sivadasan-Nair N, Nau MM, Nicholas S, Lipkowitz S (2010) The N-terminus of Cbl-c regulates ubiquitin ligase activity by modulating affinity for the ubiquitin conjugating enzyme. J Biol Chem 285:23687–23698

    Article  PubMed  CAS  Google Scholar 

  115. Pareja F, Ferraro DA, Rubin C et al (2012) Deubiquitination of EGFR by Cezanne-1 contributes to cancer progression. Oncogene 31(43):4599–4608

    Article  PubMed  CAS  Google Scholar 

  116. Magnifico A, Ettenberg S, Yang C et al (2003) WW domain HECT E3s target Cbl RING finger E3s for proteasomal degradation. J Biol Chem 278:43169–43177

    Article  PubMed  CAS  Google Scholar 

  117. Azakir BA, Angers A (2009) Reciprocal regulation of the ubiquitin ligase Itch and the epidermal growth factor receptor signaling. Cell Signal 21:1326–1336

    Article  PubMed  CAS  Google Scholar 

  118. Yang B, Gay DL, MacLeod MK et al (2008) Nedd4 augments the adaptive immune response by promoting ubiquitin-mediated degradation of Cbl-b in activated T cells. Nat Immunol 9:1356–1363

    Article  PubMed  CAS  Google Scholar 

  119. Bao J, Gur G, Yarden Y (2003) Src promotes destruction of c-Cbl: implications for oncogenic synergy between Src and growth factor receptors. Proc Natl Acad Sci USA 100:2438–2443

    Article  PubMed  CAS  Google Scholar 

  120. Luttrell DK, Luttrell LM, Parsons SJ (1988) Augmented mitogenic responsiveness to epidermal growth factor in murine fibroblasts that overexpress pp 60c-src. Mol Cell Biol 8:497–501

    PubMed  CAS  Google Scholar 

  121. Maa MC, Leu TH, McCarley DJ, Schatzman RC, Parsons SJ (1995) Potentiation of epidermal growth factor receptor-mediated oncogenesis by c-Src: implications for the etiology of multiple human cancers. Proc Natl Acad Sci USA 92:6981–6985

    Article  PubMed  CAS  Google Scholar 

  122. Irby RB, Yeatman TJ (2000) Role of Src expression and activation in human cancer. Oncogene 19:5636–5642

    Article  PubMed  CAS  Google Scholar 

  123. Wu WJ, Tu S, Cerione RA (2003) Activated Cdc42 sequesters c-Cbl and prevents EGF receptor degradation. Cell 114:715–725

    Article  PubMed  CAS  Google Scholar 

  124. Ahn SJ, Chung KW, Lee RA et al (2003) Overexpression of betaPix-a in human breast cancer tissues. Cancer Lett 193:99–107

    Article  PubMed  CAS  Google Scholar 

  125. Fritz G, Brachetti C, Bahlmann F, Schmidt M, Kaina B (2002) Rho GTPases in human breast tumours: expression and mutation analyses and correlation with clinical parameters. Br J Cancer 87:635–644

    Article  PubMed  CAS  Google Scholar 

  126. Fritz G, Just I, Kaina B (1999) Rho GTPases are over-expressed in human tumors. Int J Cancer 81:682–687

    Article  PubMed  CAS  Google Scholar 

  127. Kamai T, Yamanishi T, Shirataki H et al (2004) Overexpression of RhoA, Rac1, and Cdc42 GTPases is associated with progression in testicular cancer. Clin Cancer Res 10:4799–4805

    Article  PubMed  CAS  Google Scholar 

  128. Zhang X, Machii T, Matsumura I et al (2003) Constitutively activated Rho guanosine triphosphatases regulate the growth and morphology of hairy cell leukemia cells. Int J Hematol 77:263–273

    Article  PubMed  CAS  Google Scholar 

  129. Fong CW, Leong HF, Wong ES, Lim J, Yusoff P, Guy GR (2003) Tyrosine phosphorylation of Sprouty2 enhances its interaction with c-Cbl and is crucial for its function. J Biol Chem 278:33456–33464

    Article  PubMed  CAS  Google Scholar 

  130. Guy GR, Wong ES, Yusoff P et al (2003) Sprouty: how does the branch manager work? J Cell Sci 116:3061–3068

    Article  PubMed  CAS  Google Scholar 

  131. Hall AB, Jura N, DaSilva J, Jang YJ, Gong D, Bar-Sagi D (2003) hSpry2 is targeted to the ubiquitin-dependent proteasome pathway by c-Cbl. Curr Biol 13:308–314

    Article  PubMed  CAS  Google Scholar 

  132. Lupher ML Jr, Songyang Z, Shoelson SE, Cantley LC, Band H (1997) The Cbl phosphotyrosine-­binding domain selects a D(N/D)XpY motif and binds to the Tyr292 negative regulatory phosphorylation site of ZAP-70. J Biol Chem 272:33140–33144

    Article  PubMed  CAS  Google Scholar 

  133. Wong ES, Lim J, Low BC, Chen Q, Guy GR (2001) Evidence for direct interaction between Sprouty and Cbl. J Biol Chem 276:5866–5875

    Article  PubMed  CAS  Google Scholar 

  134. Lito P, Mets BD, Kleff S, O’Reilly S, Maher VM, McCormick JJ (2008) Evidence that sprouty 2 is necessary for sarcoma formation by H-Ras oncogene-transformed human fibroblasts. J Biol Chem 283:2002–2009

    Article  PubMed  CAS  Google Scholar 

  135. Bao J, Alroy I, Waterman H et al (2000) Threonine phosphorylation diverts internalized EGF-receptors from a degradative pathway to the recycling endosome. J Biol Chem 275:26178–26186

    Article  PubMed  CAS  Google Scholar 

  136. Bonita DP, Miyake S, Lupher MLJ, Langdon WY, Band H (1997) Phosphotyrosine binding domain-dependent upregulation of the platelet-derived growth factor receptor alpha signaling cascade by transforming mutants of Cbl: implications for Cbl’s function and oncogenicity. Mol Cell Biol 17:4597–4610

    PubMed  CAS  Google Scholar 

  137. Bisson SA, Ujack EE, Robbins SM (2002) Isolation and characterization of a novel, transforming allele of the c-Cbl proto-oncogene from a murine macrophage cell line. Oncogene 21:3677–3687

    Article  PubMed  CAS  Google Scholar 

  138. Rathinam C, Thien CB, Flavell RA, Langdon WY (2010) Myeloid leukemia development in c-Cbl RING finger mutant mice is dependent on FLT3 signaling. Cancer Cell 18:341–352

    Article  PubMed  CAS  Google Scholar 

  139. Sargin B, Choudhary C, Crosetto N et al (2007) Flt3-dependent transformation by inactivating c-Cbl mutations in AML. Blood 110(3):1004–1012

    Article  PubMed  CAS  Google Scholar 

  140. Slape C, Liu LY, Beachy S, Aplan PD (2008) Leukemic transformation in mice expressing a NUP98-HOXD13 transgene is accompanied by spontaneous mutations in Nras, Kras, and Cbl. Blood 112:2017–2019

    Article  PubMed  CAS  Google Scholar 

  141. Naramura M, Nandwani N, Gu H, Band V, Band H (2010) Rapidly fatal myeloproliferative disorders in mice with deletion of Casitas B-cell lymphoma (Cbl) and Cbl-b in hematopoietic stem cells. Proc Natl Acad Sci USA 107:16274–16279

    Article  PubMed  CAS  Google Scholar 

  142. Thien CB, Langdon WY (1997) Tyrosine kinase activity of the EGF receptor is enhanced by the expression of oncogenic 70Z-Cbl. Oncogene 15:2909–2919

    Article  PubMed  CAS  Google Scholar 

  143. Abbas S, Rotmans G, Lowenberg B, Valk PJ (2008) Exon 8 splice site mutations in the gene encoding the E3-ligase CBL are associated with core binding factor acute myeloid leukemias. Haematologica 93:1595–1597

    Article  PubMed  CAS  Google Scholar 

  144. Caligiuri MA, Briesewitz R, Yu J et al (2007) Novel c-CBL and CBL-B ubiquitin ligase mutations in human acute myeloid leukemia. Blood 110(3):1022–1024

    Article  PubMed  CAS  Google Scholar 

  145. Dunbar AJ, Gondek LP, O’Keefe CL et al (2008) 250 K single nucleotide polymorphism array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies. Cancer Res 68:10349–10357

    Article  PubMed  CAS  Google Scholar 

  146. Grand FH, Hidalgo-Curtis CE, Ernst T et al (2009) Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood 113:6182–6192

    Article  PubMed  CAS  Google Scholar 

  147. Kales SC, Ryan PE, Nau MM, Lipkowitz S (2010) Cbl and human myeloid neoplasms: the Cbl oncogene comes of age. Cancer Res 70:4789–4794

    Article  PubMed  CAS  Google Scholar 

  148. Loh ML, Sakai DS, Flotho C et al (2009) Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood 114:1859–1863

    Article  PubMed  CAS  Google Scholar 

  149. Makishima H, Cazzolli H, Szpurka H et al (2009) Mutations of e3 ubiquitin ligase cbl family members constitute a novel common pathogenic lesion in myeloid malignancies. J Clin Oncol 27:6109–6116

    Article  PubMed  CAS  Google Scholar 

  150. Muramatsu H, Makishima H, Jankowska AM et al (2010) Mutations of E3 ubiquitin ligase Cbl family members but not TET2 mutations are pathogenic in juvenile myelomonocytic leukemia. Blood 115(10):1969–1975

    Article  PubMed  CAS  Google Scholar 

  151. Reindl C, Quentmeier H, Petropoulos K et al (2009) CBL exon 8/9 mutants activate the FLT3 pathway and cluster in core binding factor/11q deletion acute myeloid leukemia/myelodysplastic syndrome subtypes. Clin Cancer Res 15:2238–2247

    Article  PubMed  CAS  Google Scholar 

  152. Sanada M, Suzuki T, Shih LY et al (2009) Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature 460:904–908

    Article  PubMed  CAS  Google Scholar 

  153. Cosmic. Catalogue of Somatic Mutations in Cancer. (2012). Available from: http://www.sanger.ac.uk/genetics/CGP/cosmic/

  154. Beer PA, Delhommeau F, Lecouedic JP et al (2010) Two routes to leukemic transformation following a JAK2 mutation-positive myeloproliferative neoplasm. Blood 115(14):2891–2900

    Article  PubMed  CAS  Google Scholar 

  155. Thien CB, Walker F, Langdon WY (2001) RING finger mutations that abolish c-Cbl-directed polyubiquitination and downregulation of the EGF receptor are insufficient for cell transformation. Mol Cell 7:355–365

    Article  PubMed  CAS  Google Scholar 

  156. Bandi SR, Brandts C, Rensinghoff M et al (2009) E3 ligase-defective Cbl mutants lead to a generalized mastocytosis and myeloproliferative disease. Blood 114:4197–4208

    Article  PubMed  CAS  Google Scholar 

  157. Griffiths EK, Sanchez O, Mill P et al (2003) Cbl-3-deficient mice exhibit normal epithelial development. Mol Cell Biol 23:7708–7718

    Article  PubMed  CAS  Google Scholar 

  158. Nicholson L, Knight T, Matheson E et al (2012) Casitas B lymphoma mutations in childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer 51:250–256

    Article  PubMed  CAS  Google Scholar 

  159. McKeller MR, Robetorye RS, Dahia PL, Aguiar RC (2009) Integrity of the CBL gene in mature B-cell malignancies. Blood 114:4321–4322

    Article  PubMed  CAS  Google Scholar 

  160. Tan YH, Krishnaswamy S, Nandi S et al (2010) CBL Is Frequently Altered in Lung Cancers: its Relationship to Mutations in MET and EGFR Tyrosine Kinases. PLoS One 5:e8972

    Article  PubMed  CAS  Google Scholar 

  161. Baker A, Cachia P, Ridge S et al (1995) FMS mutations in patients following cytotoxic therapy for lymphoma. Leuk Res 19:309–318

    Article  PubMed  CAS  Google Scholar 

  162. Ridge SA, Worwood M, Oscier D, Jacobs A, Padua RA (1990) FMS mutations in myelodysplastic, leukemic, and normal subjects. Proc Natl Acad Sci USA 87:1377–1380

    Article  PubMed  CAS  Google Scholar 

  163. Mancini A, Koch A, Wilms R, Tamura T (2002) c-Cbl associates directly with the C-terminal tail of the receptor for the macrophage colony-stimulating factor, c-Fms, and down-­modulates this receptor but not the viral oncogene v-Fms. J Biol Chem 277:14635–14640

    Article  PubMed  CAS  Google Scholar 

  164. Peschard P, Fournier TM, Lamorte L et al (2001) Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Mol Cell 8:995–1004

    Article  PubMed  CAS  Google Scholar 

  165. Mosesson Y, Mills GB, Yarden Y (2008) Derailed endocytosis: an emerging feature of ­cancer. Nat Rev Cancer 8:835–850

    Article  PubMed  CAS  Google Scholar 

  166. Muthuswamy SK, Gilman M, Brugge JS (1999) Controlled dimerization of ErbB receptors provides evidence for differential signaling by homo- and heterodimers. Mol Cell Biol 19:6845–6857

    PubMed  CAS  Google Scholar 

  167. Motegi A, Fujimoto J, Kotani M, Sakuraba H, Yamamoto T (2004) ALK receptor tyrosine kinase promotes cell growth and neurite outgrowth. J Cell Sci 117:3319–3329

    Article  PubMed  CAS  Google Scholar 

  168. Valverde P (2005) Effects of Gas6 and hydrogen peroxide in Axl ubiquitination and downregulation. Biochem Biophys Res Commun 333:180–185

    Article  PubMed  CAS  Google Scholar 

  169. Sharfe N, Freywald A, Toro A, Roifman CM (2003) Ephrin-A1 induces c-Cbl phosphorylation and EphA receptor down-regulation in T cells. J Immunol 170:6024–6032

    PubMed  CAS  Google Scholar 

  170. Wang Y, Ota S, Kataoka H et al (2002) Negative regulation of EphA2 receptor by Cbl. Biochem Biophys Res Commun 296:214–220

    Article  PubMed  CAS  Google Scholar 

  171. Freywald A, Sharfe N, Roifman CM (2002) The kinase-null EphB6 receptor undergoes transphosphorylation in a complex with EphB1. J Biol Chem 277:3823–3828

    Article  PubMed  CAS  Google Scholar 

  172. Luo H, Wan X, Wu Y, Wu J (2001) Cross-linking of EphB6 resulting in signal transduction and apoptosis in Jurkat cells. J Immunol 167:1362–1370

    PubMed  CAS  Google Scholar 

  173. Truitt L, Freywald T, DeCoteau J, Sharfe N, Freywald A (2010) The EphB6 receptor cooperates with c-Cbl to regulate the behavior of breast cancer cells. Cancer Res 70:1141–1153

    Article  PubMed  CAS  Google Scholar 

  174. Levkowitz G, Oved S, Klapper LN et al (2000) c-Cbl is a suppressor of the neu oncogene. J Biol Chem 275:35532–35539

    Article  PubMed  CAS  Google Scholar 

  175. Wong A, Lamothe B, Lee A, Schlessinger J, Lax I (2002) FRS2 alpha attenuates FGF receptor signaling by Grb2-mediated recruitment of the ubiquitin ligase Cbl. Proc Natl Acad Sci USA 99:6684–6689

    Article  PubMed  CAS  Google Scholar 

  176. Dufour C, Guenou H, Kaabeche K, Bouvard D, Sanjay A, Marie PJ (2008) FGFR2-Cbl interaction in lipid rafts triggers attenuation of PI3K/Akt signaling and osteoblast survival. Bone 42:1032–1039

    Article  PubMed  CAS  Google Scholar 

  177. Kaabeche K, Lemonnier J, Le Mee S, Caverzasio J, Marie PJ (2004) Cbl-mediated degradation of Lyn and Fyn induced by constitutive fibroblast growth factor receptor-2 activation supports osteoblast differentiation. J Biol Chem 279:36259–36267

    Article  PubMed  CAS  Google Scholar 

  178. Severe N, Miraoui H, Marie PJ (2011) The Casitas B lineage lymphoma (Cbl) mutant G306E enhances osteogenic differentiation in human mesenchymal stromal cells in part by decreased Cbl-mediated platelet-derived growth factor receptor alpha and fibroblast growth factor receptor 2 ubiquitination. J Biol Chem 286:24443–24450

    Article  PubMed  CAS  Google Scholar 

  179. Xian W, Schwertfeger KL, Rosen JM (2007) Distinct roles of fibroblast growth factor receptor 1 and 2 in regulating cell survival and epithelial-mesenchymal transition. Mol Endocrinol 21:987–1000

    Article  PubMed  CAS  Google Scholar 

  180. Cho JY, Guo C, Torello M et al (2004) Defective lysosomal targeting of activated fibroblast growth factor receptor 3 in achondroplasia. Proc Natl Acad Sci USA 101:609–614

    Article  PubMed  CAS  Google Scholar 

  181. Kobayashi S, Sawano A, Nojima Y, Shibuya M, Maru Y (2004) The c-Cbl/CD2AP complex regulates VEGF-induced endocytosis and degradation of Flt-1 (VEGFR-1). FASEB J 18:929–931

    PubMed  CAS  Google Scholar 

  182. Sehat B, Andersson S, Girnita L, Larsson O (2008) Identification of c-Cbl as a new ligase for insulin-like growth factor-I receptor with distinct roles from Mdm2 in receptor ubiquitination and endocytosis. Cancer Res 68:5669–5677

    Article  PubMed  CAS  Google Scholar 

  183. Baumann CA, Ribon V, Kanzaki M et al (2000) CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature 407:202–207

    Article  PubMed  CAS  Google Scholar 

  184. Ribon V, Printen JA, Hoffman NG, Kay BK, Saltiel AR (1998) A novel, multifunctional c-Cbl binding protein in insulin receptor signaling in 3 T3-L1 adipocytes. Mol Cell Biol 18:872–879

    PubMed  CAS  Google Scholar 

  185. Duval M, Bedard-Goulet S, Delisle C, Gratton JP (2003) Vascular endothelial growth factor-­dependent down-regulation of Flk-1/KDR involves Cbl-mediated ubiquitination. Consequences on nitric oxide production from endothelial cells. J Biol Chem 278:20091–20097

    Article  PubMed  CAS  Google Scholar 

  186. Ueno H, Honda H, Nakamoto T et al (1997) The phosphatidylinositol 3' kinase pathway is required for the survival signal of leukocyte tyrosine kinase. Oncogene 14:3067–3072

    Article  PubMed  CAS  Google Scholar 

  187. Lu Z, Je HS, Young P, Gross J, Lu B, Feng G (2007) Regulation of synaptic growth and maturation by a synapse-associated E3 ubiquitin ligase at the neuromuscular junction. J Cell Biol 177:1077–1089

    Article  PubMed  CAS  Google Scholar 

  188. Mullane-Robinson KP, Lill NL, Douillard P, Band H (1999) Cbl-mediated negative regulation of platelet-derived growth factor receptor-dependent cell proliferation. A critical role for Cbl tyrosine kinase-binding domain. J Biol Chem 274:16619–16628

    Article  PubMed  Google Scholar 

  189. Scott RP, Eketjall S, Aineskog H, Ibanez CF (2005) Distinct turnover of alternatively spliced isoforms of the RET kinase receptor mediated by differential recruitment of the Cbl ubiquitin ligase. J Biol Chem 280:13442–13449

    Article  PubMed  CAS  Google Scholar 

  190. Tsui CC, Pierchala BA (2008) CD2AP and Cbl-3/Cbl-c constitute a critical checkpoint in the regulation of ret signal transduction. J Neurosci 28:8789–8800

    Article  PubMed  CAS  Google Scholar 

  191. Penengo L, Rubin C, Yarden Y, Gaudino G (2003) c-Cbl is a critical modulator of the Ron tyrosine kinase receptor. Oncogene 22:3669–3679

    Article  PubMed  CAS  Google Scholar 

  192. Takahashi Y, Shimokawa N, Esmaeili-Mahani S et al (2011) Ligand-induced downregulation of TrkA is partly regulated through ubiquitination by Cbl. FEBS Lett 585:1741–1747

    Article  PubMed  CAS  Google Scholar 

  193. McCarty JH, Feinstein SC (1999) The TrkB receptor tyrosine kinase regulates cellular proliferation via signal transduction pathways involving SHC, PLCgamma, and CBL. J Recept Signal Transduct Res 19:953–974

    Article  PubMed  CAS  Google Scholar 

  194. Li Z, Dong T, Proschel C, Noble M (2007) Chemically diverse toxicants converge on Fyn and c-Cbl to disrupt precursor cell function. PLoS Biol 5:e35

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Financial Support: This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley Lipkowitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ma, K., Kales, S.C., Nau, M.M., Lipkowitz, S. (2013). Cbl as a Master Regulator of Receptor Tyrosine Kinase Trafficking. In: Yarden, Y., Tarcic, G. (eds) Vesicle Trafficking in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6528-7_11

Download citation

Publish with us

Policies and ethics