Skip to main content

Introduction to Interphase Molecular Cytogenetics

  • Chapter
  • First Online:
Human Interphase Chromosomes

Abstract

The history of interphase cytogenetics can be traced back to the pioneering works on descriptions of intracellular compartments dated at the end of the nineteenth century. However, it was not until the development of molecular cytogenetic techniques that the direct analysis of human interphase chromosomes began. During the past three decades, tremendous efforts have been made toward the elucidation of how the cellular genome is organized at molecular and supramolecular (chromatin and chromosomal) levels. As a result, we do possess powerful molecular cytogenetic technologies for diagnosing chromosome abnormalities in interphase and studying chromosome number, structure, and behavior variations in single cells at molecular resolutions through the entire cell cycle. Using several seminal reviews as milestones, it was possible to show the development of interphase (molecular) cytogenetics in historical perspective. As one can notice, the main achievements in studying interphase chromosomes were made because of technological developments in molecular cytogenetics. Therefore, the present introduction to interphase molecular cytogenetics is not only limited to listing changing of concepts in studying interphase chromosomal architecture and molecular cytogenetic diagnosis, but also briefly describes the technological basis of this dynamically developing biomedical field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barr ML, Bertram EG (1949) A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature (Lond) 163:676–677

    Article  CAS  Google Scholar 

  • Bui TH, Blennow E, Nordenskjöld M (2002) Prenatal diagnosis: molecular genetics and cytogenetics. Best Pract Res Clin Obstet Gynaecol 16(5):629–643

    Article  PubMed  Google Scholar 

  • Claussen U (2005) Chromosomics. Cytogenet Genome Res 111:101–106

    Article  PubMed  CAS  Google Scholar 

  • Comings DE (1968) The rationale for an ordered arrangement of chromatin in the interphase nucleus. Am J Hum Genet 20(5):440–460

    PubMed  CAS  Google Scholar 

  • Comings DE (1980) Arrangement of chromatin in the nucleus. Hum Genet 53(2):131–143

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C (2006) Rise, fall and resurrection of chromosome territories: a historical perspective. Part II. Fall and resurrection of chromosome territories during the 1950s to 1980s. Part III. Chromosome territories and the functional nuclear architecture: experiments and models from the 1990s to the present. Eur J Histochem 50(4):223–272

    PubMed  CAS  Google Scholar 

  • Cremer T, Landegent J, Brückner A, Scholl HP, Schardin M, Hager HD et al (1986) Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs with radioactive and non-radioactive in situ hybridization techniques: diagnosis of trisomy 18 with probe L1.84. Hum Genet 74(4):346–352

    Article  PubMed  CAS  Google Scholar 

  • Dostie J, Bickmore WA (2012) Chromosome organization in the nucleus—charting new territory across the Hi-Cs. Curr Opin Genet Dev 22(2):125–131

    Article  PubMed  CAS  Google Scholar 

  • Foster HA, Bridger JM (2005) The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma (Berl) 114(4):212–229

    Article  Google Scholar 

  • Gartler SM (2006) The chromosome number in humans: a brief history. Nat Rev Genet 7(8):655–660

    Article  PubMed  CAS  Google Scholar 

  • Gersen SL, Keagle MB (2005) The principles of clinical cytogenetics, 2nd edn. Humana Press, Totowa, NJ

    Book  Google Scholar 

  • Göndör A, Ohlson R (2009) Chromosome crosstalk in three dimensions. Nature (Lond) 461:212–217

    Article  Google Scholar 

  • Iourov IY, Vorsanova SG, Yurov YB (2006a) Chromosomal variations in mammalian neuronal cells: known facts and attractive hypotheses. Int Rev Cytol 249:143–191

    Article  PubMed  CAS  Google Scholar 

  • Iourov IY, Vorsanova SG, Yurov YB (2006b) Intercellular genomic (chromosomal) variations resulting in somatic mosaicism: mechanisms and consequences. Curr Genomics 7:435–446

    Article  CAS  Google Scholar 

  • Iourov IY, Liehr T, Vorsanova SG, Yurov YB (2007) Interphase chromosome-specific multicolor banding (ICS-MCB): a new tool for analysis of interphase chromosomes in their integrity. Biomol Eng 24:415–417

    Article  PubMed  CAS  Google Scholar 

  • Iourov IY, Vorsanova SG, Yurov YB (2008a) Molecular cytogenetics and cytogenomics of brain diseases. Curr Genomics 9(7):452–465

    Article  PubMed  CAS  Google Scholar 

  • Iourov IY, Vorsanova SG, Yurov YB (2008b) Recent patents on molecular cytogenetics. Recent Pat DNA Gene Seq 2:6–15

    Article  PubMed  CAS  Google Scholar 

  • Iourov IY, Vorsanova SG, Yurov YB (2010) Somatic genome variations in health and disease. Curr Genomics 11(6):387–396

    Article  PubMed  CAS  Google Scholar 

  • Iourov IY, Vorsanova SG, Yurov YB (2012) Single cell genomics of the brain: focus on neuronal diversity and neuropsychiatric diseases. Curr Genomics 13(6):477–488

    Article  PubMed  CAS  Google Scholar 

  • Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258(5083):818–821

    Article  PubMed  CAS  Google Scholar 

  • Leitch AR (2000) Higher levels of organization in the interphase nucleus of cycling and differentiated cells. Microbiol Mol Biol Rev 64(1):138–152

    Article  PubMed  CAS  Google Scholar 

  • Levsky JM, Singer RH (2003) Fluorescence in situ hybridization: past, present and future. J Cell Sci 116(pt 14):2833–2888

    Article  PubMed  CAS  Google Scholar 

  • Manuelidis L (1990) A view of interphase chromosomes. Science 250(4987):1533–1540

    Article  PubMed  CAS  Google Scholar 

  • Misteli T, Soutoglou E (2009) The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat Rev Mol Cell Biol 10:243–254

    Article  PubMed  CAS  Google Scholar 

  • Pajor G, Kajtár B, Pajor L, Alpár D (2012) State-of-the-art FISHing: automated analysis of cytogenetic aberrations in interphase nuclei. Cytometry A 81(8):649–663

    PubMed  Google Scholar 

  • Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83(9):2934–2938

    Article  PubMed  CAS  Google Scholar 

  • Rajapakse I, Groudine M (2011) On emerging nuclear order. J Cell Biol 192(5):711–721

    Article  PubMed  CAS  Google Scholar 

  • Ried T (1998) Interphase cytogenetics and its role in molecular diagnostics of solid tumors. Am J Pathol 152(2):325–327

    PubMed  CAS  Google Scholar 

  • Ried T, Landes G, Dackowski W, Klinger K, Ward DC (1992) Multicolor fluorescence in situ hybridization for the simultaneous detection of probe sets for chromosomes 13, 18, 21, X and Y in uncultured amniotic fluid cells. Hum Mol Genet 1(5):307–313

    Article  PubMed  CAS  Google Scholar 

  • Rouquette J, Cremer C, Cremer T, Fakan S (2010) Functional nuclear architecture studied by microscopy: present and future. Int Rev Cell Mol Biol 282:1–90

    Article  PubMed  CAS  Google Scholar 

  • Schrock E, du Manoir S, Veldman T, Schoell B, Weinberg J, Ferguson-Smith MA et al (1996) Multicolor spectral karyotyping of human chromosomes. Science 273:494–497

    Article  PubMed  CAS  Google Scholar 

  • Serakinci N, Kolvraa S (2009) Molecular cytogenetic applications in diagnostics and research: an overview. In: Liehr T (ed) Fluorescence in situ hybridization (FISH): application guide. Springer, Berlin, pp 3–21

    Chapter  Google Scholar 

  • Smeets DF (2004) Historical prospective of human cytogenetics: from microscope to microarray. Clin Biochem 37(6):439–446

    Article  PubMed  CAS  Google Scholar 

  • Soloviev IV, Yurov YB, Vorsanova SG, Fayet F, Roizes G, Malet P (1995) Prenatal diagnosis of trisomy 21 using interphase fluorescence in situ hybridization of postreplicated cells with site-specific cosmid and cosmid contig probes. Prenat Diagn 15:237–248

    Article  PubMed  CAS  Google Scholar 

  • Speicher MR, Ballard GS, Ward DC (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 12:368–375

    Article  PubMed  CAS  Google Scholar 

  • Tanke HJ, Florijn RJ, Wiegant J, Raap AK, Vrolijk J (1995) CCD microscopy and image analysis of cells and chromosomes stained by fluorescence in situ hybridization. Histochem J 27(1):4–14

    Article  PubMed  CAS  Google Scholar 

  • Tanke HJ, Dirks RW, Raap T (2005) FISH and immunocytochemistry: towards visualising single target molecules in living cells. Curr Opin Biotechnol 16(1):49–54

    Article  PubMed  CAS  Google Scholar 

  • Trask BJ (2002) Human cytogenetics: 46 chromosomes, 46 years and counting. Nat Rev Genet 3(10):769–778

    Article  PubMed  CAS  Google Scholar 

  • van Driel R, Humbel B, de Jong L (1991) The nucleus: a black box being opened. J Cell Biochem 47(4):311–316

    Article  PubMed  Google Scholar 

  • Vanneste E, Bittman L, Van der Aa N, Voet T, Vermeesch JR (2012) New array approaches to explore single cells genomes. Front Genet 3:44

    Article  PubMed  Google Scholar 

  • Vogel F, Schroeder TM (1974) The internal order of the interphase nucleus. Humangenetik 25(4):265–297

    Article  PubMed  CAS  Google Scholar 

  • Vorsanova SG, Yurov YB, Alexandrov IA, Demidova IA, Mitkevich SP, Tirskaya AF (1986) 18p- syndrome: an unusual case and diagnosis by in situ hybridization with chromosome 18-specific alphoid DNA sequence. Hum Genet 72:185–187

    Article  PubMed  CAS  Google Scholar 

  • Vorsanova SG, Yurov YB, Deryagin GV, Soloviev IV, Bytenskaya GA (1991) Diagnosis of aneuploidy by in situ hybridization: analysis of interphase nuclei. Bull Exp Biol Med 112:413–415

    Article  CAS  Google Scholar 

  • Vorsanova SG, Yurov YB, Iourov IY (2010a) Human interphase chromosomes: a review of available molecular cytogenetic technologies. Mol Cytogenet 3:1

    Article  PubMed  Google Scholar 

  • Vorsanova SG, Yurov YB, Soloviev IV, Iourov IY (2010b) Molecular cytogenetic diagnosis and somatic genome variations. Curr Genomics 11:440–446

    Article  PubMed  CAS  Google Scholar 

  • Yurov YB, Soloviev IV, Vorsanova SG, Marcais B, Roizes G, Lewis R (1996) High resolution fluorescence in situ hybridization using cyanine and fluorescein dyes: ultra-rapid chromosome detection by directly fluorescently labeled alphoid DNA probes. Hum Genet 97:390–398

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuri B. Yurov or Ivan Y. Iourov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yurov, Y.B., Vorsanova, S.G., Iourov, I.Y. (2013). Introduction to Interphase Molecular Cytogenetics. In: Yurov, Y., Vorsanova, S., Iourov, I. (eds) Human Interphase Chromosomes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6558-4_1

Download citation

Publish with us

Policies and ethics