Skip to main content

Metabolism of the Viable Human Embryo

  • Chapter
  • First Online:
Human Gametes and Preimplantation Embryos

Abstract

Regulation of energy production is fundamental to the survival and propagation of any cell type. What makes the preimplantation mammalian embryo so fascinating to study is the fact that the embryo undergoes major changes in its physiology and gene expression profiles during development. As the fertilised oocyte develops and differentiates into the blastocyst, embryonic genes are successively turned on (with the concomitant destruction of maternally derived mRNAs). Subsequently there is a growing energy demand as mitoses and biosynthesis increase post-embryonic-genome activation and as the blastocoel subsequently forms (through the activity of Na/K ATPase in the trophectoderm). Concomitantly, there are major changes in the regulation and relative activities of energy generating pathways. Of clinical interest is the fact that should an embryo at any stage of development have substantially altered energy production, i.e. if the flux of a specific nutrient through a metabolic pathway alters to a significant degree, even for a brief period, then this is associated with significantly impaired development in culture and reduction of viability post-transfer. Clearly it is in our interest to understand how the preimplantation embryo regulates its energy production, and to develop culture systems that best support an ‘optimal’ metabolism. Furthermore, it is evident that analysis of embryo metabolism is an appropriate means of assessing embryonic health and predicting subsequent viability. The task ahead is to determine the optimal range of metabolic functions that reflect viability at successive stages of embryo development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trimarchi JR, Liu L, Porterfield DM, Smith PJ, Keefe DL. Oxidative phosphorylation-dependent and -independent oxygen consumption by individual preimplantation mouse embryos. Biol Reprod. 2000;62:1866–74.

    Article  PubMed  CAS  Google Scholar 

  2. Biggers JD, Whittingham DG, Donahue RP. The pattern of energy metabolism in the mouse oocyte and zygote. Proc Natl Acad Sci USA. 1967;58:560–7.

    Article  PubMed  CAS  Google Scholar 

  3. Leese HJ, Biggers JD, Mroz EA, Lechene C. Nucleotides in a single mammalian ovum or preimplantation embryo. Anal Biochem. 1984;140:443–8.

    Article  PubMed  CAS  Google Scholar 

  4. Leese HJ, Barton AM. Production of pyruvate by isolated mouse cumulus cells. J Exp Zool. 1985;234:231–6.

    Article  PubMed  CAS  Google Scholar 

  5. Gardner DK, Leese HJ. Concentrations of nutrients in mouse oviduct fluid and their effects on embryo development and metabolism in vitro. J Reprod Fertil. 1990;88:361–8.

    Article  PubMed  CAS  Google Scholar 

  6. Gardner DK, Lane M, Calderon I, Leeton J. Environment of the preimplantation human embryo in vivo: metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertil Steril. 1996;65:349–53.

    PubMed  CAS  Google Scholar 

  7. Lane M, Gardner DK. Mitochondrial malate-aspartate shuttle regulates mouse embryo nutrient consumption. J Biol Chem. 2005;280:18361–7.

    Article  PubMed  CAS  Google Scholar 

  8. Johnson MT, Freeman EA, Gardner DK, Hunt PA. Oxidative metabolism of pyruvate is required for ­meiotic maturation of murine oocytes in vivo. Biol Reprod. 2007;77:2–8.

    Article  PubMed  CAS  Google Scholar 

  9. Mills RM, Brinster RL. Oxygen consumption of preimplantation mouse embryos. Exp Cell Res. 1967;47:337–44.

    Article  Google Scholar 

  10. Thompson JG, Partridge RJ, Houghton FD, Cox CI, Leese HJ. Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos. J Reprod Fertil. 1996;106:299–306.

    Article  PubMed  CAS  Google Scholar 

  11. Houghton FD, Sheth B, Moran B, Leese HJ, Fleming TP. Expression and activity of hexokinase in the early mouse embryo. Mol Hum Reprod. 1996;2:793–8.

    Article  PubMed  CAS  Google Scholar 

  12. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article  PubMed  CAS  Google Scholar 

  13. Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

    Article  PubMed  CAS  Google Scholar 

  14. Rogers PAW, Murphy CR, Gannon BJ. Absence of capillaries in the endometrium surrounding the implanting rat blastocyst. Micron. 1982;13:373–4.

    Google Scholar 

  15. Rogers PA, Murphy CR, Rogers AW, Gannon BJ. Capillary patency and permeability in the endometrium surrounding the implanting rat blastocyst. Int J Microcirc Clin Exp. 1983;2:241–9.

    PubMed  CAS  Google Scholar 

  16. Gardner DK. Embryo Development and culture techniques. In: Clark J, editor. Animal breeding: technology for the 21st century. London: Harwood Academic; 1998. p. 13–46.

    Google Scholar 

  17. Hume DA, Weidemann MJ. Role and regulation of glucose metabolism in proliferating cells. J Natl Cancer Inst. 1979;62:3–8.

    PubMed  CAS  Google Scholar 

  18. Morgan MJ, Faik P. Carbohydrate metabolism in cultured animal cells. Biosci Rep. 1981;1:669–86.

    Article  PubMed  CAS  Google Scholar 

  19. Mandel LJ. Energy metabolism of cellular activation, growth, and transformation. Curr Top Membr Transp. 1986;27:261–91.

    Article  CAS  Google Scholar 

  20. Reitzer LJ, Wice BM, Kennell D. The pentose cycle. Control and essential function in HeLa cell nucleic acid synthesis. J Biol Chem. 1980;255:5616–26.

    PubMed  CAS  Google Scholar 

  21. Shi L, Wu J. Epigenetic regulation in mammalian preimplantation embryo development. Reprod Biol Endocrinol. 2009;7:59.

    Article  PubMed  Google Scholar 

  22. Rieger D. Relationships between energy metabolism and development of early mammalian embryos. Theriogenology. 1992;37:75–93.

    Article  CAS  Google Scholar 

  23. Rieger D, Loskutoff NM, Betteridge KJ. Developmentally related changes in the uptake and metabolism of glucose, glutamine and pyruvate by cattle embryos produced in vitro. Reprod Fertil Dev. 1992;4:547–57.

    Article  PubMed  CAS  Google Scholar 

  24. Rieger D, Guay P. Measurement of the metabolism of energy substrates in individual bovine blastocysts. J Reprod Fertil. 1988;83:585–91.

    Article  PubMed  CAS  Google Scholar 

  25. Newsholme EA, Crabtree B, Ardawi MS. The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells. Biosci Rep. 1985;5:393–400.

    Article  PubMed  CAS  Google Scholar 

  26. Newsholme EA. Application of metabolic-control logic to the requirements for cell division. Biochem Soc Trans. 1990;18:78–80.

    PubMed  CAS  Google Scholar 

  27. Greenhouse WV, Lehninger AL. Occurrence of the malate-aspartate shuttle in various tumor types. Cancer Res. 1976;36:1392–6.

    PubMed  CAS  Google Scholar 

  28. Greenhouse WV, Lehninger AL. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells. Cancer Res. 1977;37:4173–81.

    PubMed  CAS  Google Scholar 

  29. Mitchell M, Cashman KS, Gardner DK, Thompson JG, Lane M. Disruption of mitochondrial malate-aspartate shuttle activity in mouse blastocysts impairs viability and fetal growth. Biol Reprod. 2009;80:295–301.

    Article  PubMed  CAS  Google Scholar 

  30. Quinn P, Kerin JF, Warnes GM. Improved pregnancy rate in human in vitro fertilization with the use of a medium based on the composition of human tubal fluid. Fertil Steril. 1985;44:493–8.

    PubMed  CAS  Google Scholar 

  31. Gardner DK, Sakkas D. Mouse embryo cleavage, metabolism and viability: role of medium composition. Hum Reprod. 1993;8:288–95.

    PubMed  CAS  Google Scholar 

  32. Menke TM, McLaren A. Mouse blastocysts grown in vivo and in vitro: carbon dioxide production and trophoblast outgrowth. J Reprod Fertil. 1970;23:117–27.

    Article  PubMed  CAS  Google Scholar 

  33. Lane M, Gardner DK. Selection of viable mouse blastocysts prior to transfer using a metabolic criterion. Hum Reprod. 1996;11:1975–8.

    Article  PubMed  CAS  Google Scholar 

  34. Lane M, Gardner DK. Amino acids and vitamins prevent culture-induced metabolic perturbations and associated loss of viability of mouse blastocysts. Hum Reprod. 1998;13:991–7.

    Article  PubMed  CAS  Google Scholar 

  35. Gardner D, Lane M. Towards a single embryo transfer. Reprod Biomed Online. 2003;6:470–81.

    Article  PubMed  Google Scholar 

  36. Gardner DK, Lane M. Ex vivo early embryo development and effects on gene expression and imprinting. Reprod Fertil Dev. 2005;17:361.

    Article  PubMed  Google Scholar 

  37. Lane M, Gardner DK. Understanding cellular disruptions during early embryo development that perturb viability and fetal development. Reprod Fertil Dev. 2005;17:371–8.

    Article  PubMed  CAS  Google Scholar 

  38. Gardner DK, Lane M. Culture and selection of viable blastocysts: a feasible proposition for human IVF? Hum Reprod Update. 1997;3:367–82.

    Article  PubMed  CAS  Google Scholar 

  39. Renard JP, Menezo Y, Heyman Y. Alternative tests to assess viability of bovine embryos. Theriogenology. 1982;17:106.

    Article  Google Scholar 

  40. Gardner DK, Leese HJ. Assessment of embryo viability prior to transfer by the noninvasive measurement of glucose uptake. J Exp Zool. 1987;242:103–5.

    Article  PubMed  CAS  Google Scholar 

  41. Gardner DK, Wale PL, Collins R, Lane M. Glucose consumption of single post-compaction human embryos is predictive of embryo sex and live birth outcome. Hum Reprod. 2011;26:1981–6.

    Article  PubMed  CAS  Google Scholar 

  42. Conaghan J, Hardy K, Handyside AH, Winston RM, Leese HJ. Selection criteria for human embryo transfer: a comparison of pyruvate uptake and morphology. J Assist Reprod Genet. 1993;10:21–30.

    Article  PubMed  CAS  Google Scholar 

  43. Gardner DK, Larman MG, Thouas GA. Sex-related physiology of the preimplantation embryo. Mol Hum Reprod. 2010;16:539–47.

    Article  PubMed  CAS  Google Scholar 

  44. Kobayashi S, Isotani A, Mise N, Yamamoto M, Fujihara Y, Kaseda K, et al. Comparison of gene expression in male and female mouse blastocysts revealed imprinting of the X-linked gene, Rhox5/Pem, at preimplantation stages. Curr Biol. 2006;16:166–72.

    Article  PubMed  CAS  Google Scholar 

  45. Bermejo-Alvarez P, Rizos D, Rath D, Lonergan P, Gutierrez-Adan A. Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts. Proc Natl Acad Sci USA. 2010;107:3394–9.

    Article  PubMed  CAS  Google Scholar 

  46. Epstein CJ, Smith S, Travis B, Tucker G. Both X chromosomes function before visible X-chromosome inactivation in female mouse embryos. Nature. 1978;274:500–3.

    Article  PubMed  CAS  Google Scholar 

  47. Haggarty P, Wood M, Ferguson E, Hoad G, Srikantharajah A, Milne E, et al. Fatty acid metabolism in human preimplantation embryos. Hum Reprod. 2006;21:766–73.

    Article  PubMed  CAS  Google Scholar 

  48. Dunning KR, Cashman K, Russell DL, Thompson JG, Norman RJ, Robker RL. Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol Reprod. 2010;83:909–18.

    Article  PubMed  CAS  Google Scholar 

  49. Casslen BG. Free amino acids in human uterine fluid. Possible role of high taurine concentration. J Reprod Med. 1987;32:181–4.

    PubMed  CAS  Google Scholar 

  50. Harris SE, Gopichandran N, Picton HM, Leese HJ, Orsi NM. Nutrient concentrations in murine follicular fluid and the female reproductive tract. Theriogenology. 2005;64:992–1006.

    Article  PubMed  CAS  Google Scholar 

  51. Crosby IM, Gandolfi F, Moor RM. Control of protein synthesis during early cleavage of sheep embryos. J Reprod Fertil. 1988;82:769–75.

    Article  PubMed  CAS  Google Scholar 

  52. Edwards LJ, Williams DA, Gardner DK. Intracellular pH of the mouse preimplantation embryo: amino acids act as buffers of intracellular pH. Hum Reprod. 1998;13:3441–8.

    Article  PubMed  CAS  Google Scholar 

  53. Liu Z, Foote RH. Development of bovine embryos in KSOM with added superoxide dismutase and taurine and with five and twenty percent O2. Biol Reprod. 1995;53:786–90.

    Article  PubMed  CAS  Google Scholar 

  54. Martin PM, Sutherland AE. Exogenous amino acids regulate trophectoderm differentiation in the mouse blastocyst through an mTOR-dependent pathway. Dev Biol. 2001;240:182–93.

    Article  PubMed  CAS  Google Scholar 

  55. Martin PM, Sutherland AE, Van Winkle LJ. Amino acid transport regulates blastocyst implantation. Biol Reprod. 2003;69:1101–8.

    Article  PubMed  CAS  Google Scholar 

  56. Lane M, Gardner DK. Differential regulation of mouse embryo development and viability by amino acids. J Reprod Fertil. 1997;109:153–64.

    Article  PubMed  CAS  Google Scholar 

  57. Houghton FD, Hawkhead JA, Humpherson PG, Hogg JE, Balen AH, Rutherford AJ, et al. Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum Reprod. 2002;17:999–1005.

    Article  PubMed  CAS  Google Scholar 

  58. Brison DR, Houghton FD, Falconer D, Roberts SA, Hawkhead J, Humpherson PG, et al. Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum Reprod. 2004;19:2319–24.

    Article  PubMed  CAS  Google Scholar 

  59. Picton HM, Elder K, Houghton FD, Hawkhead JA, Rutherford AJ, Hogg JE, et al. Association between amino acid turnover and chromosome aneuploidy during human preimplantation embryo development in vitro. Mol Hum Reprod. 2010;16:557–69.

    Article  PubMed  CAS  Google Scholar 

  60. Sturmey RG, Bermejo-Alvarez P, Gutierrez-Adan A, Rizos D, Leese HJ, Lonergan P. Amino acid metabolism of bovine blastocysts: a biomarker of sex and viability. Mol Reprod Dev. 2010;77:285–96.

    Article  PubMed  CAS  Google Scholar 

  61. Gardner DK. Changes in requirements and utilization of nutrients during mammalian preimplantation embryo development and their significance in embryo culture. Theriogenology. 1998;49:83–102.

    Article  PubMed  CAS  Google Scholar 

  62. Edwards LJ, Williams DA, Gardner DK. Intracellular pH of the preimplantation mouse embryo: effects of extracellular pH and weak acids. Mol Reprod Dev. 1998;50:434–42.

    Article  PubMed  CAS  Google Scholar 

  63. Mastroianni Jr L, Jones R. Oxygen tension within the rabbit fallopian tube. J Reprod Fertil. 1965;147:99–102.

    Google Scholar 

  64. Ross RN, Graves CN. O2 levels in female rabbit reproductive tract. J Anim Sci. 1974;39:994.

    Google Scholar 

  65. Fischer B, Bavister BD. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil. 1993;99:673–9.

    Article  PubMed  CAS  Google Scholar 

  66. Quinn P, Harlow GM. The effect of oxygen on the development of preimplantation mouse embryos in vitro. J Exp Zool. 1978;206:73–80.

    Article  PubMed  CAS  Google Scholar 

  67. Harlow GM, Quinn P. Foetal and placenta growth in the mouse after pre-implantation development in vitro under oxygen concentrations of 5 and 20%. Aust J Biol Sci. 1979;32:363–9.

    PubMed  CAS  Google Scholar 

  68. Thompson JG, Simpson AC, Pugh PA, Donnelly PE, Tervit HR. Effect of oxygen concentration on in-vitro development of preimplantation sheep and cattle embryos. J Reprod Fertil. 1990;89:573–8.

    Article  PubMed  CAS  Google Scholar 

  69. Batt PA, Gardner DK, Cameron AW. Oxygen concentration and protein source affect the development of preimplantation goat embryos in vitro. Reprod Fertil Dev. 1991;3:601–7.

    Article  PubMed  CAS  Google Scholar 

  70. Wale PL, Gardner DK. Time-lapse analysis of mouse embryo development in oxygen gradients. Reprod Biomed Online. 2010;21:402–10.

    Article  PubMed  CAS  Google Scholar 

  71. Kovacic B, Vlaisavljevic V. Influence of atmospheric versus reduced oxygen concentration on development of human blastocysts in vitro: a prospective study on sibling oocytes. Reprod Biomed Online. 2008;17:229–36.

    Article  PubMed  CAS  Google Scholar 

  72. Kovacic B, Sajko MC, Vlaisavljevic V. A prospective, randomized trial on the effect of atmospheric versus reduced oxygen concentration on the outcome of intracytoplasmic sperm injection cycles. Fertil Steril. 2010;94:511–9.

    Article  PubMed  Google Scholar 

  73. Waldenstrom U, Engstrom AB, Hellberg D, Nilsson S. Low-oxygen compared with high-oxygen atmosphere in blastocyst culture, a prospective randomized study. Fertil Steril. 2009;91:2461–5.

    Article  PubMed  Google Scholar 

  74. Meintjes M, Chantilis SJ, Douglas JD, Rodriguez AJ, Guerami AR, Bookout DM, et al. A controlled ­randomized trial evaluating the effect of lowered incubator oxygen tension on live births in a predominantly blastocyst transfer program. Hum Reprod. 2009;24:300–7.

    Article  PubMed  Google Scholar 

  75. Rinaudo PF, Giritharan G, Talbi S, Dobson AT, Schultz RM. Effects of oxygen tension on gene expression in preimplantation mouse embryos. Fertil Steril. 2006; 86(4 Suppl):1252–65.

    Google Scholar 

  76. Katz-Jaffe MG, Linck DW, Schoolcraft WB, Gardner DK. A proteomic analysis of mammalian preimplantation embryonic development. Reproduction. 2005;130:899–905.

    Article  PubMed  CAS  Google Scholar 

  77. Wale PL, Gardner DK. Oxygen regulates amino acid turnover and carbohydrate uptake during the preimplantation period of mouse embryo development. Biol Reprod. 2012;87:24, 1–8.

    Article  PubMed  Google Scholar 

  78. Leese HJ. Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. Bioessays. 2002; 24:845–9.

    Article  PubMed  Google Scholar 

  79. Leese HJ, Baumann CG, Brison DR, McEvoy TG, Sturmey RG. Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod. 2008;14:667–72.

    Article  PubMed  CAS  Google Scholar 

  80. Ingerslev HJ, Hindkjaer J, Kirkegaard K. Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring. Hum Reprod. 2012;27:ii22–4.

    Article  Google Scholar 

  81. Meseguer M, Tejera A, Herrero J, de los Santos M, Viloria T, Remohi J, et al. Oxygen consumption increases during cytokinesis in implanting human embryos; a time-lapse and microsensor combined analysis. Hum Reprod. 2012;27:ii22–4.

    Article  Google Scholar 

  82. Donohoe DR, Bultman SJ. Metaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expression. J Cell Physiol. 2012;227:3169–77.

    Article  PubMed  CAS  Google Scholar 

  83. Urbanski JP, Johnson MT, Craig DD, Potter DL, Gardner DK, Thorsen T. Noninvasive metabolic profiling using microfluidics for analysis of single preimplantation embryos. Anal Chem. 2008;80:6500–7.

    Article  PubMed  CAS  Google Scholar 

  84. Heo YS, Cabrera LM, Bormann CL, Smith GD, Takayama S. Real time culture and analysis of embryo metabolism using a microfluidic device with deformation based actuation. Lab Chip. 2012;12:2240–6.

    Article  PubMed  CAS  Google Scholar 

  85. Lane M, Gardner DK. Lactate regulates pyruvate uptake and metabolism in the preimplantation mouse embryo. Biol Reprod. 2000;62:16–22.

    Article  PubMed  CAS  Google Scholar 

  86. Brinster RL. Lactate dehydrogenase activity in the preimplanted mouse embryo. Biochim Biophys Acta. 1965;110:439–41.

    Article  PubMed  CAS  Google Scholar 

  87. Auerbach S, Brinster RL. Lactate dehydrogenase isozymes in the early mouse embryo. Exp Cell Res. 1967;46:89–92.

    Article  PubMed  CAS  Google Scholar 

  88. Gibbons J, Hewitt E, Gardner DK. Effects of oxygen tension on the establishment and lactate dehydrogenase activity of murine embryonic stem cells. Cloning Stem Cells. 2006;8:117–22.

    Article  PubMed  CAS  Google Scholar 

  89. Wakefield SL, Lane M, Mitchell M. Impaired mitochondrial function in the preimplantation embryo perturbs fetal and placental development in the mouse. Biol Reprod. 2011;84:572–80.

    Article  PubMed  CAS  Google Scholar 

  90. Mazurek S. Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol. 2011;43:969–80.

    Article  PubMed  CAS  Google Scholar 

  91. Vander Heiden MG, Lunt SY, Dayton TL, Fiske BP, Israelsen WJ, Mattaini KR, et al. Metabolic pathway alterations that support cell proliferation. Cold Spring Harb Symp Quant Biol. 2011;76:325–34.

    Article  PubMed  CAS  Google Scholar 

  92. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 2008;452:230–3.

    Article  PubMed  CAS  Google Scholar 

  93. Redel BK, Brown AN, Spate LD, Whitworth KM, Green JA, Prather RS. Glycolysis in preimplantation development is partially controlled by the Warburg effect. Mol Reprod Dev. 2012;79:262–71.

    Article  PubMed  CAS  Google Scholar 

  94. Hardy K, Spanos S. Growth factor expression and function in the human and mouse preimplantation embryo. J Endocrinol. 2002;172:221–36.

    Article  PubMed  CAS  Google Scholar 

  95. Hewitson LC, Leese HJ. Energy metabolism of the trophectoderm and inner cell mass of the mouse blastocyst. J Exp Zool. 1993;267:337–43.

    Article  PubMed  CAS  Google Scholar 

  96. Abu Dawud R, Schreiber K, Schomburg D, Adjaye J. Human embryonic stem cells and embryonal carcinoma cells have overlapping and distinct metabolic signatures. PLoS One. 2012;7:e39896.

    Article  PubMed  CAS  Google Scholar 

  97. Gardner DK, Wale PL. Analysis of metabolism to select viable human embryos for transfer. Fertil Steril. 2013;99:1062–72.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author is indebted to Dr Mark Johnson for his comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K. Gardner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gardner, D.K. (2013). Metabolism of the Viable Human Embryo. In: Gardner, D., Sakkas, D., Seli, E., Wells, D. (eds) Human Gametes and Preimplantation Embryos. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6651-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6651-2_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6650-5

  • Online ISBN: 978-1-4614-6651-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics