Skip to main content

Signal Processing for Stereoscopic and Multi-View 3D Displays

  • Chapter
  • First Online:
Handbook of Signal Processing Systems

Abstract

Displays which aim at visualizing 3D scenes with realistic depth are known as “3D displays”. Due to technical limitations and design decisions, such displays might create visible distortions, which are interpreted by the human visual system as artifacts. This book chapter overviews a number of signal processing techniques for decreasing the visibility of artifacts on 3D displays. It begins by identifying the properties of a scene which the brain utilizes for perceiving depth. Further, operation principles of the most popular types of 3D displays are explained. A signal processing channel is proposed as a general model reflecting these principles. The model is applied in analyzing how visual quality is influenced by display distortions. The analysis allows identifying a set of optical properties which are directly related with the perceived quality. A methodology for measuring these properties and creating a quality profile of a 3D display is discussed. A comparative study introducing the measurement results on the visual quality and position of the sweet spots of a number of 3D displays of different types is presented. Based on knowledge of 3D artifact visibility and understanding of distortions introduced by 3D displays, a number of signal processing techniques for artifact mitigation are overviewed. These include a methodology for passband optimization which addresses typical 3D display artifacts (e.g. Moiré, fixed-pattern-noise and ghosting), a framework for design of tunable anti-aliasing filters and a set of real-time algorithms for view-point based optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The effect of the gaps is similar to the one caused by upsampling in the absence of a post-filter. In sampling and interpolation literature the effect is denoted as “imaging” and the filters tackling it are known as anti-imaging filters.

References

  1. B. A. Wandel, Foundations of Vision, Sunderland, Massachusetts, USA: Sinauer Associates, Inc, 1995.

    Google Scholar 

  2. I. P. Howard, and B. J. Rogers, Binocular Vision and Stereopsis, New York: Oxford University Press, 1995.

    Google Scholar 

  3. D. Chandler, “Visual Perception (Introductory Notes for Media Theory Students,” MSC portal site, University of Wales, Aberystwyth, 2008. [Online]. Available: http://www.aber.ac.uk/media/sections/image.html.

  4. S. Pastoor, “Human factors of 3D imaging: Results of recent research at Heinrich- Hertz- Institut Berlin,” in 2nd International Display Workshop, Hamamatsu, 1995.

    Google Scholar 

  5. M. Wexler and J. Boxtel, (2005) “Depth perception by the active observer,” Trends in Cognitive Sciences, vol. 9, pp. 431–438.

    Article  Google Scholar 

  6. B. Julesz, Foundations of Cyclopean Perception, Chicago: The University of Chicago Press, 1971.

    Google Scholar 

  7. E. Stoykova, A. Alatan, P. Benzie, N. Grammalidis, S. Malassiotis, J. Ostermann, S. Piekh, V. Sainov, C. Theobalt, T. Thevar, and X. Zabulis, “3-D Time-Varying Scene Capture Technologies—A Survey,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 17, no. 11, pp. 1568–1586, 2007.

    Article  Google Scholar 

  8. P.-S. Tsai, J. Cryer, and M. Shah, “Shape-from-shading: a survey,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 21, no. 8, pp. 690–706, 1999.

    Article  Google Scholar 

  9. T. Lindeberg and J. Garding, “Shape from texture from a multi-scale,” in ICCV, 1993.

    Google Scholar 

  10. M. Subbarao and G. Surya, “Depth from Defocus: A Spatial Domain Approach,” International Journal of Computer Vision, vol. 13, pp. 271–294, 1994.

    Article  Google Scholar 

  11. A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, 2004.

    Google Scholar 

  12. M.-H. Yang, D. Kriegman, and N. Ahuja, “Detecting faces in images: a survey,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 24, no. 1, pp. 34–58, 2002.

    Article  Google Scholar 

  13. H. Sidenbladh, M. Black, and L. Sigal, “Implicit probabilistic models of Human Motion for Synthesis and Tracking,” in European Conference on Computer Vision, 2002.

    Google Scholar 

  14. S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, “A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms,” in Proc. Comput. Vis. and Pattern Recognit. (CVPR2006), 2006.

    Google Scholar 

  15. B. L. Stann, A. Abou-Auf, S. Frankel, M. M. Giza, W. Potter, W. C. Ruff, P. H. Shen, D. R. Simon, M. R. Stead, Z. G. Sztankay, and L. F. Lester, “Research progess on scannerless ladar systems using a laser diode transmitter and FM/cw radar principles,” in Laser Radar Technology and Applications VI, 2001.

    Google Scholar 

  16. U. Schnars and J. W., (1994) “Direct recording of holograms by a CCD target and numerical reconstructions,” Applied Optics, vol. 33, no. 2, pp. 179–181.

    Article  Google Scholar 

  17. A. Alatan, Y. Yemez, U. Gudukbay, X. Zabulis, K. Muller, C. Erdem, and A. Weigel, “Scene Representation Technologies for 3DTV—A Survey,” IEEE Trans. Circuits and Systems for Video Technology, vol. 17, no. 11, pp. 1587–1605, Nov. 2007.

    Article  Google Scholar 

  18. M. Halle, “Multiple Viewpoint Rendering,” in Proceedings of the 25th annual Conference on Computer Graphics and Interactive Techniques, 1998.

    Google Scholar 

  19. R. Hartly and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed., Cambridge University Press, 2006.

    Google Scholar 

  20. A. Smolic, K. Mueller, N. Stefanovski, J. Ostermann, A. Gotchev, G. B. Akar, G. Triantafyllidis, and A. Koz, “Coding Algorithms for 3DTV - A Survey,” IEEE Trans. Circuits and Systems for Video Technology, vol. 17, no. 11, pp. 1606–1621, Nov. 2007.

    Article  Google Scholar 

  21. C. Fehn, P. Kauff, M. Op de Beeck, F. Ernst, W. IJsselsteijn, M. Pollefeys, L. Van Gool, E. Ofek, and I. Sexton, “An evolutionary and optimized approach on 3D-TV,” in Int. Broadcast Conf., Amsterdam, The Netherlands, 2002.

    Google Scholar 

  22. C. Fehn, N. Atzpadin, M. Muller, O. Schreer, A. Smolic, R. Tanger, and P. Kauff, “An Advanced 3DTV Concept Providing Interoperability and Scalability for a Wide Range of Multi-Baseline Geometries,” in 2006 IEEE International Conference on Image Processing, 2006.

    Google Scholar 

  23. R. Fernando and M. J. Kilgars, The Cg Tutorial, The Definitive Guide to Programmable Real-Time Graphics, Addison-Wesley, 2006.

    Google Scholar 

  24. J. Lee, “Hacking the Nintendo Wii Remote,” Pervasive Computing, IEEE, vol. 7, no. 3, pp. 39–45, 2008.

    Article  Google Scholar 

  25. K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph., vol. 23, no. 3, p. 804–813, 2004.

    Article  Google Scholar 

  26. M. Saymta, S. Isikman, and H. Urey, “Scanning Led Array Based Volumetric Display,” in 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, 2008.

    Google Scholar 

  27. S. Pastoor, “3D Displays,” in 3D Video Communication, O. Scheer, P. Kauff and T. Sikora, Eds., Chichester, West Sussex, Wiley, 2005, pp. 235–260.

    Google Scholar 

  28. P. Surman, K Hopf, I Sexton, W K Lee, R Bates “Solving the 3D problem - The history and development of viable domestic 3-dimensional video displays,” in Three-Dimensional Television: Capture, Transmission, and Display, H. Ozaktas and L. Onural, Eds., Springer Verlag, 2007.

    Google Scholar 

  29. P. Benzie, J. Watson, P. Surman, I. Rakkolainen, K. Hopf, H. Urey, V. Sainov, and C. von Kopylow, “A Survey of 3DTV Displays: Techniques and Technologies,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 17, no. 11, pp. 1647–1658, Nov. 2007.

    Article  Google Scholar 

  30. H. Urey, K. V. Chellappan, E. Erden, and P. Surman, “State of the Art in Stereoscopic and Autostereoscopic Displays,” Proceedings of the IEEE, vol. 99, no. 4, pp. 540–555., 2011.

    Article  Google Scholar 

  31. L. Onural, T. Sikora, J. Ostermann, A. Smolic, M. R. Civanar, and J. Watson, “An Assessment of 3DTV Technologies,” in NAB Broadcast Engineering Conference Proceedings, Las Vegas, USA, 2006.

    Google Scholar 

  32. H. Jorke, H. Simon, and M. Fritz, “Advanced stereo projection using interference filters,” J. Soc. Inf. Display, vol. 17, no. 5, pp. 407–410, 2009.

    Article  Google Scholar 

  33. Toshiba Europe GmbH, “55ZL2 - 3D without glasses,” Toshiba, Jan 2012. [Online]. Available: http://eu.consumer.toshiba.eu/en/products/tv/55ZL2.[Accessed June 2012].

  34. W. L. IJzerman, S. T. de Zwart, and T. Dekker, (2005) “Design of 2D/3D switchable displays,” Proc. of the SID, vol. 36, no. 1, pp. 98–101.

    Article  Google Scholar 

  35. C. van Berkel and J. Clarke, “Characterisation and optimisation of 3D-LCD module design,” in Stereoscopic Displays and Virtual Reality Systems IV, San Jose, 1997.

    Google Scholar 

  36. W. Tzschoppe, T. Brueggert, M. Klipstein, I. Relke, and U. Hofmann, “Arrangement for two-or-three-dimensional display”. US Patent 2006/0192908, 31 Aug. 2006.

    Google Scholar 

  37. M. Kristoffersen, M. J. Sykora, and J. Schultz, “Stretched filom for stereoscopic 3D display”. US Patent 7,750,983, 6 July 2010.

    Google Scholar 

  38. N. Dodgson, “Autostereoscopic 3D Displays,” Computer, vol. 38, no. 8, pp. 31–36, Aug. 2005.

    Article  Google Scholar 

  39. A. Gotchev, B. G. Akar, T. Capin, D. Strohmeier, and A. Boev, “Three-Dimensional Media for Mobile Devices,” Proceedings of the IEEE, vol. 99, no. 4, pp. 708–737, 2011.

    Article  Google Scholar 

  40. J. Konrad and P. Angiel, “Subsampling models and anti-alias filters for 3-D automultiscopic displays,” IEEE Trans. Image Processing, vol. 15, no. 1, pp. 128–140, 2006.

    Article  Google Scholar 

  41. C. van Berkel, “Lenticular screen adaptor”. US Patent 6801243, 5 Oct. 2004.

    Google Scholar 

  42. V. Saveljev, J.-Y. Son, B. Javidi, S.-K. Kim, and D.-S. Kim, “Moiré minimization condition in three-dimensional image displays,” Display Technology, vol. 1, pp. 347–353, 2005.

    Article  Google Scholar 

  43. C. N. Moller and A. R. L. Travis, “Correcting interperspective aliasing in autostereoscopic displays,” , IEEE Trans. Visual Comput. Graphics, vol. 11, no. 2, pp. 228–236, 2005.

    Article  Google Scholar 

  44. D. Hoffman, A. Girshick, K. Akeley, and M. Banks, “Vergence–accommodation conflicts hinder visual performance and cause visual fatigue,” Journal of Vision, vol. 8, no. 3, pp. 1–30, 2008.

    Article  Google Scholar 

  45. S. K. Nayar, V. Branzoi, and T. E. Boult, “Programmable Imaging Using a Digital Micromirror Array,” in Computer Vision and Pattern Recognition, IEEE Computer Society Conference on, 2004.

    Google Scholar 

  46. M. Lang, A. Hornung, O. Wang, S. Poulakos, A. Smolic, and M. Gross, “Nonlinear Disparity Mapping for Stereoscopic 3D,” ACM Transactions on Graphics (Proc. SIGGRAPH), vol. (in press), 2010.

    Google Scholar 

  47. W. IJsselsteijn, P. Seuntiens, and L. Meesters, (2005) “Human factors of 3D displays,” In 3D Video Communication, Scheer, Kauff and Sikora, Eds., Wiley, pp. 219–233.

    Google Scholar 

  48. M. Halle, “Autostereoscopic displays and computer graphics,” in International Conference on Computer Graphics and Interactive Techniques, 2005.

    Google Scholar 

  49. A. Boev, R. Bregovic, and A. Gotchev, “Visual-quality evaluation methodology for multiview displays,” Displays, vol. 33, no. 2, pp. 103–112, April 2012.

    Article  Google Scholar 

  50. A. Boev, D. Hollosi, A. Gotchev, and K. Egiazarian, “Classification and simulation of stereoscopic artifacts in mobile 3DTV content,” in Stereoscopic Displays and Applications XX, Proc. SPIE 7237, 2009.

    Google Scholar 

  51. A. Boev, K. Raunio, A. Gotchev, and K. Egiazarian, “GPU-based algorithms for optimized visualization and crosstalk mitigation on a multiview display,” in Proc. SPIE 6803, 2008.

    Google Scholar 

  52. F. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays, vol. 25, no. 2–3, pp. 99–108, 2004.

    Article  Google Scholar 

  53. A. Jain and J. Konrad, “Crosstalk on automultiscopic 3-D displays: Blessing in disguise?,” in Stereoscopic Displays and Applications XVIII, IS&T/SPIE Electronig Imaging, San Jose, CA, 2007.

    Google Scholar 

  54. M. Salmimaa and T. Järvenpää, “Optical characterization of autostereoscopic 3-D displays,” J. Soc. Inf. Display, vol. 16, no. 825, 2008.

    Google Scholar 

  55. J. Häkkinen, J. Takatalo, M. Kilpeläinen, M. Salmimaa and G. Nyman, “Determining limits to avoid double vision in an autostereoscopic display: Disparity and image element width,” J. Soc. Inf. Display, vol. 17, no. 433, 2009.

    Google Scholar 

  56. E. D. Montag and M. D. Fairchild, “Fundamentals of Human Vision and Vision Modelling,” in Digital Video Image Quality and Perceptual Coding, H. R. Wu and K. H. Rao, Eds., Boca Raton, FL, CRC Press, 2006, pp. 45–81.

    Google Scholar 

  57. A. Boev and A. Gotchev, “Comparative study of autostereoscopic displays for mobile devices,” in Multimedia on Mobile Devices 2011, Proc. SPIE 7881, 2011.

    Google Scholar 

  58. B. T. Bakus, M. S. Banks, R. van Ee, and J. A. Crowell, “Horizontal and vertical disparity, eye position, and stereoscopic slant perception,” Vision Research, vol. 39, pp. 1143–1170, 1999.

    Article  Google Scholar 

  59. P. Boher, T. Leroux, T. Bignon and V. Collomb-Patton, “A new way to characterize auto-stereoscopic 3D displays using Fourier optics instrument,” in Stereoscopic Displays and Applications XX, SPIE 7237, 72370Z, 2009.

    Article  Google Scholar 

  60. M. Salmimaa and T. Järvenpää, “3-D crosstalk and luminance uniformity from angular luminance profiles of multiview autostereoscopic 3-D displays,” Soc. Inf. Display, vol. 16, p. 1033, 2008.

    Article  Google Scholar 

  61. A. Boev, K. Raunio, M. Georgiev, A. Gotchev and K. Egiazarian, “OpenGL-based Control of Semi-Active 3D Display,” in 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, Istanbul, Turkey, 2008.

    Google Scholar 

  62. S. Uehara, T. Hiroya, H. Kusanagi, K. Shigemura and H. Asada, “1-inch diagonal transflective 2D and 3D LCD with HDDP arrangement,” in Stereoscopic displays and applications XIX, 2008.

    Google Scholar 

  63. A. Boev, R. Bregovic and A. Gotchev, (2010) “Measuring and modeling per-element angular visibilty in multiview displays,” Special issue on 3D displays, Journal of Society for Information Display, vol. 18, no. 9, pp. 686–697.

    Article  Google Scholar 

  64. P. Debevec and J. Malik, “Recovering High Dynamic Range Radiance Maps from Photographs,” in ACM Siggraph, 1997.

    Google Scholar 

  65. A. Schmidt and A. Grasnick, “Multi-viewpoint autostereoscopic displays from 4D-vision,” in SPIE Photonics West 2002: Electronic Imaging, 2002.

    Google Scholar 

  66. S. Winkler, Digital Video Quality, John Wiley & Sons, 2005.

    Google Scholar 

  67. J. Konrad, B. Lacotte, and E. Dubois, “Cancellation of image crosstalk in time-sequential displays of stereoscopic video,” IEEE Trans. Image Process., vol. 9, pp. 897–908, May 2000.

    Article  Google Scholar 

  68. M. Zwicker, W. Matusik, F. Durand, H. Pfister, and C. Forlines, “Antialiasing for automultiscopic 3D displays,” in ACM SIGGRAPH 2006, Boston, Massachusetts, 2006.

    Google Scholar 

  69. A. Boev, R. Bregovic, and A. Gotchev, “Methodology for design of anti-aliasing filters for autostereoscopic displays,” Special issue on Advanced Techniques on Multirate Signal Processing for Digital Information Processing, Journal of IET Signal Processing, vol. 5, no. 3, pp. 333–343, June 2010.

    Google Scholar 

  70. A. Boev, R. Bregovic, A. Gotchev, and K. Egiazarian, “Anti-aliasing filtering of 2D images for multi-view auto-stereoscopic displays,” in The 2009 International Workshop on Local and Non-Local Approximation in Image Processing, LNLA 2009, Helsinki, Finland, 2009.

    Google Scholar 

  71. A. Boev, R. Bregovic, and A. Gotchev, “Design of tuneable anti-aliasing filters for multiview displays,” in Stereoscopic Displays and Applications XXII, Proc. SPIE 7863, 2011.

    Google Scholar 

  72. R. Brar, P. Surman, I. Sexton, R. Bates, W. Lee, K. Hopf, F. Neumann, S. Day, and E. Willman, “Laser-Based Head-Tracked 3D Display Research,” Display Technology, Journal of, vol. 6, no. 10, pp. 531–543, 2010.

    Article  Google Scholar 

  73. K. Hopf, F. Neumann, and D. Przewozny, “Multi-user eye tracking suitable for 3D display applications,” in 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON), 2011, 2011.

    Google Scholar 

  74. A. Boev, M. Goergiev, A. Gotchev, N. Daskalov, and K. Egiazarian, “Optimized visualization of stereo images on an OMAP platform with integrated parallax barrier auto-stereoscopic display,” in 17th European Signal Conference, EUSIPCO 2009, Glasgow, Scotland, 2009.

    Google Scholar 

  75. V. Uzunov, A. Gotchev, K. Egiazarian, and J. Astola, “Face Detection by Optimal Atomic Decomposition,” in SPIE Optics and Photonics 2005: Algorithms, Architectures, and Devices and Mathematical Methods, Mathematical Methods in Pattern and Image Analysis, San Diego, California, USA, 2005.

    Google Scholar 

  76. N. G. Kingsbury, “Complex wavelets for shift invariant analysis and filtering of signals,” Journal of Applied and Computational Harmonic Analysis, vol. 10, no. 3, pp. 234–253, May 2001.

    Article  MathSciNet  MATH  Google Scholar 

  77. H. Essaky Sankaran, A. Gotchev, K. Egiazarian, and J. Astola, “Complex wavelets versus Gabor wavelets for facial feature extraction: a comparative study,” in Proc. SPIE Image processing : algorithms and systems IV, Vol. 5672, San Jose, CA, 2005.

    Google Scholar 

  78. A. Boev, M. Georgiev, A. Gotchev, and K. Egiazarian, “Optimized single-viewer mode of multiview autostereoscopic display,” in Proc. of 16th European Signal Conference EUSIPCO 2008, Lausanne, Switzerland, 2008.

    Google Scholar 

  79. S. K. Mitra, Digital signal processing: A computer based approach, 3 ed., New York: McGraw-Hill, 2005.

    Google Scholar 

  80. M. W. Halle, “Holographic stereograms as discrete imaging systems,” in Practical Holography VIII, San Jose, CA.

    Google Scholar 

  81. V. Podlozhnyuk, “Image Convolution with CUDA, white paper,” Nvidia Corp, June 2007. [Online]. Available: http://developer.download.nvidia.com. [Accessed June 2012].

  82. A. Karaoglu, B. H. Lee, W.-S. Cheong, A. Boev, and A. Gotchev, “Fast repurposing of high-resolution stereo video content for mobile use,” in Real-Time Image and Video Processing 2012, Brussels, Belgium, 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atanas Boev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Boev, A., Bregovic, R., Gotchev, A. (2013). Signal Processing for Stereoscopic and Multi-View 3D Displays. In: Bhattacharyya, S., Deprettere, E., Leupers, R., Takala, J. (eds) Handbook of Signal Processing Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6859-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6859-2_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6858-5

  • Online ISBN: 978-1-4614-6859-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics