Skip to main content

Image Analysis Techniques for the Quantification of Brain Tumors on MR Images

  • Chapter
  • First Online:
Computational Intelligence in Biomedical Imaging

Abstract

Advances in neuro-imaging methods over the last few decades have enabled collection of detailed anatomical and functional information about the brain. Although functional imaging provides rich information for diagnosis and treatment planning, practical considerations such as cost and availability currently limit its clinical utility. As a result, structural imaging methods that provide detailed information about the anatomical structures of the brain are routinely used to manage brain tumors in the clinical setting. Typically, radiological images are visually inspected and interpreted by trained health professionals to detect gross anatomical abnormalities, which are associated with various types of brain tumors. This approach entails generally qualitative interpretations that do not fully realize the potential of modern imaging technologies. Furthermore, several types of brain tumors manifest with gross anatomical changes that are visually similar, which limits the use of MRI in differentiating between them. Computer-aided image analysis enables a quantitative description of brain anatomy and detection of subtle, but important, anatomical changes that may be difficult to detect by visual inspection. Therefore, it’s imperative to develop sophisticated image analysis tools that can handle the highly complex and varied organization of the brain across individuals. Such tools will form the foundation for decision support systems (DSSs) to aid health professionals in more precise and personalized management of brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berner ES (2009) Clinical decision support systems: state of the art. Agency for Healthcare Research and Quality (AHRQ), Rockville (publication no. 09-0069-EF)

    Google Scholar 

  2. Noble M, Bruening W, Uhl S, Schoelles K (2009) Computer-aided detection mammography for breast cancer screening: systematic review and meta-analysis. Arch Gynecol Obstet 279(6):881–890

    Article  Google Scholar 

  3. Chan H-P, Hadjiiski L, Zhou C, Sahiner B (2008) Computer-aided diagnosis of lung cancer and pulmonary embolism in computed tomography—a review. Acad Radiol 15(5):535–555

    Article  Google Scholar 

  4. Weisenfeld NL, Warfteld SK (2004) Normalization of joint image-intensity statistics in MRI using the Kullback–Leibler divergence. Paper presented at IEEE international symposium on biomedical imaging: nano to macro, 15–18 April 2004, pp 101–104

    Google Scholar 

  5. Hellier P (2003) Consistent intensity correction of MR images. In: Proceedings of the international conference on image processing (ICIP), vol 1, Rennes, 14–17 September 2003, pp 1–1109

    Google Scholar 

  6. Jager F, Deuerling-Zheng Y, Frericks B, Wacker F, Hornegger J (2006) A new method for MRI intensity standardization with application to lesion detection in the brain. In: Kobbelt L et al (eds) Vision modeling and visualization 2006 proceedings. IOS Press, pp 269–276

    Google Scholar 

  7. Bergeest J-P, Jäger F, Tolxdorff T et al (2008) A comparison of five methods for signal intensity standardization in MRI, bildverarbeitung für die medizin 2008. Springer, Berlin, pp 36–40

    Book  Google Scholar 

  8. Nyul LG, Udupa JK, Xuan Z (2000) New variants of a method of MRI scale standardization. IEEE Trans Med Imaging 19(2):143–150

    Article  Google Scholar 

  9. Nyúl LG, Udupa JK (1999) On standardizing the MR image intensity scale. Magn Reson Med 42(6):1072–1081

    Article  Google Scholar 

  10. Gasser T, Sroka L, Jennen-Steinmetz C (1986) Residual variance and residual pattern in nonlinear regression. Biometrika 73(3):625–633

    Article  MathSciNet  MATH  Google Scholar 

  11. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839–885

    Article  Google Scholar 

  12. Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38:95–113

    Article  Google Scholar 

  13. Klein A, Andersson J, Ardekani BA et al (2009) Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 46(3):786–802

    Article  Google Scholar 

  14. Ripollés P, Marco-Pallarés J, de Diego-Balaguer R et al (2012) Analysis of automated methods for spatial normalization of lesioned brains. Neuroimage 60(2):1296–1306

    Article  Google Scholar 

  15. Ardekani BA, Guckemus S, Bachman A, Hoptman MJ, Wojtaszek M, Nierenberg J (2005) Quantitative comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans. J Neurosci Methods 142(1):67–76

    Article  Google Scholar 

  16. Madabhushi A, Udupa JK (2005) Interplay between intensity standardization and inhomogeneity correction in MR image processing. IEEE Trans Med Imaging 24(5):561–576

    Article  Google Scholar 

  17. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639

    Article  Google Scholar 

  18. Buades A, Coll B, Morel JM (2005) A non-local algorithm for image denoising. In: IEEE Computer Society conference on computer vision and pattern recognition (CVPR), vol 2, 20–25 June 2005, pp 60–65

    Google Scholar 

  19. Wiest-Daessle N, Prima S, Coup P, Morrissey SP, Barillot C (2008) Rician noise removal by non-local means filtering for low signal-to-noise ratio MRI: applications to DT-MRI. In: Proceedings of the 11th international conference on medical image computing and computer-assisted intervention, part II, Springer, New York, pp 171–179

    Google Scholar 

  20. Manjón JV, Carbonell-Caballero J, Lull JJ, García-Martí G, Martí-Bonmatí L, Robles M (2008) MRI denoising using non-local means. Med Image Anal 12(4):514–523

    Article  Google Scholar 

  21. Gal Y, Mehnert AJH, Bradley AP, McMahon K, Kennedy D, Crozier S (2010) Denoising of dynamic contrast-enhanced MR images using dynamic nonlocal means. IEEE Trans Med Imaging 29(2):302–310

    Article  Google Scholar 

  22. Anand CS, Sahambi J (2010) Wavelet domain non-linear filtering for MRI denoising. Magn Reson Imaging 28:842–861

    Article  Google Scholar 

  23. Simmons A TP, Barker GJ, Arridge SR (1994) Sources of intensity nonuniformity in spin echo images at 1.5 T. Magn Reson Med 32(1):121–128 (Wiley Subscription Services, Inc.)

    Google Scholar 

  24. Johnston B, Atkins MS, Mackiewich B, Anderson M (1996) Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI. IEEE Trans Med Imaging 15(2):154–169

    Article  Google Scholar 

  25. Axel L, Costantini J, Listerud J (1987) Intensity correction in surface coil MR imaging. Amer J Roentgenol 148:418–420

    Article  Google Scholar 

  26. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1):87–97

    Article  Google Scholar 

  27. Likar B, Viergever MA, Pernuˇs F (2001) Retrospective correction of MR intensity inhomogeneity by information minimization. IEEE Trans Med Imaging 20(12):1398–1410

    Article  Google Scholar 

  28. Mangin J-F (2000) Entropy minimization for automatic correction of intensity nonuniformity. Presented at the IEEE workshop on mathematical methods in biomedical image analysis, Hilton Head Island, pp 162–169

    Google Scholar 

  29. Bansal R, Staib LH, Peterson BS (2004) Correcting nonuniformities in MRI intensities using entropy minimization based on an elastic model. In: Medical image computing and computer-assisted intervention (MICCAI 2004). Springer, Berlin, pp 78–86

    Google Scholar 

  30. Likar B, Viergever M A, Pernus F (2000) Retrospective correction of MR intensity inhomogeneity by information minimization. In: Medical image computing and computer-assisted intervention (MICCAI 2000). Springer, Berlin, pp 375–384

    Google Scholar 

  31. Dawant BM, Zijdenbos AP, Margolin RA (1993) Correction of intensity variations in MR images for computer-aided tissues classification. IEEE Trans Med Imaging 12(4):770–781

    Article  Google Scholar 

  32. Van Leemput K, Maes F, Vandermeulen D, Suetens P (1999) Automated model-based tissue classification of MR images of the brain. IEEE Trans Med Imaging 18(10):897–908

    Article  Google Scholar 

  33. Marroquin J, Vemuri B, Botello S, Calderon E, Fernandez-Bouzas A (2002) An accurate and efficient Bayesian method for automatic segmentation of brain MRI. IEEE Trans Med Imaging 21(8):934–945

    Article  Google Scholar 

  34. Bach Cuadra M, Cammoun L, Butz T, Cuisenaire O, Thiran J (2005) Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images. IEEE Trans Med Imaging 24(12):1548–1565

    Article  Google Scholar 

  35. Ferreira da Silva AR (2007) A dirichlet process mixture model for brain MRI tissue classification. Med Image Anal 11(2):169–182

    Article  Google Scholar 

  36. Greenspan H, Ruf A, Goldberger J (2006) Constrained Gaussian mixture model framework for automatic segmentation of MR brain images. IEEE Trans Med Imaging 25(9):1233–1245

    Article  Google Scholar 

  37. Likar B, Derganc J, Pernuˇs F (2002) Segmentation-based retrospective correction of intensity non-uniformity in multi-spectral MR images. In: Proceedings of SPIE medical imaging, image process, San Diego, vol 4684, pp 1531–1540

    Google Scholar 

  38. Derganc J, Likar B, Pernuˇs F (2002) Nonparametric segmentation of multispectral MR images incorporating spatial and intensity information. In: Proceedings of SPIE medical imaging, image process, San Diego, vol 4684, pp 391–400

    Google Scholar 

  39. Hall LO, Bensaid AM, Clarke LP, Velthuizen RP, Silbiger MS, Bezdek J (1992) A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain. IEEE Trans Neural Netw 3:672–682

    Article  Google Scholar 

  40. Zhang DQ, Chen SC (2004) A novel kernelized fuzzy C-means algorithm with application in medical image segmentation. Artif Intell Med 32(1):37–50

    Article  Google Scholar 

  41. Acton ST, Mukherjee DP (2000) Scale space classification using area morphology. IEEE Trans Image Process 9(4):623–635

    Article  Google Scholar 

  42. Siyal M, Yu L (2005) An intelligent modified fuzzy C-means based algorithm for bias estimation and segmentation of brain MRI. Pattern Recogn Lett 26(13):2052–2062

    Article  Google Scholar 

  43. Horváth J (2006) Image segmentation using fuzzy c-means. In: Proceedings of SAMI, pp 144–151

    Google Scholar 

  44. Diplaros A, Vlassis N, Gevers T (2007) A spatially constrained generative model and an EM algorithm for image segmentation. IEEE Trans Neural Netw 18(3):798–808

    Article  Google Scholar 

  45. Wang J (2007) Discriminative Gaussian mixtures for interactive image segmentation. In: IEEE international conference on acoustics, speech and signal processing, vol 1, pp 1–601

    Google Scholar 

  46. Sethian JA (1996) A fast marching level set method for monotonically advancing fronts. Proc Natl Acad Sci 93(4):1591–1595

    Article  MathSciNet  MATH  Google Scholar 

  47. Li SZ (1994) Markov random field models in computer vision. Lect Notes Comput Sci 801:361–370

    Article  Google Scholar 

  48. Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm. IEEE Trans Med Imaging 20(1):45–57

    Article  Google Scholar 

  49. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  MATH  Google Scholar 

  50. Osher S, Sethian JA (1988) Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  MATH  Google Scholar 

  51. Verma N, Muralidhar GS, Bovik AC, Cowperthwaite MC, Markey MK (2011), Model-driven, probabilistic level set based segmentation of magnetic resonance images of the brain. In: Annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp 2821–2824

    Google Scholar 

  52. Zacharaki E, Kanas V, Davatzikos C (2011) Investigating machine learning techniques for MRI-based classification of brain neoplasms. Int J Comput Assist Radiol Surg 6(6):821–828

    Article  Google Scholar 

  53. Zacharaki EI, Wang S, Chawla S et al (2009) Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med 62(6):1609–1618

    Article  Google Scholar 

  54. Ming-Kuei H (1962) Visual pattern recognition by moment invariants. IEEE Trans Inf Theory 8(2):179–187

    Article  MATH  Google Scholar 

  55. Sadjadi FA, Hall EL (1980) Three-dimensional moment invariants. IEEE Trans on Pattern Anal Mach Intell 2(2):127–136

    Article  MATH  Google Scholar 

  56. Ng B, Abugharbieh R, Huang X, McKeown MJ (2006) Characterizing fMRI activations within regions of interest (ROIs) using 3D moment invariants. In: Conference on computer vision and pattern recognition workshop (CVPRW’06), June 2006, pp 63–63

    Google Scholar 

  57. Reiss TH (1992) Features invariant to linear transformations in 2D and 3D. In: Proceedings of 11th international conference on pattern recognition (ICPR’92), IEEE Computer Society Press, Hague, vol III, pp 493–496

    Google Scholar 

  58. Shen L, Rangayyan RM, Desautels JEL (1994) Application of shape analysis to mammographic calcifications. IEEE Trans Med Imaging 13(2):263–274

    Article  Google Scholar 

  59. Rangayyan RM, El-Faramawy NM, Desautels JEL, Alim OA (1997) Measures of acutance and shape for classification of breast tumors. IEEE Trans Med Imaging 16(6):799–810

    Article  Google Scholar 

  60. Barnsley M (1988) Fractals everywhere: the first course in deterministic fractal geometry. Academic

    Google Scholar 

  61. Clarke KC (1986) Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method. Computers &Amp; Geosciences 12(5):713–722

    Article  Google Scholar 

  62. Mandelbrot BB, Ness JWV (1968) Fractional brownian motions, fractional noises and applications. SIAM Rev 10(4):422–437

    Article  MathSciNet  MATH  Google Scholar 

  63. Rossmanith C, Handels H, Pöppl SJ, Rinast E, Weiss HD (1996) Characterisation and classification of brain tumours in three-dimensional MR image sequences. In: Visualization in biomedical computing. Springer, Berlin, pp 429–438

    Google Scholar 

  64. Duda RO, Hart PE, Stork DG (2001) Pattern classification. Wiley, New York (Section, 10, l)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nishant Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Verma, N., Cowperthwaite, M.C., Burnett, M.G., Markey, M.K. (2014). Image Analysis Techniques for the Quantification of Brain Tumors on MR Images. In: Suzuki, K. (eds) Computational Intelligence in Biomedical Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7245-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7245-2_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7244-5

  • Online ISBN: 978-1-4614-7245-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics