Skip to main content

The Intertropical Convergence Zone

  • Chapter
  • First Online:
Tropical Meteorology

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

The Intertropical Convergence Zone, or ITCZ, is a belt of wind convergence and associated convection encircling the globe in the near-equatorial region. In a zonally averaged view, it is located at the equatorward edge – the rising branch – of the Hadley cell. The ITCZ is characterized by the low-level wind convergence, low sea level pressure, intense convection and associated cloudiness. The zonally averaged ITCZ is not stationary, but slowly migrates from south of the equator during the northern hemisphere winter to north of the equator during the northern hemisphere summer, following the Sun.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Chao, W.C., Chen, B.: Multiple quasi-equilibria of the ITCZ and the origin of monsoon onset. Part II. Rotational ITCZ attractors. J. Atmos. Sci. 58, 2820–2831 (2001)

    Article  Google Scholar 

  • Chao, W., Chen, B.: Single and double ITCZ in an acqua planet model with constant sea surface temperature and solar angle. Clim. Dynam. 22, 447–459 (2004). doi:10.1007/s00382-003-0387-4

    Article  Google Scholar 

  • Charney, J.G.: Tropical cyclogenesis and the formation of the ITCZ. In: Reid, W.H. (ed.) Mathematical problems of geophysical fluid dynamics. Lectures in applied mathematics. Am. Math. Soc. 13, 355–368 (1971)

    Google Scholar 

  • Clement, A.C., Seager, R., Murtugudde, R.: Why are there tropical warm pools? J. Climate 18, 5294–5311 (2005)

    Article  Google Scholar 

  • Hartmann, D.L., Michelsen, M.: Large-scale effects on the regulation of tropical sea surface temperature. J. Climate 6, 2049–2062 (1993)

    Article  Google Scholar 

  • Kirtman, B.P., Schneider, E.: A spontaneously generated tropical atmospheric general circulation. J. Atmos. Sci. 57, 2080–2093 (2000)

    Article  Google Scholar 

  • Lau, K.M., Suie, C.H., Chou, M.D., Tao, W.K.: An inquiry into the Cirrus cloud thermostat effect on tropical sea surface temperature. Geophys. Res. Lett. 21, 1157–1160 (1994)

    Article  Google Scholar 

  • Liebmann, B., Smith, C.A.: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc. 77, 1275–1277 (1996)

    Google Scholar 

  • Lindzen, D., Nigam, S.: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci. 44, 2418–2436 (1987)

    Article  Google Scholar 

  • Moorthi, S., Suarez, M.J.: Relaxed Arakawa-Schubert: a parameterization of moist convection for general circulation models. Mon. Weather Rev. 120, 978–1002 (1992)

    Article  Google Scholar 

  • Philander, S.G.H., Gu, D., Halpern, D., Lambert, G., Lau, N.–.C., Li, T., Pacanowski, R.C.: Why the ITCZ is mostly north of the equator. J. Climate 9, 2958–2972 (1996)

    Article  Google Scholar 

  • Pike, A.C.: The inter-tropical convergence zone studied with an interactive atmosphere and ocean model. Mon. Weather Rev. 99, 469–477 (1971)

    Article  Google Scholar 

  • Ramanathan, V., Collins, W.: Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature 351, 27–32 (1991)

    Article  Google Scholar 

  • Sobel, A.H., Held, I.M., Bretherton, C.S.: The ENSO signal in tropical tropospheric temperature. J. Climate 15, 2702–2706 (2002)

    Article  Google Scholar 

  • Sumi, A.: Pattern formation of convective activity over the aqua planet with globally uniform sea surface temperature. J. Meteorol. Soc. Jpn. 70, 855–876 (1992)

    Google Scholar 

  • Tackacs, L.L., Molod, A., Wang, T.: Documentations of the Goddard earth observing system (GEOS) general circulation model-Version 1. NASA Technical Memovandum 104606, vol. 1, Goddard Space Flight Center, Greenbelt, p. 97 (1994)

    Google Scholar 

  • Waliser, D.: Some considerations on the thermostat hypothesis. Bull. Am. Meteor. Soc. 77, 357–360 (1996)

    Google Scholar 

  • Wallace, J.M.: Effect of deep convection on the regulation of tropical sea surface temperature. Nature 357, 230–231 (1992)

    Article  Google Scholar 

  • Xie, P., Arkin, P.A.: Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions. J. Climate 9, 840–858 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Krishnamurti, T.N., Stefanova, L., Misra, V. (2013). The Intertropical Convergence Zone. In: Tropical Meteorology. Springer Atmospheric Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7409-8_3

Download citation

Publish with us

Policies and ethics