Skip to main content

Quadratic Forms and Automorphic Forms

  • Chapter
  • First Online:
Quadratic and Higher Degree Forms

Part of the book series: Developments in Mathematics ((DEVM,volume 31))

Abstract

These notes give a friendly four-part introduction to various aspects of the arithmetic and analytic theories of quadratic forms, aimed at a graduate-level audience. The main themes discussed are: geometry and local-global methods, theta functions and Siegel’s theorem, Clifford algebras and spin groups, and adelic theta liftings via the Weil representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We could also have defined an inner product using the Hessian bilinear form, but this choice is less standard in the literature and the difference will not matter for our purposes in this section.

  2. 2.

    For any subset SV the set H(S, L) is an R-module, and so it is natural to consider maximal subsets of V where H(S, L) is a fixed R-module. From the bilinearity of H, we see that these maximal sets S are also R-modules.

  3. 3.

    To justify this, notice that both the trivial and theta multiplier systems have value 1 on this element.

References

  1. Correspondence [signed “R. Lipschitz”]. Ann. of Math. (2), 69:247–251, 1959. Attributed to A. Weil.

    Google Scholar 

  2. Anatolii Nikolaevich Andrianov and Vladimir Georgievich Zhuravlëv. Modular forms and Hecke operators, volume 145 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1995. Translated from the 1990 Russian original by Neal Koblitz.

    Google Scholar 

  3. Anthony Bak. K-theory of forms, volume 98 of Annals of Mathematics Studies. Princeton University Press, Princeton, N.J., 1981.

    Google Scholar 

  4. James William Benham and John Sollion Hsia Spinor equivalence of quadratic forms. J. Number Theory, 17(3):337–342, 1983.

    Google Scholar 

  5. Manjul Bhargava. 2009 Arizona Winter School lecture notes on “The parametrization of rings of small rank”.

    Google Scholar 

  6. Daniel Bump. Automorphic forms and representations, volume 55 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  7. John William Scott Cassels. Rational quadratic forms, volume 13 of London Mathematical Society Monographs. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1978.

    Google Scholar 

  8. Fred Diamond and Jerry Shurman. A first course in modular forms, volume 228 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2005.

    Google Scholar 

  9. William Duke and Rainer Schulze-Pillot. Representation of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids. Invent. Math., 99(1):49–57, 1990.

    Google Scholar 

  10. William Duke. Some old problems and new results about quadratic forms. Notices Amer. Math. Soc., 44(2):190–196, 1997.

    Google Scholar 

  11. Martin Eichler. Die Ähnlichkeitsklassen indefiniter Gitter. Math. Z., 55:216–252, 1952.

    Google Scholar 

  12. Martin Eichler. Introduction to the theory of algebraic numbers and functions. Translated from the German by George Striker. Pure and Applied Mathematics, Vol. 23. Academic Press, New York, 1966.

    Google Scholar 

  13. Richard Elman, Nikita Karpenko, and Alexander Merkurjev. The algebraic and geometric theory of quadratic forms, volume 56 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2008.

    Google Scholar 

  14. Howard Eves. An introduction to the history of mathematics. Holt, Rinehart and Winston, fourth edition, 1976.

    Google Scholar 

  15. Stephen Gelbart. Automorphic forms and representations of adele groups. Department of Mathematics, University of Chicago, Chicago, Ill., 1975. Lecture Notes in Representation Theory.

    Google Scholar 

  16. Stephen S. Gelbart. Automorphic forms on adèle groups. Princeton University Press, Princeton, N.J., 1975. Annals of Mathematics Studies, No. 83.

    Google Scholar 

  17. Stephen S. Gelbart. Weil’s representation and the spectrum of the metaplectic group. Lecture Notes in Mathematics, Vol. 530. Springer-Verlag, Berlin, 1976.

    Google Scholar 

  18. Stephen Gelbart. Examples of dual reductive pairs. In Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, pages 287–296. Amer. Math. Soc., Providence, R.I., 1979.

    Google Scholar 

  19. Larry J. Gerstein. Basic quadratic forms, volume 90 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2008.

    Google Scholar 

  20. Philippe Gille and Tamás Szamuely. Central simple algebras and Galois cohomology, volume 101 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2006.

    Google Scholar 

  21. Jonathan Hanke. Some recent results about (ternary) quadratic forms. In Number theory, volume 36 of CRM Proc. Lecture Notes, pages 147–164. Amer. Math. Soc., Providence, RI, 2004.

    Google Scholar 

  22. Haruzo Hida. Modular forms and Galois cohomology, volume 69 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2000.

    Google Scholar 

  23. Henryk Iwaniec and Emmanuel Kowalski. Analytic number theory, volume 53 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2004.

    Google Scholar 

  24. Henryk Iwaniec. Spectral theory of automorphic functions and recent developments in analytic number theory. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), pages 444–456, Providence, RI, 1987. Amer. Math. Soc.

    Google Scholar 

  25. Henryk Iwaniec. Topics in classical automorphic forms, volume 17 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1997.

    Google Scholar 

  26. Carl Gustav Jacob Jacobi. Fundamenta nova theoriae functionum ellipticarum. Königsberg, 1829. In Latin. Reprinted with corrections in: Carl Gustav Jacob Jacobi. Gesammelte Werke. 8 volumes. Berlin, 1881–1891. 1. 49–239. reprinted new york (chelsea, 1969) and available from the american mathematical society. edition.

    Google Scholar 

  27. Nathan Jacobson. Basic algebra. II. W. H. Freeman and Company, New York, second edition, 1989.

    Google Scholar 

  28. Irving Kaplansky. Linear algebra and geometry. Dover Publications Inc., Mineola, NY, revised edition, 2003. A second course.

    Google Scholar 

  29. Martin Kneser. Strong approximation. In Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), pages 187–196. Amer. Math. Soc., Providence, R.I., 1966.

    Google Scholar 

  30. Marvin I. Knopp. Modular functions in analytic number theory. Markham Publishing Co., Chicago, Ill., 1970.

    Google Scholar 

  31. Max-Albert Knus. Quadratic and Hermitian forms over rings, volume 294 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1991. With a foreword by I. Bertuccioni.

    Google Scholar 

  32. Neal Koblitz. Introduction to elliptic curves and modular forms, volume 97 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1993.

    Google Scholar 

  33. Stephen S. Kudla and Stephen Rallis. On the Weil-Siegel formula. J. Reine Angew. Math., 387:1–68, 1988.

    Google Scholar 

  34. Stephen S. Kudla and Stephen Rallis. On the Weil-Siegel formula. II. The isotropic convergent case. J. Reine Angew. Math., 391:65–84, 1988.

    Google Scholar 

  35. Stephen S. Kudla. Some extensions of the Siegel-Weil formula. In Eisenstein series and applications, volume 258 of Progr. Math., pages 205–237. Birkhäuser Boston, Boston, MA, 2008.

    Google Scholar 

  36. Tsit Yuen Lam. Introduction to quadratic forms over fields, volume 67 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2005.

    Google Scholar 

  37. Serge Lang. Algebraic number theory, volume 110 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1994.

    Google Scholar 

  38. Serge Lang. Algebra. Addison-Wesley Publishing Company, Inc., Reading, MA, third edition, 1995.

    Google Scholar 

  39. Gérard Lion and Michèle Vergne. The Weil representation, Maslov index and theta series, volume 6 of Progress in Mathematics. Birkhäuser Boston, Mass., 1980.

    Google Scholar 

  40. Toshitsune Miyake. Modular forms. Springer Monographs in Mathematics. Springer-Verlag, Berlin, english edition, 2006. Translated from the 1976 Japanese original by Yoshitaka Maeda.

    Google Scholar 

  41. Carlos J. Moreno and Samuel S. Wagstaff, Jr. Sums of squares of integers. Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton, FL, 2006.

    Google Scholar 

  42. Jürgen Neukirch. Algebraic number theory, volume 322 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder.

    Google Scholar 

  43. Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg. Cohomology of number fields, volume 323 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 2008.

    Google Scholar 

  44. Onorato Timothy O’Meara. Introduction to quadratic forms. Springer-Verlag, New York, 1971. Second printing, corrected, Die Grundlehren der mathematischen Wissenschaften, Band 117.

    Google Scholar 

  45. Takashi Ono. On Tamagawa numbers. In Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), pages 122–132. Amer. Math. Soc., Providence, R.I., 1966.

    Google Scholar 

  46. Raman Parimala. 2009 Arizona Winter School lecture notes on “Some aspects of the algebraic theory of quadratic forms”.

    Google Scholar 

  47. Horst Pfeuffer. Einklassige Geschlechter totalpositiver quadratischer Formen in totalreellen algebraischen Zahlkörpern. J. Number Theory, 3:371–411, 1971.

    Google Scholar 

  48. Horst Pfeuffer. Darstellungsmasse binärer quadratischer Formen über totalreellen algebraischen Zahlkörpern. Acta Arith., 34(2):103–111, 1977/78.

    Google Scholar 

  49. Richard S. Pierce. Associative algebras, volume 88 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1982. Studies in the History of Modern Science, 9.

    Google Scholar 

  50. Vladimir Platonov and Andrei Rapinchuk. Algebraic groups and number theory, volume 139 of Pure and Applied Mathematics. Academic Press Inc., Boston, MA, 1994. Translated from the 1991 Russian original by Rachel Rowen.

    Google Scholar 

  51. Dipendra Prasad. Weil representation, Howe duality, and the theta correspondence. In Theta functions: from the classical to the modern, volume 1 of CRM Proc. Lecture Notes, pages 105–127. Amer. Math. Soc., Providence, RI, 1993.

    Google Scholar 

  52. Dipendra Prasad. A brief survey on the theta correspondence. In Number theory (Tiruchirapalli, 1996), volume 210 of Contemp. Math., pages 171–193. Amer. Math. Soc., Providence, RI, 1998.

    Google Scholar 

  53. Ilya I. Piatetski-Shapiro. Classical and adelic automorphic forms. An introduction. In Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, pages 185–188. Amer. Math. Soc., Providence, R.I., 1979.

    Google Scholar 

  54. Chih-han Sah. Quadratic forms over fields of characteristic 2. Amer. J. Math., 82:812–830, 1960.

    Google Scholar 

  55. David J. Saltman. Lectures on division algebras, volume 94 of CBMS Regional Conference Series in Mathematics. Published by American Mathematical Society, Providence, RI, 1999.

    Google Scholar 

  56. Jean-Pierre Serre. Modular forms of weight one and Galois representations. In Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), pages 193–268. Academic Press, London, 1977.

    Google Scholar 

  57. Rudolf Scharlau and Boris Hemkemeier. Classification of integral lattices with large class number. Math. Comp., 67(222):737–749, 1998.

    Google Scholar 

  58. Goro Shimura. On modular forms of half integral weight. Ann. of Math. (2), 97:440–481, 1973.

    Google Scholar 

  59. Goro Shimura. Introduction to the arithmetic theory of automorphic functions, volume 11 of Publications of the Mathematical Society of Japan. Princeton University Press, Princeton, NJ, 1994. Reprint of the 1971 original, Kano Memorial Lectures, 1.

    Google Scholar 

  60. Goro Shimura. Euler products and Eisenstein series, volume 93 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1997.

    Google Scholar 

  61. Goro Shimura. Arithmetic and analytic theories of quadratic forms and Clifford groups, volume 109 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2004.

    Google Scholar 

  62. Goro Shimura. Integer-valued quadratic forms and quadratic Diophantine equations. Doc. Math., 11:333–367 (electronic), 2006.

    Google Scholar 

  63. Goro Shimura. Quadratic Diophantine equations, the class number, and the mass formula. Bull. Amer. Math. Soc. (N.S.), 43(3):285–304 (electronic), 2006.

    Google Scholar 

  64. Goro Shimura. Arithmetic of quadratic forms. Springer Monographs in Mathematics. Springer, New York, 2010.

    Book  MATH  Google Scholar 

  65. Carl Ludwig Siegel. Über die analytische Theorie der quadratischen Formen. Ann. of Math. (2), 36(3):527–606, 1935.

    Google Scholar 

  66. Carl Ludwig Siegel. Über die analytische Theorie der quadratischen Formen. II. Ann. of Math. (2), 37(1):230–263, 1936.

    Google Scholar 

  67. Carl Ludwig Siegel. Über die analytische Theorie der quadratischen Formen. III. Ann. of Math. (2), 38(1):212–291, 1937.

    Google Scholar 

  68. Carl Ludwig Siegel. Lectures on the analytical theory of quadratic forms. Notes by Morgan Ward. Third revised edition. Buchhandlung Robert Peppmüller, Göttingen, 1963.

    Google Scholar 

  69. Rainer Schulze-Pillot. Darstellungsmaße von Spinorgeschlechtern ternärer quadratischer Formen. J. Reine Angew. Math., 352:114–132, 1984.

    Google Scholar 

  70. Rainer Schulze-Pillot. Exceptional integers for genera of integral ternary positive definite quadratic forms. Duke Math. J., 102(2):351–357, 2000.

    Google Scholar 

  71. Rainer Schulze-Pillot. Representation by integral quadratic forms—a survey. In Algebraic and arithmetic theory of quadratic forms, volume 344 of Contemp. Math., pages 303–321. Amer. Math. Soc., Providence, RI, 2004.

    Google Scholar 

  72. Gilbert Strang. Introduction to Linear Algebra. Wellesley Cambridge Press, New York, fourth edition, 2009.

    Google Scholar 

  73. W. Tartakowsky. Die gesamtheit der zahlen, die durch eine positive quadratische form \(f(x_{1},x_{2},\ldots,x_{s})\) (s ≥ 4) darstellbar sind. i, ii. Bull. Ac. Sc. Leningrad, 2(7):111–122; 165–196, 1929.

    Google Scholar 

  74. Gonzalo Tornaria. The Brandt module of ternary quadratic lattices. PhD thesis, University of Texas, Austin, 2005.

    Google Scholar 

  75. John Voight. Computing with quaternion algebras: Identifying the matrix ring.

    Google Scholar 

  76. Valentin Evgenévich Voskresenskiĭ. Algebraic groups and their birational invariants, volume 179 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1998. Translated from the Russian manuscript by Boris Kunyavski [Boris È. Kunyavskiĭ].

    Google Scholar 

  77. G. L. Watson. One-class genera of positive quadratic forms. J. London Math. Soc., 38:387–392, 1963.

    Article  MathSciNet  MATH  Google Scholar 

  78. G. L. Watson. One-class genera of positive quadratic forms in seven variables. Proc. London Math. Soc. (3), 48(1):175–192, 1984.

    Google Scholar 

  79. André Weil. Basic number theory. Die Grundlehren der mathematischen Wissenschaften, Band 144. Springer-Verlag New York, Inc., New York, 1967.

    Google Scholar 

  80. André Weil. Adeles and algebraic groups, volume 23 of Progress in Mathematics. Birkhäuser Boston, Mass., 1982. With appendices by M. Demazure and Takashi Ono.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Hanke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hanke, J. (2013). Quadratic Forms and Automorphic Forms. In: Alladi, K., Bhargava, M., Savitt, D., Tiep, P. (eds) Quadratic and Higher Degree Forms. Developments in Mathematics, vol 31. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7488-3_5

Download citation

Publish with us

Policies and ethics