Skip to main content

Immunosuppression for the Prevention and Treatment of BOS

  • Chapter
  • First Online:
Bronchiolitis Obliterans Syndrome in Lung Transplantation

Part of the book series: Respiratory Medicine ((RM,volume 8))

  • 937 Accesses

Abstract

Over the past 3 decades, lung transplantation has evolved into a life-saving procedure for patients with end-stage lung disease. During this time, further development of biologic agents and newer immunosuppressive agents has continued to improve outcomes after transplantation. Although there is variability among centers regarding specific immunosuppressive medications, the overall approach to immunosuppressive regimens in lung transplantation is quite uniform and consists of a triple-drug immunosuppressive regimen that includes a calcineurin inhibitor, an antimetabolite, and corticosteroids (CS), with or without a biological agent as induction therapy. However, the discovery and continued development of new immunosuppressive agents that target novel immune pathways provide alternate therapeutic options for lung recipients with progressive decline in pulmonary function. The current goal of immunosuppression is to maintain allograft viability by preventing acute and chronic rejection while decreasing toxicities associated with immunosuppression. This chapter will review the current approach to immunosuppressive medications that are used in the maintenance of allograft stability and the prevention and treatment of bronchiolitis obliterans syndrome (BOS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Christie JD, Edwards LB, Kucheryavaya AY, Benden C, Dobbels F, Kirk R, et al. The Registry of the International Society for Heart and Lung Transplantation: twenty-eighth adult lung and heart-lung transplant report—2011. J Heart Lung Transplant. 2011;30(10):1104–22.

    Article  PubMed  Google Scholar 

  2. Wenger RM. Structures of cyclosporine and its metabolites. Transplant Proc. 1990;22:1104–9.

    PubMed  CAS  Google Scholar 

  3. Kahan BD. Cyclosporine. N Engl J Med. 1989;321:1725–38.

    Article  PubMed  CAS  Google Scholar 

  4. Kovarik JM, Mueller EA, van Bree JB, Tetzloff W, Kutz K. Reduced inter- and intraindividual variability in cyclosporine pharmacokinetics from a microemulsion formulation. J Pharm Sci. 1994;83:444–6.

    Article  PubMed  CAS  Google Scholar 

  5. Keown P, Landsberg D, Halloran P, Shoker A, Rush D, Jeffery J, et al. A randomized prospective multicenter pharmacoepidemiologic study of cyclosporine microemulsion in stable renal graft recipients. Report of the Canadian Neoral Renal Transplantation Study Group. Transplantation. 1996;62:1744–52.

    Article  PubMed  CAS  Google Scholar 

  6. Dunn CJ, Wagstaff AJ, Perry CM, Plosker GL, Goa KL. Cyclosporin: an updated review of the pharmacokinetic properties, clinical efficacy and tolerability of a microemulsion based formulation in organ transplantation. Drugs. 2001;61(13):1957–2016.

    Article  PubMed  CAS  Google Scholar 

  7. Levy G, Thervet E, Lake J, Uchida K. Consensus on Neoral C(2): Expert Review in Transplantation (CONCERT) Group. Patient management by neoral C(2) monitoring: an international consensus statement. Transplantation. 2002;73 Suppl 9:S12–8.

    Article  PubMed  Google Scholar 

  8. Glanville AR, Aboyoun CL, Morton JM, Plit M, Malouf MA. Cyclosporine C2 target levels and acute cellular rejection after lung transplantation. J Heart Lung Transplant. 2006;25(8):928–34.

    Article  PubMed  Google Scholar 

  9. Iacono AT, Keenan RJ, Duncan SR, Smaldone GC, Dauber JH, Paradis IL, et al. Aerosolized cyclosporine in lung recipients with refractory chronic rejection. Am J Respir Crit Care Med. 1996;153(4 Pt 1):1451–5.

    Article  PubMed  CAS  Google Scholar 

  10. Iacono AT, Johnson BA, Grgurich WF, Youssef JG, Corcoran TE, Seiler DA, et al. Randomized trial of inhaled cyclosporine in lung transplant recipients. N Engl J Med. 2006;354(2):141–50.

    Article  PubMed  Google Scholar 

  11. Johnson BA, Zamore MR, Budev MM, et al. Cyclosporine inhalation solution does not improve bronchiolitis obliterans syndrome-free survival following lung transplant: results from the CYCLIST Trial. J Heart Lung Transplant. 2012;31:S66.

    Article  Google Scholar 

  12. Kino T, Hatanaka H, Miyata S, Inamura N, Nishiyama M, Yajima T, et al. FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. J Antibiot. 1987;40:1256–65.

    Article  PubMed  CAS  Google Scholar 

  13. Briffa N, Morris RE. New immunosuppressive regimens in lung transplantation. Eur Respir J. 1997;10(11):2630–7.

    Article  PubMed  CAS  Google Scholar 

  14. Kahan BD, Keown P, Levy GA, Johnston A. Therapeutic drug monitoring of immuosuppressant drugs in clinical practice. Clin Ther. 2002;24:330–50.

    Article  PubMed  CAS  Google Scholar 

  15. Keenan RJ, Konishi H, Kawai A, Paradis IL, Nunley DR, Iacono AT, et al. Clinical trial of tacrolimus versus cyclosporine in lung transplantation. Ann Thorac Surg. 1995;60:580–5.

    Article  PubMed  CAS  Google Scholar 

  16. Keenan RJ, Dauber JH, Iacono AT, et al. Long-term follow-up clinical trial of tacrolimus versus cyclosporine in lung transplantation. J Heart Lung Transplant. 1998;17:59A.

    Google Scholar 

  17. Zuckermann A, Reichenspurner H, Birsan T, Treede H, Deviatko E, Reichart B, et al. Cyclosporine A versus tacrolimus in combination with mycophenolate mofetil and steroids as primary immunosuppression after lung transplantation: one-year results of a 2-center prospective randomized trial. J Thorac Cardiovasc Surg. 2003;125(4):891–900.

    Article  PubMed  CAS  Google Scholar 

  18. Hachem RR, Yusen RD, Chakinala MM, Meyers BF, Lynch JP, Aloush AA, et al. A randomized controlled trial of tacrolimus versus cyclosporine after lung transplantation. J Heart Lung Transplant. 2007;26(10):1012–8.

    Article  PubMed  Google Scholar 

  19. Treede H, Glanville AR, Klepetko W, Aboyoun C, Vettorazzi E, Lama R, European and Australian Investigators in Lung Transplantation. Tacrolimus and cyclosporine have differential effects on the risk of development of bronchiolitis obliterans syndrome: results of a prospective, randomized international trial in lung transplantation. J Heart Lung Transplant. 2012;31(8):797–804.

    Article  PubMed  Google Scholar 

  20. Maltzman JS, Koretzky GA. Azathioprine: old drug, new actions. J Clin Invest. 2003;111:1122–4.

    PubMed  CAS  Google Scholar 

  21. Holme SA, Duley JA, Sanderson J, Routledge PA, Anstey AV. Erythrocyte thiopurine methyl transferase assessment prior to azathioprine use in the UK. QJM. 2002;95:439–44.

    Article  PubMed  CAS  Google Scholar 

  22. Allison AC, Eugui EM. Mechanisms of action of mycophenolate mofetil in preventing acute and chronic allograft rejection. Transplantation. 2005;80:S181–90.

    Article  PubMed  CAS  Google Scholar 

  23. Kobashigawa JA, Renlund DG, Gerosa G, Almenar L, Eisen HJ, Keogh AM, et al. Similar efficacy and safety of enteric coated mycophenolate sodium compare with mycophenolate mofetil in de novo heart transplant recipients: results of a 12-month, single-blind, randomized, parallel-group multicenter study. J Heart Lung Transplant. 2006;25:935–41.

    Article  PubMed  Google Scholar 

  24. Budde K, Curtis J, Knoll G, Chan L, Neumayer HH, Seifu Y, et al. Enteric-coated mycophenolate sodium can be safely administered in maintenance renal transplant patients: results of a 1 year study. Am J Transplant. 2004;4:237–43.

    Article  PubMed  CAS  Google Scholar 

  25. European Mycophenolate Mofetil Cooperative Study Group. Placebo controlled study of mycophenolate mofetil combined with cyclosporin and steroids for prevention of acute rejection. Lancet. 1995;345:1321–5.

    Google Scholar 

  26. The Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. A blinded, randomized clinical trial of mycophenolate mofetil for the prevention of acute rejection in cadaveric renal transplantation. Transplantation. 1996;61:1029–37.

    Article  Google Scholar 

  27. Sollinger HW for the US Renal Transplant Mycophenolate Mofetil Study Group. Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. Transplantation. 1995;60:225–32.

    Article  Google Scholar 

  28. Ross DJ, Waters PF, Levine M, Kramer M, Ruzevich S, Kass RM. Mycophenolate mofetil versus azathioprine immunosuppressive regimens after lung transplantation: preliminary experience. J Heart Lung Transplant. 1998;17:768–74.

    PubMed  CAS  Google Scholar 

  29. Zuckermann A, Klepetko W, Birsan T, Taghavi S, Artemiou O, Wisser W, et al. Comparison between mycophenolate mofetil and azathioprine based immunosuppressions in clinical lung transplantation. J Heart Lung Transplant. 1999;18:423–40.

    Article  Google Scholar 

  30. O’Hair DP, Cantu E, McGregor C, Jorgensen B, Gerow-Smith R, Galantowicz ME, et al. Preliminary experience with mycophenolate mofetil used after lung transplantation. J Heart Lung Transplant. 1998;17:864–8.

    PubMed  Google Scholar 

  31. Palmer SM, Baz MA, Sanders L, Miralles AP, Lawrence CM, Rea JB, et al. Results of a randomized, prospective, multicenter trial of mycophenolate mofetil versus azathioprine in the prevention of acute lung allograft rejection. Transplantation. 2001;71:1772–6.

    Article  PubMed  CAS  Google Scholar 

  32. McNeil K, Glanville AR, Wahlers T, Knoop C, Speich R, Mamelok RD, et al. Comparison of mycophenolate mofetil and azathioprine for prevention of bronchiolitis obliterans syndrome in de novo lung transplant recipients. Transplantation. 2006;81(7):998–1003.

    Article  PubMed  CAS  Google Scholar 

  33. Schimmer BP, Parker KL. Adrenocorticotrophic hormone; adrenocortical steroids and their synthetic analogs; Inhibitors of the synthesis and actions of adrenocortical hormones. In: Hardman JG, Goodman Gilman A, Limbard LE, editors. Goodman and Gilman’s the pharmacological basis of therapeutics. 9th ed. New York: McGraw Hill; 1996. p. 1459–85.

    Google Scholar 

  34. Calne RY, Collier DS, Lim S, Pollard SG, Samaan A, White DJ, et al. Rapamycin for immunosuppression in organ allografting. Lancet. 1989;2(8656):227.

    Article  PubMed  CAS  Google Scholar 

  35. Morris R, Meiser B. Identification of a new pharmacologic action for an old compound. Med Sci Res. 1989;17:609–10.

    CAS  Google Scholar 

  36. Cao W, Mohacsi P, Shorthouse R. Effects of rapamycin on growth factor-stimulated vascular smooth muscle cell DNA synthesis. Inhibition of basic fibroblast growth factor and platelet-derived growth factor action and antagonism of rapamycin by FK506. Transplantation. 1995;59(3):390–5.

    PubMed  CAS  Google Scholar 

  37. Gregory CR, Huang X, Pratt RE, Dzau VJ, Shorthouse R, Billingham ME, et al. Treatment with rapamycin and mycophenolic acid reduces arterial intimal thickening produced by mechanical injury and allows endothelial replacement. Transplantation. 1995;59(5):655–61.

    Article  PubMed  CAS  Google Scholar 

  38. Lai JH, Tan TH. CD28 signaling causes a sustained down-regulation of I kappa B alpha which can be prevented by the immunosuppressant rapamycin. J Biol Chem. 1994;269(48): 30077–80.

    PubMed  CAS  Google Scholar 

  39. Terada N, Lucas JJ, Szepsi A, Franklin RA, Domenico J, Gelfand EW. Rapamycin blocks cell cycle progression of activated T cells prior to events characteristic of the middle to late G1 phase of the cycle. J Cell Physiol. 1993;154:7–15.

    Article  PubMed  CAS  Google Scholar 

  40. Longoria J, Roberts RF, Marboe CC, Stouch BC, Starnes VA, Barr ML, et al. Sirolimus (rapamycin) potentiates cyclosporine in prevention of acute lung rejection. J Thorac Cardiovasc Surg. 1999;117(4):714–8.

    Article  PubMed  CAS  Google Scholar 

  41. Kovarik JM, Snell GI, Valentine V, Aris R, Chan CK, Schmidli H, et al. Everolimus in pulmonary transplantation: pharmacokinetics and exposure-response relationships. J Heart Lung Transplant. 2006;25(4):440–6.

    Article  PubMed  Google Scholar 

  42. Doyle RL, Hertz MI, Dunitz JM, Loyd JE, Stecenko AA, Wong RL, et al. RAD in stable lung and heart/lung transplant recipients: safety, tolerability, pharmacokinetics and impact of cystic fibrosis. J Heart Lung Transplant. 2001;20:330–9.

    Article  PubMed  CAS  Google Scholar 

  43. King-Biggs MB, Dunitz JM, Park SJ, Kay Savik S, Hertz MI. Airway anastomotic dehiscence associated with use of sirolimus immediately after lung transplantation. Transplantation. 2003;75(9):1437–43.

    Article  PubMed  Google Scholar 

  44. Groetzner J, Kur F, Spelsberg F, Behr J, Frey L, Bittmann I, et al. Airway anastomosis complications in de novo lung transplantation with sirolimus based immunosuppression. J Heart Lung Transplant. 2004;23:632–8.

    Article  PubMed  Google Scholar 

  45. McWilliams TJ, Levvey BJ, Russell PA, Milne DG, Snell GI. Interstitial pneumonitis associated with sirolimus: a dilemma for lung transplantation. J Heart Lung Transplant. 2003;22(2):210–3.

    Article  PubMed  Google Scholar 

  46. Ahya VN, McShane PJ, Baz MA, Valentine VG, Arcasoy SM, Love RB, et al. Increased risk of venous thromboembolism with a sirolimus based immunosuppression regimen in lung transplantation. J Heart Lung Transplant. 2011;30(2):175–81.

    Article  PubMed  Google Scholar 

  47. Champion L, Stern M, Israel-Iet D, Mamzer-Bruneel MF, Peraldi MN, Kreis H, et al. Brief communication: sirolimus associated pneumonitis: 24 cases in renal transplant recipients. Ann Intern Med. 2006;144(7):505–9.

    Article  PubMed  Google Scholar 

  48. Bhorade S, Ahya VN, Baz MA, Valentine VG, Arcasoy SM, Love RB, et al. Comparison of sirolimus to azathioprine in a tacrolimus based regimen in lung transplantation. Am J Respir Crit Care Med. 2011;183(3):379–87.

    Article  PubMed  CAS  Google Scholar 

  49. Snell GI, Valentine VG, Vitulo P, Glanville AR, McGiffin DC, Loyd JE, et al. Everolimus versus azathioprine in maintenance lung transplant recipients: an international, randomized, double-blind clinical trial. Am J Transplant. 2006;6(1):169–77.

    Article  PubMed  CAS  Google Scholar 

  50. Snell GI, Levvey BJ, Chin W, Kotsimbos T, Whitford H, Waters KN, et al. Sirolimus allows renal recovery in lung and heart transplant recipients with chronic renal impairment. J Heart Lung Transplant. 2002;21(5):540–6.

    Article  PubMed  Google Scholar 

  51. Glanville AR, Aboyoun C, Klepetko W, et al. 3-year results of the CeMyLungs study, a 3-year randomised, open label, multi-centre investigator driven study comparing de novo enteric coated mycophenolate sodium with delayed onset everolimus, both arms in combination with cyclosporin (using C2 monitoring) and corticosteroids for the prevention of bronchiolitis obliterans syndrome in heart-lung. Bilateral lung and single lung transplant recipients. J Heart Lung Transplant. 2012;31:S66.

    Article  Google Scholar 

  52. Martin S, Thomas F, Gregor W, et al. Everolimus versus MMF in lung transplant recipients. J Heart Lung Transplant. 2012;31:S67.

    Article  Google Scholar 

  53. Onrust SV, Wiseman LR. Basiliximab. Drugs. 1999;57:207–13.

    Article  PubMed  CAS  Google Scholar 

  54. Wiseman LR, Faulds D. Daclizumab: a review of its use in the prevention of acute rejection in renal transplant recipients. Drugs. 1999;58:1029–42.

    Article  PubMed  CAS  Google Scholar 

  55. Taniguchi Y, Frickhofen N, Raghavachar A, Digel W, Heimpel H. Antilymphocyte immunoglobulins stimulate peripheral blood lymphocytes to proliferate and release lymphokines. Eur J Haematol. 1990;44:244–51.

    Article  PubMed  CAS  Google Scholar 

  56. Carrier M, White M, Perrault LP, Pelletier GB, Pellerin M, Robitaille D, et al. A 10-year experience with intravenous thymoglobulin in induction of immunosuppression following heart transplantation. J Heart Lung Transplant. 1999;18:1218–23.

    Article  PubMed  CAS  Google Scholar 

  57. Brennan DC, Flavin K, Lowell JA, Howard TK, Shenoy S, Burgess S, et al. A randomized, double-blinded comparison of thymoglobulin versus ATGAM for induction immunosuppressive therapy in adult renal transplant recipients. Transplantation. 1999;67:1011–8.

    Article  PubMed  CAS  Google Scholar 

  58. Todd PA, Brogden RN. Muromonab CD3: a review of its pharmacology and therapeutic potential. Drugs. 1989;37:871–99.

    Article  PubMed  CAS  Google Scholar 

  59. Magliocca JF, Knechtle SJ. The evolving role of alemtuzumab (Campath-1H) for immunosuppressive therapy in organ transplantation. Transpl Int. 2006;19(9):705–14.

    Article  PubMed  CAS  Google Scholar 

  60. Weaver TA, Kirk AD. Alemtuzumab. Transplantation. 2007;84:1545–7.

    Article  PubMed  CAS  Google Scholar 

  61. Peleg AY, Husain S, Kwak EJ, Silveira FP, Ndirangu M, Tran J, et al. Opportunistic infections in 547 organ transplant recipients receiving alemtuzumab, a humanized monoclonal CD-52 antibody. Clin Infect Dis. 2007;44(2):204–12.

    Article  PubMed  CAS  Google Scholar 

  62. van Loenhout KC, Groves SC, Galazka M, Sherman B, Britt E, Garcia J, et al. Early outcomes using alemtuzumab induction in lung transplantation. Interact Cardiovasc Thorac Surg. 2010;10(2):190–4.

    Article  PubMed  Google Scholar 

  63. Shyu S, Dew MA, Pilewski JM, DeVito Dabbs AJ, Zaldonis DB, Studer SM, et al. Five year outcomes with alemtuzumab induction after lung transplantation. J Heart Lung Transplant. 2011;30(7):743–54.

    Article  PubMed  Google Scholar 

  64. Garrity Jr ER, Villanueva J, Bhorade S, Husain AN, Vigneswaran WT, et al. Low rate of acute lung allograft rejection after the use of daclizumab, an interleukin 2 receptor antibody. Transplantation. 2001;71(6):773–7.

    Article  PubMed  CAS  Google Scholar 

  65. Palmer SM, Miralles AP, Lawrence CM, Gaynor JW, Davis RD, Tapson VF, et al. Rabbit anti-thymocyte globulin decreases acute rejection after lung transplantation: results of a randomized, prospective study. Chest. 1999;116(1):127–33.

    Article  PubMed  CAS  Google Scholar 

  66. Hartwig MG, Snyder LD, Appel III JZ, Cantu III E, Lin SS, Palmer SM, et al. Rabbit anti-thymocyte globulin induction therapy does not prolong survival after lung transplantation. J Heart Lung Transplant. 2008;27(5):547–53.

    Article  PubMed  Google Scholar 

  67. Hachem RR, Chakinala MM, Yusen RD, Lynch JP, Aloush AA, Patterson GA, et al. A comparison of basiliximab and anti-thymocyte globulin as induction agents after lung transplantation. J Heart Lung Transplant. 2005;24(9):1320–6.

    Article  PubMed  Google Scholar 

  68. Burton CM, Andersen CB, Jensen AS, Iversen M, Milman N, Boesgaard S, et al. The incidence of acute cellular rejection after lung transplantation: a comparative study of anti-thymocyte globulin and daclizumab. J Heart Lung Transplant. 2006;25(6):638–47.

    Article  PubMed  Google Scholar 

  69. Mullen JC, Oreopoulos A, Lien DC, Bentley MJ, Modry DL, Stewart K, et al. A randomized, controlled trial of daclizumab vs. anti-thymocyte globulin induction for lung transplantation. J Heart Lung Transplant. 2007;26(5):504–10.

    Article  PubMed  Google Scholar 

  70. Brock MV, Borja MC, Ferber L, Orens JB, Anzcek RA, Krishnan J, et al. Induction therapy in lung transplantation: a prospective controlled clinical trial comparing OKT3, anti-thymocyte globulin, and daclizumab. J Heart Lung Transplant. 2001;20:1282–90.

    Article  PubMed  CAS  Google Scholar 

  71. Hachem RR, Edwards LB, Yusen RD, Chakinala MM, Alexander Patterson G, Trulock EP. The impact of induction on survival after lung transplantation: an analysis of the International Society for Heart and Lung Transplantation Registry. Clin Transplant. 2008;22(5):603–8.

    Article  PubMed  Google Scholar 

  72. Blume OR, Yost SE, Kaplan B. Antibody-mediated rejection: pathogenesis, prevention, treatment and outcomes. J Transplant. 2012;2012:201754.

    Google Scholar 

  73. Glanville AR. Antibody mediated rejection in lung transplantation: myth or reality? J Heart Lung Transplant. 2010;29(4):395–400.

    Article  PubMed  Google Scholar 

  74. Faguer S, Kama N, Guilbeaud-Frugier D, Fort M, Modesto A, Mari A, et al. Rituxmab therapy for acute humoral rejection after kidney transplantation. Transplantation. 2007;833:1277–80.

    Article  Google Scholar 

  75. Kacmarek I, Deutsch MA, Sadoni S, Brenner P, Schmauss D, Daebritz SH, et al. Successful management of antibody-mediated cardiac allograft rejection with combined immunoadsorption and anti-CD20 monoclonal antibody treatment. Case report and literature review. J Heart Lung Transplant. 2007;26:511–5.

    Article  Google Scholar 

  76. Hachem RR, Yusen RD, Meyers BF, Aloush AA, Mohanakumar T, Patterson GA, et al. Anti-human leukocyte antigen antibodies and preemptive antibody-directed therapy after lung transplantation. J Heart Lung Transplant. 2010;29(9):973–80.

    Article  PubMed  Google Scholar 

  77. Everly MJ. An update on antibody reduction and rejection reversal following bortezomib use: a report of 52 cases across 10 centers. Clin Transplant. 2010;353–62.

    Google Scholar 

  78. Trivedi HL, Terasaki PI, Feroz A, Everly MJ, Vanikar AV, Shankar V, et al. Abrogation of anti-HLA antibodies via proteasome inhibition. Transplantation. 2009;87(10):1555–61.

    Article  PubMed  CAS  Google Scholar 

  79. Neumann J, Tarrasconi H, Bortolotto A, Machuca T, Canabarro R, Sporleder H, et al. Acute humoral rejection in a lung recipient: reversion with bortezomib. Transplantation. 2010;89(1): 125–6.

    Article  PubMed  Google Scholar 

  80. Vincenti F, Charpentiier B, Vanrenterghem Y, Rostaing L, Bresnahan B, Darji P, et al. A phase III study of belatacept based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study). Am J Transplant. 2010;10:535–46.

    Article  PubMed  CAS  Google Scholar 

  81. Pestana JO, Grinyo JM, Vanrenterghem Y, Becker T, Campistol JM, Florman S, et al. Three-year outcomes from BENEFIT-EXT: a phase III study of belatacept versus cyclosporine in recipients of extended criteria donor kidneys. Am J Transplant. 2012;12:630–9.

    Article  PubMed  CAS  Google Scholar 

  82. Levine SM. A survey of clinical practice of lung transplantation in North America. Chest. 2004;125(4):1224–38.

    Article  PubMed  Google Scholar 

  83. Horning NR, Lynch JP, Sundaresan SR, Patterson GA, Trulock EP. Tacolimus therapy for persistent or recurrent acute rejection after lung transplantation. J Heart Lung Transplant. 1998;17:761–7.

    PubMed  CAS  Google Scholar 

  84. Kesten S, Chaparro C, Scavuzzo M, Gutierrez C. Tacrolimus as rescue therapy for bronchiolitis obliterans syndrome. J Heart Lung Transplant. 1997;16:905–12.

    PubMed  CAS  Google Scholar 

  85. Ross DJ, Lewis MI, Kramer M, Vo A, Kass RM. FK506 rescue immunosuppression for obliterative bronchiolitis after lung transplantation. Chest. 1997;112:1175–9.

    Article  PubMed  CAS  Google Scholar 

  86. Sarahrudi K, Estenne M, Corris P, Niedermayer J, Knoop C, Glanville A, et al. International experience with conversion from cyclosporine to tacrolimus for acute and chronic lung allograft rejection. J Thorac Cardiovasc Surg. 2004;127:1126–32.

    Article  PubMed  CAS  Google Scholar 

  87. Reams BD, Musselwhite LW, Zaas DW, Steele MP, Garantziotis S, Eu PC, et al. Alemtuzumab in the treatment of refractory acute rejection and bronchiolitis obliterans syndrome after human lung transplantation. Am J Transplant. 2007;7(12):2802–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangeeta M. Bhorade M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bhorade, S.M. (2013). Immunosuppression for the Prevention and Treatment of BOS. In: Meyer, K., Glanville, A. (eds) Bronchiolitis Obliterans Syndrome in Lung Transplantation. Respiratory Medicine, vol 8. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-7636-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7636-8_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-7635-1

  • Online ISBN: 978-1-4614-7636-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics