Skip to main content

Real-Time and Interactive MRI

  • Chapter
  • First Online:
Intraoperative Imaging and Image-Guided Therapy

Abstract

Free of ionizing radiation, unlike x-ray, CT, and PET, MRI is recognized as an ideal tool to monitor and control interventions. Its advantages include a superior spatial resolution and soft tissue contrast to help delineate tissue abnormality and the ability to provide cross-sectional images in any orientation. It is also able to noninvasively monitor temperature changes, making it ideal for monitoring energy deposition during thermal ablation. To leverage these advantages in various types of interventions, a number of groups have made and continue to make efforts to exploit MRI in the operating room. Interventional MRI differs from diagnostic MRI in its interactive and real-time nature whereby the progress of intervention is instantly visualized by the physician as feedback. To this end, imaging parameters may often require adjustment so that position and orientation of the imaging plane track the locations of needles and catheters or movement of a focal lesion during a procedure. Since there are trade-offs to be made in image contrast, signal-to-noise ratio, spatial resolution, and temporal resolution when choosing MRI techniques, they must be carefully selected depending on their purpose. In this chapter, we review a wide range of imaging techniques that enable interactive and real-time MRI for interventional guidance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Souza SP, Szumowski J, Dumoulin CL, Plewes DP, Glover G. SIMA: simultaneous multislice acquisition of MR images by Hadamard-encoded excitation. J Comput Assist Tomogr. 1988;12(6):1026–30.

    CAS  PubMed  Google Scholar 

  2. Glover GH. Phase-offset multiplanar (POMP) volume imaging: a new technique. J Magn Reson Imaging. 1991;1(4):457–61.

    CAS  PubMed  Google Scholar 

  3. Weaver JB, Xu Y, Healy DM, Driscoll JR. Wavelet-encoded MR imaging. Magn Reson Med. 1992;24(2):275–87.

    CAS  PubMed  Google Scholar 

  4. Panych LP, Jakab PD, Jolesz FA. Implementation of wavelet-encoded MR imaging. J Magn Reson Imaging. 1993;3(4):649–55.

    CAS  PubMed  Google Scholar 

  5. Panych LP, Jolesz FA. A dynamically adaptive imaging algorithm for wavelet-encoded MRI. Magn Reson Med. 1994;32(6):738–48.

    CAS  PubMed  Google Scholar 

  6. Zientara GP, Panych LP, Jolesz FA. Dynamically adaptive MRI with encoding by singular value decomposition. Magn Reson Med. 1994;32(2):268–74.

    CAS  PubMed  Google Scholar 

  7. Shimizu K, Panych LP, Mulkern RV, et al. Partial wavelet encoding: a new approach for accelerating temporal resolution in contrast-enhanced MR imaging. J Magn Reson Imaging. 1999;9(5):717–24.

    CAS  PubMed  Google Scholar 

  8. Wendt M, Busch M, Lenz G, et al. Dynamic tracking in interventional MRI using wavelet-encoded gradient-echo sequences. IEEE Trans Med Imaging. 1998;17(5):803–9.

    CAS  PubMed  Google Scholar 

  9. Twieg DB. The k-trajectory formulation of the NMR imaging process with applications in analysis and synthesis of imaging methods. Med Phys. 1983;10(5):610–21.

    CAS  PubMed  Google Scholar 

  10. Riederer SJ, Tasciyan T, Farzaneh F, Lee JN, Wright RC, Herfkens RJ. MR fluoroscopy: technical feasibility. Magn Reson Med. 1988;8(1):1–15.

    CAS  PubMed  Google Scholar 

  11. Mansfield P, Morris PG, Ordidge RJ, Pykett IL, Bangert V, Coupland RE. Human whole body imaging and detection of breast tumours by n.m.r. Philos Trans R Soc Lond B Biol Sci. 1980;289(1037):503–10.

    CAS  PubMed  Google Scholar 

  12. Hennig J, Nauerth A, Friedburg H. RARE imaging: a fast imaging method for clinical MR. Magn Reson Med. 1986;3(6):823–33.

    CAS  PubMed  Google Scholar 

  13. Quesson B, Laurent C, Maclair G, et al. Real-time volumetric MRI thermometry of focused ultrasound ablation in vivo: a feasibility study in pig liver and kidney. NMR Biomed. 2011;24(2):145–53.

    PubMed  Google Scholar 

  14. Ries M, de Senneville BD, Roujol S, Berber Y, Quesson B, Moonen C. Real-time 3D target tracking in MRI guided focused ultrasound ablations in moving tissues. Magn Reson Med. 2010;64(6):1704–12.

    PubMed  Google Scholar 

  15. Roujol S, Ries M, Quesson B, Moonen C, Denis de Senneville B. Real-time MR-thermometry and dosimetry for interventional guidance on abdominal organs. Magn Reson Med. 2010;63(4):1080–7.

    PubMed  Google Scholar 

  16. Dragonu I, de Senneville BD, Quesson B, Moonen C, Ries M. Real-time geometric distortion correction for interventional imaging with echo-planar imaging (EPI). Magn Reson Med. 2009;61(4):994–1000.

    PubMed  Google Scholar 

  17. Farzaneh F, Riederer SJ, Pelc NJ. Analysis of T2 limitations and off-resonance effects on spatial resolution and artifacts in echo-planar imaging. Magn Reson Med. 1990;14(1):123–39.

    CAS  PubMed  Google Scholar 

  18. Rieseberg S, Frahm J, Finsterbusch J. Two-dimensional spatially-selective RF excitation pulses in echo-planar imaging. Magn Reson Med. 2002;47(6):1186–93.

    PubMed  Google Scholar 

  19. Griswold MA, Jakob PM, Chen Q, et al. Resolution enhancement in single-shot imaging using simultaneous acquisition of spatial harmonics (SMASH). Magn Reson Med. 1999;41(6):1236–45.

    CAS  PubMed  Google Scholar 

  20. McKinnon GC. Ultrafast interleaved gradient-echo-planar imaging on a standard scanner. Magn Reson Med. 1993;30(5):609–16.

    CAS  PubMed  Google Scholar 

  21. Hey S, Maclair G, de Senneville BD, et al. Online correction of respiratory-induced field disturbances for continuous MR-thermometry in the breast. Magn Reson Med. 2009;61(6):1494–9.

    CAS  PubMed  Google Scholar 

  22. Holbrook AB, Santos JM, Kaye E, Rieke V, Pauly KB. Real-time MR thermometry for monitoring HIFU ablations of the liver. Magn Reson Med. 2010;63(2):365–73.

    PubMed Central  PubMed  Google Scholar 

  23. Weidensteiner C, Kerioui N, Quesson B, de Senneville BD, Trillaud H, Moonen CT. Stability of real-time MR temperature mapping in healthy and diseased human liver. J Magn Reson Imaging. 2004;19(4):438–46.

    PubMed  Google Scholar 

  24. Semelka RC, Kelekis NL, Thomasson D, Brown MA, Laub GA. HASTE MR imaging: description of technique and preliminary results in the abdomen. J Magn Reson Imaging. 1996;6(4):698–9.

    CAS  PubMed  Google Scholar 

  25. Busse RF, Riederer SJ, Fletcher JG, Bharucha AE, Brandt KR. Interactive fast spin-echo imaging. Magn Reson Med. 2000;44(3):339–48.

    CAS  PubMed  Google Scholar 

  26. Makki M, Graves MJ, Lomas DJ. Interactive body magnetic resonance fluoroscopy using modified single-shot half-Fourier rapid acquisition with relaxation enhancement (RARE) with multiparameter control. J Magn Reson Imaging. 2002;16(1):85–93.

    PubMed  Google Scholar 

  27. Chopra SS, Rump J, Schmidt SC, et al. Imaging sequences for intraoperative MR-guided laparoscopic liver resection in 1.0-T high field open MRI. Eur Radiol. 2009;19(9):2191–6.

    CAS  PubMed  Google Scholar 

  28. Stattaus J, Maderwald S, Forsting M, Barkhausen J, Ladd ME. MR-guided core biopsy with MR fluoroscopy using a short, wide-bore 1.5-Tesla scanner: feasibility and initial results. J Magn Reson Imaging. 2008;27(5):1181–7.

    PubMed  Google Scholar 

  29. Zimmermann H, Muller S, Gutmann B, et al. Targeted-HASTE imaging with automated device tracking for MR-guided needle interventions in closed-bore MR systems. Magn Reson Med. 2006;56(3):481–8.

    CAS  PubMed  Google Scholar 

  30. Finsterbusch J. Fast-spin-echo imaging of inner fields-of-view with 2D-selective RF excitations. J Magn Reson Imaging. 2010;31(6):1530–7.

    PubMed  Google Scholar 

  31. Yuan J, Zhao TC, Tang Y, Panych LP. Reduced field-of-view single-shot fast spin echo imaging using two-dimensional spatially selective radiofrequency pulses. J Magn Reson Imaging. 2010;32(1):242–8.

    PubMed Central  PubMed  Google Scholar 

  32. Poser BA, Norris DG. Fast spin echo sequences for BOLD functional MRI. MAGMA. 2007;20(1):11–7.

    PubMed Central  PubMed  Google Scholar 

  33. Melki PS, Mulkern RV, Panych LP, Jolesz FA. Comparing the FAISE method with conventional dual-echo sequences. J Magn Reson Imaging. 1991;1(3):319–26.

    CAS  PubMed  Google Scholar 

  34. Zech CJ, Herrmann KA, Huber A, et al. High-resolution MR-imaging of the liver with T2-weighted sequences using integrated parallel imaging: comparison of prospective motion correction and respiratory triggering. J Magn Reson Imaging. 2004;20(3):443–50.

    PubMed  Google Scholar 

  35. Schaffter T, Rasche V, Carlsen IC. Motion compensated projection reconstruction. Magn Reson Med. 1999;41(5):954–63.

    CAS  PubMed  Google Scholar 

  36. Peters DC, Lederman RJ, Dick AJ, et al. Undersampled projection reconstruction for active catheter imaging with adaptable temporal resolution and catheter-only views. Magn Reson Med. 2003;49(2):216–22.

    PubMed Central  PubMed  Google Scholar 

  37. Peters DC, Guttman MA, Dick AJ, Raman VK, Lederman RJ, McVeigh ER. Reduced field of view and undersampled PR combined for interventional imaging of a fully dynamic field of view. Magn Reson Med. 2004;51(4):761–7.

    PubMed Central  PubMed  Google Scholar 

  38. Guttman MA, McVeigh ER. Techniques for fast stereoscopic MRI. Magn Reson Med. 2001;46(2):317–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Rasche V, de Boer RW, Holz D, Proksa R. Continuous radial data acquisition for dynamic MRI. Magn Reson Med. 1995;34(5):754–61.

    CAS  PubMed  Google Scholar 

  40. Pipe JG. Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med. 1999;42(5):963–9.

    CAS  PubMed  Google Scholar 

  41. Hirokawa Y, Isoda H, Maetani YS, Arizono S, Shimada K, Togashi K. MRI artifact reduction and quality improvement in the upper abdomen with PROPELLER and prospective acquisition correction (PACE) technique. AJR Am J Roentgenol. 2008;191(4):1154–8.

    PubMed  Google Scholar 

  42. Arfanakis K, Tamhane AA, Pipe JG, Anastasio MA. k-space undersampling in PROPELLER imaging. Magn Reson Med. 2005;53(3):675–83.

    PubMed  Google Scholar 

  43. Wang FN, Huang TY, Lin FH, et al. PROPELLER EPI: an MRI technique suitable for diffusion tensor imaging at high field strength with reduced geometric distortions. Magn Reson Med. 2005;54(5):1232–40.

    PubMed Central  PubMed  Google Scholar 

  44. Kerr AB, Pauly JM, Hu BS, et al. Real-time interactive MRI on a conventional scanner. Magn Reson Med. 1997;38(3):355–67.

    CAS  PubMed  Google Scholar 

  45. Jung Y, Jashnani Y, Kijowski R, Block WF. Consistent non-cartesian off-axis MRI quality: calibrating and removing multiple sources of demodulation phase errors. Magn Reson Med. 2007;57(1):206–12.

    PubMed  Google Scholar 

  46. Terashima M, Hyon M, de la Pena-Almaguer E, et al. High-resolution real-time spiral MRI for guiding vascular interventions in a rabbit model at 1.5 T. J Magn Reson Imaging. 2005;22(5):687–90.

    PubMed  Google Scholar 

  47. Sussman MS, Stainsby JA, Robert N, Merchant N, Wright GA. Variable-density adaptive imaging for high-resolution coronary artery MRI. Magn Reson Med. 2002;48(5):753–64.

    PubMed  Google Scholar 

  48. van Vaals JJ, Brummer ME, Dixon WT, et al. “Keyhole” method for accelerating imaging of contrast agent uptake. J Magn Reson Imaging. 1993;3(4):671–5.

    PubMed  Google Scholar 

  49. Duerk JL, Lewin JS, Wu DH. Application of keyhole imaging to interventional MRI: a simulation study to predict sequence requirements. J Magn Reson Imaging. 1996;6(6):918–24.

    CAS  PubMed  Google Scholar 

  50. Kochavi E, Goldsher D, Azhari H. Method for rapid MRI needle tracking. Magn Reson Med. 2004;51(5):1083–7.

    PubMed  Google Scholar 

  51. Feinberg DA, Hoenninger JC, Crooks LE, Kaufman L, Watts JC, Arakawa M. Inner volume MR imaging: technical concepts and their application. Radiology. 1985;156(3):743–7.

    CAS  PubMed  Google Scholar 

  52. Zhao L, Madore B, Panych LP. Reduced field-of-view MRI with two-dimensional spatially-selective RF excitation and UNFOLD. Magn Reson Med. 2005;53(5):1118–25.

    PubMed  Google Scholar 

  53. Mei CS, Panych LP, Yuan J, et al. Combining two-dimensional spatially selective RF excitation, parallel imaging, and UNFOLD for accelerated MR thermometry imaging. Magn Reson Med. 2011;66(1):112–22.

    PubMed Central  PubMed  Google Scholar 

  54. Schaeffter T, Rasche V, Bornert P, Mens G. Interactive reduced FOV imaging for projection reconstruction and spiral acquisition. Magn Reson Imaging. 2001;19(5):677–84.

    CAS  PubMed  Google Scholar 

  55. Feinberg DA, Hale JD, Watts JC, Kaufman L, Mark A. Halving MR imaging time by conjugation: demonstration at 3.5 kG. Radiology. 1986;161(2):527–31.

    CAS  PubMed  Google Scholar 

  56. Noll DC, Nishimura DG, Macovski A. Homodyne detection in magnetic resonance imaging. IEEE Trans Med Imaging. 1991;10(2):154–63.

    CAS  PubMed  Google Scholar 

  57. Madore B. Using UNFOLD to remove artifacts in parallel imaging and in partial-Fourier imaging. Magn Reson Med. 2002;48(3):493–501.

    PubMed  Google Scholar 

  58. Chandra S, Liang ZP, Webb A, Lee H, Morris HD, Lauterbur PC. Application of reduced-encoding imaging with generalized-series reconstruction (RIGR) in dynamic MR imaging. J Magn Reson Imaging. 1996;6(5):783–97.

    CAS  PubMed  Google Scholar 

  59. Mistretta CA, Wieben O, Velikina J, et al. Highly constrained backprojection for time-resolved MRI. Magn Reson Med. 2006;55(1):30–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182–95.

    PubMed  Google Scholar 

  61. Gamper U, Boesiger P, Kozerke S. Compressed sensing in dynamic MRI. Magn Reson Med. 2008;59(2):365–73.

    PubMed  Google Scholar 

  62. Schirra CO, Weiss S, Krueger S, et al. Accelerated 3D catheter visualization from triplanar MR projection images. Magn Reson Med. 2010;64(1):167–76.

    PubMed  Google Scholar 

  63. Yerly J, Lauzon ML, Chen HS, Frayne R. A simulation-based analysis of the potential of compressed sensing for accelerating passive MR catheter visualization in endovascular therapy. Magn Reson Med. 2010;63(2):473–83.

    PubMed  Google Scholar 

  64. Hansen MS, Atkinson D, Sorensen TS. Cartesian SENSE and k-t SENSE reconstruction using commodity graphics hardware. Magn Reson Med. 2008;59(3):463–8.

    PubMed  Google Scholar 

  65. Chang CH, Ji J. Compressed sensing MRI with multi-channel data using multi-core processors. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:2684–7.

    PubMed  Google Scholar 

  66. Roujol S, de Senneville BD, Vahala E, Sorensen TS, Moonen C, Ries M. Online real-time reconstruction of adaptive TSENSE with commodity CPU/GPU hardware. Magn Reson Med. 2009;62(6):1658–64.

    PubMed  Google Scholar 

  67. Sorensen TS, Atkinson D, Schaeffter T, Hansen MS. Real-time reconstruction of sensitivity encoded radial magnetic resonance imaging using a graphics processing unit. IEEE Trans Med Imaging. 2009;28(12):1974–85.

    PubMed  Google Scholar 

  68. Chao TC, Chung HW, Hoge WS, Madore B. A 2D MTF approach to evaluate and guide dynamic imaging developments. Magn Reson Med. 2010;63(2):407–18.

    PubMed Central  PubMed  Google Scholar 

  69. Tsao J. Ultrafast imaging: principles, pitfalls, solutions, and applications. J Magn Reson Imaging. 2010;32(2):252–66.

    PubMed  Google Scholar 

  70. Madore B, Glover GH, Pelc NJ. Unaliasing by Fourier-encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI. Magn Reson Med. 1999;42(5): 813–28.

    CAS  PubMed  Google Scholar 

  71. Kellman P, Epstein FH, McVeigh ER. Adaptive sensitivity encoding incorporating temporal filtering (TSENSE). Magn Reson Med. 2001;45(5):846–52.

    CAS  PubMed  Google Scholar 

  72. Guttman MA, Kellman P, Dick AJ, Lederman RJ, McVeigh ER. Real-time accelerated interactive MRI with adaptive TSENSE and UNFOLD. Magn Reson Med. 2003;50(2):315–21.

    PubMed Central  PubMed  Google Scholar 

  73. Tsao J, Boesiger P, Pruessmann KP. k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med. 2003;50(5):1031–42.

    PubMed  Google Scholar 

  74. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med. 1997;38(4):591–603.

    CAS  PubMed  Google Scholar 

  75. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42(5):952–62.

    CAS  PubMed  Google Scholar 

  76. Kyriakos WE, Panych LP, Kacher DF, et al. Sensitivity profiles from an array of coils for encoding and reconstruction in parallel (SPACE RIP). Magn Reson Med. 2000;44(2):301–8.

    CAS  PubMed  Google Scholar 

  77. Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002;47(6):1202–10.

    PubMed  Google Scholar 

  78. Huang F, Akao J, Vijayakumar S, Duensing GR, Limkeman M. k-t GRAPPA: a k-space implementation for dynamic MRI with high reduction factor. Magn Reson Med. 2005;54(5):1172–84.

    PubMed  Google Scholar 

  79. Hoge WS, Brooks DH. Using GRAPPA to improve autocalibrated coil sensitivity estimation for the SENSE family of parallel imaging reconstruction algorithms. Magn Reson Med. 2008;60(2):462–7.

    PubMed  Google Scholar 

  80. Yutzy SR, Duerk JL. Pulse sequences and system interfaces for interventional and real-time MRI. J Magn Reson Imaging. 2008;27(2):267–75.

    PubMed  Google Scholar 

  81. Haase A, Frahm J, Matthaei D, Hanicke W, Merboldt KD. Flash imaging – rapid NMR imaging using low flip-angle pulses. J Magn Reson. 1986;67(2):258–66.

    CAS  Google Scholar 

  82. Wang HZ, Riederer SJ. A spoiling sequence for suppression of residual transverse magnetization. Magn Reson Med. 1990;15(2):175–91.

    CAS  PubMed  Google Scholar 

  83. Zhang K, Krafft AJ, Umathum R, Maier F, Semmler W, Bock M. Real-time MR navigation and localization of an intravascular catheter with ferromagnetic components. MAGMA. 2010;23(3):153–63.

    CAS  PubMed  Google Scholar 

  84. Nordbeck P, Bauer WR, Fidler F, et al. Feasibility of real-time MRI with a novel carbon catheter for interventional electrophysiology. Circ Arrhythm Electrophysiol. 2009;2(3):258–67.

    PubMed  Google Scholar 

  85. Fritz J, Thomas C, Tzaribachev N, et al. MRI-guided injection procedures of the temporomandibular joints in children and adults: technique, accuracy, and safety. AJR Am J Roentgenol. 2009;193(4):1148–54.

    PubMed  Google Scholar 

  86. de Oliveira A, Rauschenberg J, Beyersdorff D, Semmler W, Bock M. Automatic passive tracking of an endorectal prostate biopsy device using phase-only cross-correlation. Magn Reson Med. 2008;59(5):1043–50.

    PubMed  Google Scholar 

  87. Hennig J. Echoes -how to generate, recognize, use or avoid them in MR-imaging sequences part I: fundamental and not so fundamental properties of spin echoes. Concepts Magn Reson. 1991;3:124–43.

    Google Scholar 

  88. Hennig J. Echoes -how to generate, recognize, use or avoid them in MR-imaging sequences part II: echoes in imaging sequences. Concepts Magn Reson. 1991;3:179–92.

    CAS  Google Scholar 

  89. Chung YC, Merkle EM, Lewin JS, Shonk JR, Duerk JL. Fast T(2)-weighted imaging by PSIF at 0.2 T for interventional MRI. Magn Reson Med. 1999;42(2):335–44.

    CAS  PubMed  Google Scholar 

  90. Boll DT, Lewin JS, Duerk JL, Aschoff AJ, Merkle EM. Comparison of MR imaging sequences for liver and head and neck interventions: is there a single optimal sequence for all purposes? Acad Radiol. 2004;11(5):506–15.

    PubMed  Google Scholar 

  91. Lewin JS, Nour SG, Meyers ML, et al. Intraoperative MRI with a rotating, tiltable surgical table: a time use study and clinical results in 122 patients. AJR Am J Roentgenol. 2007;189(5):1096–103.

    PubMed  Google Scholar 

  92. Nour SG, Goldberg SN, Wacker FK, et al. MR monitoring of NaCl-enhanced radiofrequency ablations: observations on low- and high-field-strength MR images with pathologic correlation. Radiology. 2010;254(2):449–59.

    PubMed  Google Scholar 

  93. Madore B, Panych LP, Mei CS, Yuan J, Chu R. Multipathway sequences for MR thermometry. Magn Reson Med. 2011;66:658–68.

    PubMed Central  PubMed  Google Scholar 

  94. Scheffler K, Lehnhardt S. Principles and applications of balanced SSFP techniques. Eur Radiol. 2003;13(11):2409–18.

    PubMed  Google Scholar 

  95. Duerk JL, Lewin JS, Wendt M, Petersilge C. Remember true FISP? A high SNR, near 1-second imaging method for T2-like contrast in interventional MRI at.2 T. J Magn Reson Imaging. 1998;8(1):203–8.

    CAS  PubMed  Google Scholar 

  96. Wacker FK, Elgort D, Hillenbrand CM, Duerk JL, Lewin JS. The catheter-driven MRI scanner: a new approach to intravascular catheter tracking and imaging-parameter adjustment for interventional MRI. AJR Am J Roentgenol. 2004;183(2):391–5.

    PubMed  Google Scholar 

  97. Zhang S, Rafie S, Chen Y, et al. In vivo cardiovascular catheterization under real-time MRI guidance. J Magn Reson Imaging. 2006;24(4):914–7.

    CAS  PubMed  Google Scholar 

  98. Guttman MA, Ozturk C, Raval AN, et al. Interventional cardiovascular procedures guided by real-time MR imaging: an interactive interface using multiple slices, adaptive projection modes and live 3D renderings. J Magn Reson Imaging. 2007;26(6):1429–35.

    PubMed Central  PubMed  Google Scholar 

  99. Magnusson P, Johansson E, Mansson S, et al. Passive catheter tracking during interventional MRI using hyperpolarized 13C. Magn Reson Med. 2007;57(6):1140–7.

    PubMed  Google Scholar 

  100. Raman VK, Lederman RJ. Interventional cardiovascular magnetic resonance imaging. Trends Cardiovasc Med. 2007;17(6):196–202.

    PubMed Central  PubMed  Google Scholar 

  101. Patil S, Bieri O, Jhooti P, Scheffler K. Automatic slice positioning (ASP) for passive real-time tracking of interventional devices using projection-reconstruction imaging with echo-dephasing (PRIDE). Magn Reson Med. 2009;62(4):935–42.

    CAS  PubMed  Google Scholar 

  102. George AK, Derbyshire JA, Saybasili H, et al. Visualization of active devices and automatic slice repositioning (“SnapTo”) for MRI-guided interventions. Magn Reson Med. 2010;63(4):1070–9.

    PubMed Central  PubMed  Google Scholar 

  103. Saybasili H, Faranesh AZ, Saikus CE, Ozturk C, Lederman RJ, Guttman MA. Interventional MRI using multiple 3D angiography roadmaps with real-time imaging. J Magn Reson Imaging. 2010;31(4):1015–9.

    PubMed Central  PubMed  Google Scholar 

  104. Koktzoglou I, Li D, Dharmakumar R. Dephased FLAPS for improved visualization of susceptibility-shifted passive devices for real-time interventional MRI. Phys Med Biol. 2007;52(13):N277–86.

    PubMed  Google Scholar 

  105. Germain D, Vahala E, Ehnholm GJ, et al. MR temperature measurement in liver tissue at 0.23 T with a steady-state free precession sequence. Magn Reson Med. 2002;47(5):940–7.

    CAS  PubMed  Google Scholar 

  106. Paliwal V, El-Sharkawy AM, Du X, Yang X, Atalar E. SSFP-based MR thermometry. Magn Reson Med. 2004;52(4):704–8.

    PubMed  Google Scholar 

  107. Scheffler K. Fast frequency mapping with balanced SSFP: theory and application to proton-resonance frequency shift thermometry. Magn Reson Med. 2004;51(6):1205–11.

    PubMed  Google Scholar 

  108. Prato FS, Nicholson RL, King M, Knill RL, Reese L, Wilkins K. Abolition of respiratory movement markedly improved NMR images of the thorax and upper abdomen. In: Proceedings of the society of magnetic resonance in medicine, second annual meeting. San Francisco; 1983. p. 284–5.

    Google Scholar 

  109. Runge VM, Clanton JA, Partain CL, James Jr AE. Respiratory gating in magnetic resonance imaging at 0.5 Tesla. Radiology. 1984;151(2):521–3.

    CAS  PubMed  Google Scholar 

  110. Ehman RL, McNamara MT, Pallack M, Hricak H, Higgins CB. Magnetic resonance imaging with respiratory gating: techniques and advantages. AJR Am J Roentgenol. 1984;143(6):1175–82.

    CAS  PubMed  Google Scholar 

  111. Morikawa S, Inubushi T, Kurumi Y, et al. Feasibility of respiratory triggering for MR-guided microwave ablation of liver tumors under general anesthesia. Cardiovasc Intervent Radiol. 2004;27(4):370–3.

    PubMed  Google Scholar 

  112. Ehman RL, Felmlee JP. Adaptive technique for high-definition MR imaging of moving structures. Radiology. 1989;173(1):255–63.

    CAS  PubMed  Google Scholar 

  113. Fu ZW, Wang Y, Grimm RC, et al. Orbital navigator echoes for motion measurements in magnetic resonance imaging. Magn Reson Med. 1995;34(5):746–53.

    CAS  PubMed  Google Scholar 

  114. Welch EB, Manduca A, Grimm RC, Ward HA, Jack Jr CR. Spherical navigator echoes for full 3D rigid body motion measurement in MRI. Magn Reson Med. 2002;47(1):32–41.

    PubMed  Google Scholar 

  115. Vigen KK, Daniel BL, Pauly JM, Butts K. Triggered, navigated, multi-baseline method for proton resonance frequency temperature mapping with respiratory motion. Magn Reson Med. 2003;50(5):1003–10.

    PubMed  Google Scholar 

  116. Lepetit-Coiffe M, Quesson B, Seror O, et al. Real-time monitoring of radiofrequency ablation of rabbit liver by respiratory-gated quantitative temperature MRI. J Magn Reson Imaging. 2006;24(1):152–9.

    PubMed  Google Scholar 

  117. Sinha S, Oshiro T, Sinha U, Lufkin R. Phase imaging on a.2-T MR scanner: application to temperature monitoring during ablation procedures. J Magn Reson Imaging. 1997;7(5):918–28.

    CAS  PubMed  Google Scholar 

  118. de Zwart JA, Vimeux FC, Palussiere J, et al. On-line correction and visualization of motion during MRI-controlled hyperthermia. Magn Reson Med. 2001;45(1):128–37.

    PubMed  Google Scholar 

  119. Low DA, Nystrom M, Kalinin E, et al. A method for the reconstruction of four-dimensional synchronized CT scans acquired during free breathing. Med Phys. 2003;30(6):1254–63.

    PubMed  Google Scholar 

  120. Vedam SS, Keall PJ, Kini VR, Mostafavi H, Shukla HP, Mohan R. Acquiring a four-dimensional computed tomography dataset using an external respiratory signal. Phys Med Biol. 2003;48(1):45–62.

    CAS  PubMed  Google Scholar 

  121. Pan T, Lee TY, Rietzel E, Chen GT. 4D-CT imaging of a volume influenced by respiratory motion on multi-slice CT. Med Phys. 2004;31(2):333–40.

    PubMed  Google Scholar 

  122. Blackall JM, Ahmad S, Miquel ME, McClelland JR, Landau DB, Hawkes DJ. MRI-based measurements of respiratory motion variability and assessment of imaging strategies for radiotherapy planning. Phys Med Biol. 2006;51(17):4147–69.

    CAS  PubMed  Google Scholar 

  123. von Siebenthal M, Szekely G, Gamper U, Boesiger P, Lomax A, Cattin P. 4D MR imaging of respiratory organ motion and its variability. Phys Med Biol. 2007;52(6):1547–64.

    Google Scholar 

  124. Jhooti P, Gatehouse PD, Keegan J, Bunce NH, Taylor AM, Firmin DN. Phase ordering with automatic window selection (PAWS): a novel motion-resistant technique for 3D coronary imaging. Magn Reson Med. 2000;43(3):470–80.

    CAS  PubMed  Google Scholar 

  125. Kolmogorov VN, Watts R, Prince MR, Zabih R, Wang Y. Simultaneous multiple volume (SMV) acquisition algorithm for real-time navigator gating. Magn Reson Imaging. 2003;21(9):969–75.

    PubMed  Google Scholar 

  126. Tokuda J, Morikawa S, Haque HA, et al. Adaptive 4D MR imaging using navigator-based respiratory signal for MRI-guided therapy. Magn Reson Med. 2008;59(5):1051–61.

    PubMed Central  PubMed  Google Scholar 

  127. Rubin DL, Ratner AV, Young SW. Magnetic susceptibility effects and their application in the development of new ferromagnetic catheters for magnetic resonance imaging. Invest Radiol. 1990;25(12):1325–32.

    CAS  PubMed  Google Scholar 

  128. Kochli VD, McKinnon GC, Hofmann E, von Schulthess GK. Vascular interventions guided by ultrafast MR imaging: evaluation of different materials. Magn Reson Med. 1994;31(3):309–14.

    CAS  PubMed  Google Scholar 

  129. Bakker CJ, Hoogeveen RM, Weber J, van Vaals JJ, Viergever MA, Mali WP. Visualization of dedicated catheters using fast scanning techniques with potential for MR-guided vascular interventions. Magn Reson Med. 1996;36(6):816–20.

    CAS  PubMed  Google Scholar 

  130. Kozerke S, Hegde S, Schaeffter T, Lamerichs R, Razavi R, Hill DL. Catheter tracking and visualization using 19F nuclear magnetic resonance. Magn Reson Med. 2004;52(3):693–7.

    PubMed  Google Scholar 

  131. Mueller PR, Stark DD, Simeone JF, et al. MR-guided aspiration biopsy: needle design and clinical trials. Radiology. 1986;161(3):605–9.

    CAS  PubMed  Google Scholar 

  132. Lufkin R, Teresi L, Hanafee W. New needle for MR-guided aspiration cytology of the head and neck. AJR Am J Roentgenol. 1987;149(2):380–2.

    CAS  PubMed  Google Scholar 

  133. Van Sonnenberg E, Hajek P, Gylys-Morin V, et al. A wire-sheath system for MR-guided biopsy and drainage: laboratory studies and experience in 10 patients. AJR Am J Roentgenol. 1988;151(4):815–7.

    Google Scholar 

  134. Duckwiler G, Lufkin RB, Teresi L, et al. Head and neck lesions: MR-guided aspiration biopsy. Radiology. 1989;170(2):519–22.

    CAS  PubMed  Google Scholar 

  135. Shimizu K, Mulkern RV, Oshio K, et al. Rapid tip tracking with MRI by a limited projection reconstruction technique. J Magn Reson Imaging. 1998;8(1):262–4.

    CAS  PubMed  Google Scholar 

  136. Buecker A, Adam G, Neuerburg JM, Glowinski A, van Vaals JJ, Guenther RW. MR-guided biopsy using a T2-weighted single-shot zoom imaging sequence (Local Look technique). J Magn Reson Imaging. 1998;8(4):955–9.

    CAS  PubMed  Google Scholar 

  137. Omary RA, Green JD, Fang WS, Viohl I, Finn JP, Li D. Use of internal coils for independent and direct MR imaging-guided endovascular device tracking. J Vasc Interv Radiol. 2003;14(2 Pt 1):247–54.

    PubMed  Google Scholar 

  138. Omary RA, Unal O, Koscielski DS, et al. Real-time MR imaging-guided passive catheter tracking with use of gadolinium-filled catheters. J Vasc Interv Radiol. 2000;11(8):1079–85.

    CAS  PubMed  Google Scholar 

  139. Green JD, Omary RA, Finn JP, et al. Passive catheter tracking using MRI: comparison of conventional and magnetization-prepared FLASH. J Magn Reson Imaging. 2002;16(1):104–9.

    PubMed  Google Scholar 

  140. Seppenwoolde JH, Viergever MA, Bakker CJ. Passive tracking exploiting local signal conservation: the white marker phenomenon. Magn Reson Med. 2003;50(4):784–90.

    PubMed  Google Scholar 

  141. Seevinck PR, de Leeuw H, Bos C, Bakker CJ. Highly localized positive contrast of small paramagnetic objects using 3D center-out radial sampling with off-resonance reception. Magn Reson Med. 2011;65(1):146–56.

    PubMed  Google Scholar 

  142. DiMaio SP, Samset E, Fischer G, et al. Dynamic MRI scan plane control for passive tracking of instruments and devices. Med Image Comput Comput Assist Interv. 2007;10(Pt 2):50–8.

    CAS  PubMed  Google Scholar 

  143. Ackerman JL, Offut MC, Buxton RB, Brady TJ. Rapid 3D tracking of small RF coils. In: Proceedings of the society of magnetic resonance in medicine, fifth annual meeting, Montreal; 1986. p. 1131–2.

    Google Scholar 

  144. Dumoulin CL, Souza SP, Darrow RD. Real-time position monitoring of invasive devices using magnetic resonance. Magn Reson Med. 1993;29(3):411–5.

    CAS  PubMed  Google Scholar 

  145. Leung DA, Debatin JF, Wildermuth S, et al. Intravascular MR tracking catheter: preliminary experimental evaluation. AJR Am J Roentgenol. 1995;164(5):1265–70.

    CAS  PubMed  Google Scholar 

  146. Ladd ME, Erhart P, Debatin JF, et al. Guidewire antennas for MR fluoroscopy. Magn Reson Med. 1997;37(6):891–7.

    CAS  PubMed  Google Scholar 

  147. Rasche V, Holz D, Kohler J, Proksa R, Roschmann P. Catheter tracking using continuous radial MRI. Magn Reson Med. 1997;37(6):963–8.

    CAS  PubMed  Google Scholar 

  148. Zhang Q, Wendt M, Aschoff AJ, Lewin JS, Duerk JL. A multielement RF coil for MRI guidance of interventional devices. J Magn Reson Imaging. 2001;14(1):56–62.

    CAS  PubMed  Google Scholar 

  149. Konings MK, Bartels LW, Smits HF, Bakker CJ. Heating around intravascular guidewires by resonating RF waves. J Magn Reson Imaging. 2000;12(1):79–85.

    CAS  PubMed  Google Scholar 

  150. Nitz WR, Oppelt A, Renz W, Manke C, Lenhart M, Link J. On the heating of linear conductive structures as guide wires and catheters in interventional MRI. J Magn Reson Imaging. 2001;13(1):105–14.

    CAS  PubMed  Google Scholar 

  151. Ladd ME, Quick HH. Reduction of resonant RF heating in intravascular catheters using coaxial chokes. Magn Reson Med. 2000;43(4):615–9.

    CAS  PubMed  Google Scholar 

  152. Wong EY, Zhang Q, Duerk JL, Lewin JS, Wendt M. An optical system for wireless detuning of parallel resonant circuits. J Magn Reson Imaging. 2000;12(4):632–8.

    CAS  PubMed  Google Scholar 

  153. Fandrey S, Weiss S, Muller J. Development of an active intravascular MR device with an optical transmission system. IEEE Trans Med Imaging. 2008;27(12):1723–7.

    PubMed  Google Scholar 

  154. Bock M, Umathum R, Sikora J, Brenner S, Aguor EN, Semmler W. A Faraday effect position sensor for interventional magnetic resonance imaging. Phys Med Biol. 2006;51(4):999–1009.

    CAS  PubMed  Google Scholar 

  155. Steiner P, Erhart P, Heske N, Dumoulin CL, von Schulthess GK, Debatin JF. Active biplanar MR tracking for biopsies in humans. AJR Am J Roentgenol. 1997;169(3):735–8.

    CAS  PubMed  Google Scholar 

  156. Ehnholm GJ, Vahala ET, Kinnunen J , Nieminen JE, Standertskjold-Nordenstam C, Uusitalo MA. Electron spin resonance (ESR) probe for interventional MRI instrument localization. J Magn Reson Imaging. 1999;10(2):216–9.

    CAS  PubMed  Google Scholar 

  157. Nevo E, Roth A, Hushek SG. An electromagnetic 3D locator system for use in MR scanners. In: Proceedings of the international society of magnetic resonance in medicine, tenth annual meeting, Honolulu; 2002. p. 334.

    Google Scholar 

  158. Kurumi Y, Tani T, Naka S, et al. MR-guided microwave ablation for malignancies. Int J Clin Oncol. 2007;12(2):85–93.

    PubMed  Google Scholar 

  159. Schenck JF, Jolesz FA, Roemer PB, et al. Superconducting open-configuration MR imaging system for image-guided therapy. Radiology. 1995;195(3):805–14.

    CAS  PubMed  Google Scholar 

  160. Hadani M, Spiegelman R, Feldman Z, Berkenstadt H, Ram Z. Novel, compact, intraoperative magnetic resonance imaging-guided system for conventional neurosurgical operating rooms. Neurosurgery. 2001;48(4):799–807; discussion 807–9.

    CAS  PubMed  Google Scholar 

  161. Ojala R, Vahala E, Karppinen J, et al. Nerve root infiltration of the first sacral root with MRI guidance. J Magn Reson Imaging. 2000;12(4):556–61.

    CAS  PubMed  Google Scholar 

  162. Mogami T, Dohi M, Harada J. A new image navigation system for MR-guided cryosurgery. Magn Reson Med Sci. 2002;1(4):191–7.

    PubMed  Google Scholar 

  163. Khadem R, Yeh CC, Sadeghi-Tehrani M, et al. Comparative tracking error analysis of five different optical tracking systems. Comput Aided Surg. 2000;5(2):98–107.

    CAS  PubMed  Google Scholar 

  164. Elfring R, de la Fuente M, Radermacher K. Assessment of optical localizer accuracy for computer aided surgery systems. Comput Aided Surg. 2010;15(1–3):1–12.

    PubMed  Google Scholar 

  165. Holsinger AE, Wright RC, Riederer SJ, Farzaneh F, Grimm RC, Maier JK. Real-time interactive magnetic resonance imaging. Magn Reson Med. 1990;14(3):547–53.

    CAS  PubMed  Google Scholar 

  166. Hardy CJ, Darrow RD, Nieters EJ, et al. Real-time acquisition, display, and interactive graphic control of NMR cardiac profiles and images. Magn Reson Med. 1993;29(5):667–73.

    CAS  PubMed  Google Scholar 

  167. Bohinski RJ, Kokkino AK, Warnick RE, et al. Glioma resection in a shared-resource magnetic resonance operating room after optimal image-guided frameless stereotactic resection. Neurosurgery. 2001;48(4):731–42; discussion 742–4.

    CAS  PubMed  Google Scholar 

  168. Zhang Q, Wendt M, Aschoff AJ, Lewin JS, Duerk JL. A multielement RF coil for MRI guidance of interventional devices. J Magn Reson Imaging 2001;14:56–62.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence P. Panych PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Panych, L.P., Tokuda, J. (2014). Real-Time and Interactive MRI. In: Jolesz, F. (eds) Intraoperative Imaging and Image-Guided Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7657-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7657-3_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7656-6

  • Online ISBN: 978-1-4614-7657-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics